File size: 19,373 Bytes
d0f021e 21af911 d0f021e 55f9861 d0f021e 21af911 55f9861 21af911 d0f021e 21af911 d0f021e 21af911 d0f021e 21af911 d0f021e 21af911 d0f021e 21af911 d0f021e 21af911 d0f021e 21af911 d0f021e 21af911 d0f021e 21af911 d0f021e 21af911 d0f021e 21af911 d0f021e 21af911 d0f021e 21af911 d0f021e 21af911 d0f021e 55f9861 7b2dd63 d0f021e 21af911 55f9861 21af911 55f9861 21af911 55f9861 21af911 55f9861 21af911 7b2dd63 55f9861 21af911 d0f021e 55f9861 d0f021e 55f9861 21af911 d0f021e 55f9861 21af911 d0f021e 55f9861 d0f021e 21af911 55f9861 21af911 55f9861 21af911 55f9861 21af911 d0f021e 21af911 d0f021e 55f9861 d0f021e 55f9861 d0f021e 55f9861 d0f021e 55f9861 d0f021e 55f9861 d0f021e 55f9861 21af911 d0f021e 55f9861 d0f021e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 |
import json
import random
import csv
from io import StringIO
from contextlib import redirect_stdout
from openai import OpenAI
from tqdm import tqdm
import os
import re
import anthropic
import math
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import torch
claude_client = anthropic.Anthropic(
# defaults to os.environ.get("ANTHROPIC_API_KEY")
api_key="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",
)
client = OpenAI(
organization='org-GOLjWTjRYGCBi47VKNk0jhMm',
project='proj_YotrLJgFnsq9wXOXBYaLjnO4',
api_key='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'
)
# client = OpenAI(
# api_key='sk-svcacct-JlNMlCPtZ_F0zJtJM9yaYSYzG8xnSdksl2uYUZLuabGoOCKqDtKGTWhHOlq-Idm4lT3BlbkFJ4zHo-hOjH6J8ne9IturX2sQA-tdKDOUw3Oj44pShZZ3iM-ptGsVcd8LFvB8pBIpAA'
# )
torch.random.manual_seed(0)
# phi_model = AutoModelForCausalLM.from_pretrained(
# "microsoft/Phi-3.5-MoE-instruct",
# device_map="cuda",
# torch_dtype="auto",
# trust_remote_code=True,
# )
#
# phi_tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-MoE-instruct")
# qwen_model_name = "Qwen/Qwen2.5-7B-Instruct"
#
# qwen_model = AutoModelForCausalLM.from_pretrained(
# qwen_model_name,
# torch_dtype="auto",
# device_map="auto"
# )
# qwen_tokenizer = AutoTokenizer.from_pretrained(qwen_model_name)
# llama_pipeline = pipeline(
# "text-generation",
# model="meta-llama/Meta-Llama-3.1-8B-Instruct",
# model_kwargs={"torch_dtype": torch.bfloat16},
# device_map="auto",
# )
program_data = []
PROMPT_DICT = {
"prompt_new_parameter_value": (
"Here is a math question with the parameter and parameter values. Please perturb the value of parameters into different values. Output five kinds of new values in the same format as the given parameters in five lines without index.\n\n"
"Question:\n{question}\n\nParameters:\n{parameters}\n\n"
),
"prompt_rewrite_question": (
"Here is a math question with old parameter values, and five kinds of new parameter values. Please rewrite the question five times to update all the parameters from old value to each corresponding new value in five lines without index.\n\n"
"Question: :\n{question}\n\nOld Parameters:\n{parameters}\n\nNew Parameters:\n{new_parameters}\n\nNew Question:"
),
"prompt_answer_question": (
"Answer the math question below. Only output the answer without units and any context words.\n\n"
"Question:\n{question}\n\nAnswer:"
),
"prompt_answer_question_few_shot_cot": (
"Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, there will be 21 trees. How many trees did the grove workers plant today?\n"
"A: There are 15 trees originally. Then there were 21 trees after some more were planted. So there must have been 21 - 15 = 6. The answer is 6.\n\n"
"Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?\n"
"A: There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5. The answer is 5.\n\n"
"Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?\n"
"A: Originally, Leah had 32 chocolates. Her sister had 42. So in total they had 32 + 42 = 74. After eating 35, they had 74 - 35 = 39. The answer is 39.\n\n"
"Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops did Jason give to Denny?\n"
"A: Jason started with 20 lollipops. Then he had 12 after giving some to Denny. So he gave Denny 20 - 12 = 8. The answer is 8.\n\n"
"Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?\n"
"A: Shawn started with 5 toys. If he got 2 toys each from his mom and dad, then that is 4 more toys. 5 + 4 = 9. The answer is 9.\n\n"
"Q: There were nine computers in the server room. Five more computers were installed each day, from monday to thursday. How many computers are now in the server room?\n"
"A: There were originally 9 computers. For each of 4 days, 5 more computers were added. So 5 * 4 = 20 computers were added. 9 + 20 is 29. The answer is 29.\n\n"
"Q: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many golf balls did he have at the end of wednesday?\n"
"A: Michael started with 58 golf balls. After losing 23 on tuesday, he had 58 - 23 = 35. After losing 2 more, he had 35 - 2 = 33 golf balls. The answer is 33.\n\n"
"Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?\n"
"A: Olivia had 23 dollars. 5 bagels for 3 dollars each will be 5 x 3 = 15 dollars. So she has 23 - 15 dollars left. 23 - 15 is 8. The answer is 8.\n\n"
"Q: {question}\n"
"A: "
)
}
def call_function_with_args(parameter):
# outstr = '\noutput = answer('
# for parameter in case['parameter_value']:
# para_name = parameter.split(':')[0]
# if ': str' not in parameter:
# value = str(case['parameter_value'][parameter])
# else:
# value = '"' + case['parameter_value'][parameter] + '"'
# # print(para_name, value)
# outstr += para_name + '=' + value + ', '
# outstr += ')\nprint(output)'
outstr = '\noutput = answer({})\nprint(output)'.format(parameter)
return outstr
def perturb_parameter_value(case):
prompt_template = PROMPT_DICT['prompt_new_parameter_value']
prompt = prompt_template.format_map(
{"question": case['question'], "parameters": case['parameters']}
)
response = client.chat.completions.create(
model="gpt-4o",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
)
return response
def clear_parameter_output(response):
response = response.replace('Parameters:', '').replace('```', '').replace('- ', '').strip().split('\n')
for idx, para in enumerate(response):
para.replace(str(idx)+'. ', '').strip()
para.replace(str(idx+1) + '. ', '').strip()
response = [x for x in response if len(x) > 0]
return response
def generate_new_parameter_value():
# infile = open('/shared/xdyu/msr/reasoning_hallucination/data/math/test_dump_gsm8k_train_perturbed.json', 'r')
infile = open('/shared/xdyu/msr/reasoning_eval/data/math/test_dump_math_train_4o_perturbed.json', 'r')
program_data = json.load(infile)
correct_counter = 0
compile_fail_counter = 0
correct_case = []
for idx, case in enumerate(program_data):
if idx in [306]:
continue
# program = case['candidate_programs'][0]
if len(case['selected_programs']) == 0:
continue
program = case['selected_programs'][0]
if 'math.' in program:
program = 'import math\n\n' + program
program += call_function_with_args(case['parameters'])
# print(program)
try:
f = StringIO()
with redirect_stdout(f):
exec(program)
s = f.getvalue().strip()
if round(float(s)) == round(float(case['answer'])):
correct_counter += 1
correct_case.append(case)
# else:
# print(s)
# print(case['answer'])
except Exception as e:
print(e)
print(case)
compile_fail_counter += 1
print(len(program_data))
print(correct_counter)
dead_loop_counter = 0
for case in tqdm(correct_case):
if 'new_answers' in case and len(case['new_answers']) == 5:
continue
if 'new_parameters' not in case or ('new_parameters' in case and 'new_answers' in case and len(case['new_answers']) < 5):
response = perturb_parameter_value(case)
new_values = clear_parameter_output(response.choices[0].message.content)
if len(new_values) == 6:
new_values = new_values[1:]
case['new_parameters'] = new_values
try:
case['new_answers'] = []
for parameter in case['new_parameters']:
program = case['candidate_programs'][0]
program += call_function_with_args(parameter)
f = StringIO()
if 'while True:' in program:
dead_loop_counter += 1
continue
with redirect_stdout(f):
exec(program)
s = f.getvalue().strip()
case['new_answers'].append(s)
except Exception as e:
print(e)
print(case['new_parameters'])
continue
# break
outfile = open('data/math/test_dump_math_train_4o_perturbed.json', 'w')
json.dump(correct_case, outfile, indent=4)
print(dead_loop_counter)
def rewrite_question(case):
prompt_template = PROMPT_DICT['prompt_rewrite_question']
prompt = prompt_template.format_map(
{"question": case['question'], "parameters": case['parameters'], "new_parameters": "\n".join(case['new_parameters'])}
)
response = client.chat.completions.create(
model="gpt-4o",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
)
return response
def update_question_with_new_parameters():
# infile = open('/shared/xdyu/msr/reasoning_hallucination/data/math/test_dump_gsm8k_train_perturbed.json', 'r')
infile = open('/shared/xdyu/msr/reasoning_eval/data/math/test_dump_math_train_4o_perturbed.json', 'r')
program_data = json.load(infile)
print(len(program_data))
for case in tqdm(program_data):
response = rewrite_question(case)
new_values = [x.strip() for x in response.choices[0].message.content.split('\n') if len(x) > 0]
# print(new_values)
if len(new_values) == 6:
new_values = new_values[1:]
case['new_questions'] = new_values
# print(case)
# break
outfile = open('data/math/test_dump_math_train_4o_perturbed_with_new_questions.json', 'w')
json.dump(program_data, outfile, indent=4)
def call_answer_question(question, model_name='gpt', cot=False, temp=0.7):
if cot:
prompt_template = PROMPT_DICT['prompt_answer_question_few_shot_cot']
else:
prompt_template = PROMPT_DICT['prompt_answer_question']
prompt = prompt_template.format_map(
{"question": question}
)
# print(prompt)
if model_name == 'gpt':
response = client.chat.completions.create(
model="gpt-4o",
# model="gpt-4-turbo",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
],
temperature=temp,
max_tokens=1024,
top_p=1
)
return response.choices[0].message.content
else:
if model_name == 'claude':
message = claude_client.messages.create(
model="claude-3-5-sonnet-20240620",
max_tokens=300,
messages=[
{"role": "user", "content": prompt}
],
temperature=temp,
top_p=1
)
return message.content[0].text
# if model_name == 'phi':
# messages = [
# {"role": "system", "content": "You are a helpful AI assistant."},
# {"role": "user", "content": prompt}
# ]
#
# pipe = pipeline(
# "text-generation",
# model=phi_model,
# tokenizer=phi_tokenizer,
# )
#
# generation_args = {
# "max_new_tokens": 300,
# "return_full_text": False,
# "temperature": 0.0,
# "do_sample": False,
# }
#
# output = pipe(messages, **generation_args)
# print(output[0]['generated_text'])
if model_name == 'qwen':
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = qwen_tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = qwen_tokenizer([text], return_tensors="pt").to(qwen_model.device)
generated_ids = qwen_model.generate(
**model_inputs,
max_new_tokens=300,
temperature=temp
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = qwen_tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
return response
if model_name == 'llama':
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt},
]
outputs = llama_pipeline(
messages,
max_new_tokens=300,
# temperature=0.00001
temperature = temp
)
# print(outputs[0]["generated_text"][-1])
return outputs[0]["generated_text"][-1]['content']
def answer_question(model_name='gpt', cot=False, temp=0.0):
# infile = open('data/math/test_dump_gsm8k_train_perturbed_with_new_questions.json', 'r')
infile = open('data/math/test_dump_math_train_4o_perturbed_with_new_questions.json', 'r')
program_data = json.load(infile)
print(len(program_data))
for case in tqdm(program_data):
response = call_answer_question(case['question'], model_name=model_name, cot=cot, temp=temp)
case['prediction'] = response
# print(case['prediction'])
case['new_prediction'] = []
for question in case['new_questions']:
response = call_answer_question(question, model_name=model_name, cot=cot, temp=temp)
case['new_prediction'].append(response)
# print(case)
# break
# print(case)
# break
# outfile = open('data/math/test_dump_gsm8k_train_perturbed_with_new_questions_answer_few_shot_cot_llama8b.json', 'w')
# outfile = open('data/math/gsm8k_cot_sc_qwen/temp=0.7_iter=5.json', 'w')
# outfile = open('data/math/gsm8k_cot_sc_llama3.1_8b/temp=0.7_iter=5.json', 'w')
# outfile = open('data/math/test_dump_math_train_4o_perturbed_with_new_questions_few_shot_cot_qwen.json', 'w')
# outfile = open('data/math/test_dump_math_train_4o_perturbed_with_new_questions_few_shot_cot_gpt4o.json', 'w')
outfile = open('data/math/math_cot_sc_gpt4o/temp=0.7_iter=2.json', 'w')
# outfile = open('data/math/math_cot_sc_qwen/temp=0.7_iter=5.json', 'w')
# outfile = open('data/math/math_cot_sc_llama3.1_8b/temp=0.7_iter=4.json', 'w')
json.dump(program_data, outfile, indent=4)
def parse_answer(answer):
if type(answer) is not list:
if 'answer is' in answer:
answer = answer.split('answer is')[-1].strip()
else:
if '\\(' in answer and '\\)' in answer:
answer = answer.split('\\(')[-1].split('\\)')[0]
else:
# print("Before: ", answer)
answer = answer.split(' ')[-1]
if len(answer) > 0 and answer[-1] == '.':
answer = answer[0:-1]
print("##########Before: ", answer)
answer = answer.split('=')[-1]
answer = re.sub("[^\d\.]", "", answer)
print("################After: ", answer)
return answer
else:
answer_freq = {}
for x in answer:
parsed_answer = parse_answer(x)
if parsed_answer not in answer_freq:
answer_freq[parsed_answer] = 0
answer_freq[parsed_answer] += 1
answer_freq = sorted(answer_freq.items(), key=lambda item: item[1], reverse=True)
return answer_freq[0][0]
def collect_self_consistency_result(infile_path):
folder_data_list = []
for file in os.listdir(infile_path):
infile = open(infile_path + '/' + file, 'r')
file_data = json.load(infile)
folder_data_list.append(file_data)
merged_data = folder_data_list[0]
for idx, case in enumerate(merged_data):
prediction = []
for file_data in folder_data_list:
prediction.append(file_data[idx]['prediction'])
case['prediction'] = prediction
for q_idx in range(0, len(case['new_prediction'])):
new_prediction = []
for file_data in folder_data_list:
new_prediction.append(file_data[idx]['new_prediction'][q_idx])
case['new_prediction'][q_idx] = new_prediction
outfile = open(infile_path+'_merged_result.json', 'w')
json.dump(merged_data, outfile, indent=4)
def evaluator(infile_path, normalize=False):
infile = open(infile_path, 'r')
data = json.load(infile)
correct_case = 0
total_case = 0
total_percentage = 0
new_parameter_correct_counter = {}
for case in data:
if 'new_answers' not in case or len(case['new_answers']) != len(case['new_prediction']):
continue
total_case += 1
prediction = parse_answer(case['prediction'])
parsed_gold = parse_answer(str(case['answer']))
case['answer'] = str(case['answer'])
if prediction == case['answer'] or case['answer'] in prediction or prediction == parsed_gold or parsed_gold in prediction:
correct_case += 1
else:
# print(prediction)
if normalize:
continue
new_parameter_correct_case = 0
for idx, pred in enumerate(case['new_prediction']):
parsed_pred = parse_answer(pred)
parsed_gold = parse_answer(case['new_answers'][idx])
if parsed_pred == case['new_answers'][idx] or case['new_answers'][idx] in parsed_pred or parsed_pred == parsed_gold or parsed_gold in parsed_pred:
new_parameter_correct_case += 1
else:
try:
parsed_pred = round(float(parsed_pred))
new_answer = round(float(case['new_answers'][idx]))
if parsed_pred == new_answer:
new_parameter_correct_case += 1
# else:
# print(parsed_pred, case['new_answers'][idx])
except:
continue
total_parameter_correct_case = len(case['new_prediction'])
percentage = float(new_parameter_correct_case / total_parameter_correct_case)
total_percentage += percentage
if new_parameter_correct_case not in new_parameter_correct_counter:
new_parameter_correct_counter[new_parameter_correct_case] = 0
new_parameter_correct_counter[new_parameter_correct_case] += 1
# else:
# print(prediction, case['answer'])
print(correct_case, total_case, correct_case/total_case)
if normalize:
print(total_percentage, total_percentage/correct_case)
else:
print(total_percentage, total_percentage/total_case)
print(new_parameter_correct_counter)
print(new_parameter_correct_counter[5] / correct_case)
def sample_questions(filepath):
infile = open(filepath, 'r')
data = json.load(infile)
filtered_data = []
for case in data:
if 'new_answers' not in case or len(case['new_answers']) != 5:
continue
filtered_data.append(case)
filtered_data = random.sample(filtered_data, 100)
# with open('data/sample_verification/gsk8k_sample.csv', 'w', newline='') as csvfile:
# csvwriter = csv.writer(csvfile, delimiter=' ',
# quotechar='|', quoting=csv.QUOTE_MINIMAL)
# for case in filtered_data:
# csvwriter.writerow([case['question'], case['answer'], case['parameters'], case['selected_programs'][0].replace('\n', '\\n'),
# case['new_parameters'], case['new_questions'], case['new_answers']])
out_data = []
for case in filtered_data:
new_case = {
'question': case['question'],
'answer': case['answer'],
'parameters': case['parameters'],
'programs': case['candidate_programs'][0],
'new_parameters': case['new_parameters'],
'new_questions': case['new_questions'],
'new_answers': case['new_answers']
}
out_data.append(new_case)
outfile1 = open('data/sample_verification/math_xiaodong_split.json', 'w')
outfile2 = open('data/sample_verification/math_ben_split.json', 'w')
outfile3 = open('data/sample_verification/math_hao_split.json', 'w')
json.dump(out_data[0:34], outfile1, indent=4)
json.dump(out_data[34:67], outfile2, indent=4)
json.dump(out_data[67:100], outfile3, indent=4)
def main():
# generate_new_parameter_value()
# update_question_with_new_parameters()
# answer_question(model_name='gpt', cot=True, temp=0.7)
# collect_self_consistency_result('data/math/math_cot_sc_gpt4turbo')
evaluator('data/math/math_cot_sc_gpt4o/temp=0.7_iter=1.json', normalize=True)
# evaluator('data/math/test_dump_gsm8k_train_perturbed_with_new_questions_answer_few_shot_cot_qwen.json')
# sample_questions('data/math/test_dump_math_train_4o_perturbed_with_new_questions.json')
if __name__ == "__main__":
main() |