File size: 19,373 Bytes
d0f021e
 
 
 
 
 
 
21af911
 
 
 
 
 
 
 
 
 
 
 
d0f021e
 
 
 
 
 
 
 
55f9861
 
 
 
d0f021e
21af911
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55f9861
 
 
 
 
 
21af911
 
 
 
d0f021e
 
 
 
 
 
 
 
 
 
 
 
21af911
d0f021e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21af911
d0f021e
 
 
 
21af911
 
d0f021e
 
 
 
 
 
 
21af911
 
 
 
 
 
 
 
 
d0f021e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21af911
d0f021e
21af911
d0f021e
 
21af911
d0f021e
 
 
21af911
 
 
 
 
 
 
d0f021e
 
 
 
 
 
21af911
 
 
d0f021e
 
 
 
 
 
21af911
d0f021e
 
21af911
d0f021e
 
21af911
d0f021e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21af911
 
d0f021e
 
 
 
 
 
 
 
 
 
 
21af911
d0f021e
 
 
55f9861
7b2dd63
 
 
 
d0f021e
 
 
 
21af911
 
 
55f9861
21af911
 
 
 
55f9861
 
21af911
 
 
 
 
 
 
 
 
 
 
55f9861
21af911
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55f9861
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21af911
 
 
 
 
 
 
 
7b2dd63
55f9861
21af911
 
 
d0f021e
 
55f9861
 
 
d0f021e
 
 
55f9861
21af911
d0f021e
 
 
55f9861
21af911
d0f021e
 
 
 
55f9861
 
 
 
 
 
 
 
 
 
d0f021e
 
 
 
21af911
 
 
 
55f9861
 
 
 
 
 
21af911
 
55f9861
 
21af911
55f9861
 
21af911
d0f021e
21af911
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0f021e
55f9861
d0f021e
 
 
 
 
 
 
 
 
 
 
55f9861
 
 
d0f021e
55f9861
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0f021e
 
 
 
55f9861
 
 
 
d0f021e
55f9861
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0f021e
 
 
 
55f9861
 
 
21af911
d0f021e
55f9861
 
d0f021e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
import json
import random
import csv
from io import StringIO
from contextlib import redirect_stdout
from openai import OpenAI
from tqdm import tqdm
import os
import re
import anthropic
import math
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import torch


claude_client = anthropic.Anthropic(
    # defaults to os.environ.get("ANTHROPIC_API_KEY")
    api_key="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",
)


client = OpenAI(
  organization='org-GOLjWTjRYGCBi47VKNk0jhMm',
  project='proj_YotrLJgFnsq9wXOXBYaLjnO4',
  api_key='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'
)

# client = OpenAI(
#   api_key='sk-svcacct-JlNMlCPtZ_F0zJtJM9yaYSYzG8xnSdksl2uYUZLuabGoOCKqDtKGTWhHOlq-Idm4lT3BlbkFJ4zHo-hOjH6J8ne9IturX2sQA-tdKDOUw3Oj44pShZZ3iM-ptGsVcd8LFvB8pBIpAA'
# )


torch.random.manual_seed(0)

# phi_model = AutoModelForCausalLM.from_pretrained(
#     "microsoft/Phi-3.5-MoE-instruct",
#     device_map="cuda",
#     torch_dtype="auto",
#     trust_remote_code=True,
# )
#
# phi_tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-MoE-instruct")

# qwen_model_name = "Qwen/Qwen2.5-7B-Instruct"
#
# qwen_model = AutoModelForCausalLM.from_pretrained(
#     qwen_model_name,
#     torch_dtype="auto",
#     device_map="auto"
# )
# qwen_tokenizer = AutoTokenizer.from_pretrained(qwen_model_name)

# llama_pipeline = pipeline(
#     "text-generation",
#     model="meta-llama/Meta-Llama-3.1-8B-Instruct",
#     model_kwargs={"torch_dtype": torch.bfloat16},
#     device_map="auto",
# )




program_data = []

PROMPT_DICT = {
    "prompt_new_parameter_value": (
        "Here is a math question with the parameter and parameter values. Please perturb the value of parameters into different values. Output five kinds of new values in the same format as the given parameters in five lines without index.\n\n"
        "Question:\n{question}\n\nParameters:\n{parameters}\n\n"
    ),
	"prompt_rewrite_question": (
		"Here is a math question with old parameter values, and five kinds of new parameter values. Please rewrite the question five times to update all the parameters from old value to each corresponding new value in five lines without index.\n\n"
		"Question: :\n{question}\n\nOld Parameters:\n{parameters}\n\nNew Parameters:\n{new_parameters}\n\nNew Question:"
	),
	"prompt_answer_question": (
		"Answer the math question below. Only output the answer without units and any context words.\n\n"
		"Question:\n{question}\n\nAnswer:"
	),
	"prompt_answer_question_few_shot_cot": (
		"Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, there will be 21 trees. How many trees did the grove workers plant today?\n"
		"A: There are 15 trees originally. Then there were 21 trees after some more were planted. So there must have been 21 - 15 = 6. The answer is 6.\n\n"
		"Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?\n"
		"A: There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5. The answer is 5.\n\n"
		"Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?\n"
		"A: Originally, Leah had 32 chocolates. Her sister had 42. So in total they had 32 + 42 = 74. After eating 35, they had 74 - 35 = 39. The answer is 39.\n\n"
		"Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops did Jason give to Denny?\n"
		"A: Jason started with 20 lollipops. Then he had 12 after giving some to Denny. So he gave Denny 20 - 12 = 8. The answer is 8.\n\n"
		"Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?\n"
		"A: Shawn started with 5 toys. If he got 2 toys each from his mom and dad, then that is 4 more toys. 5 + 4 = 9. The answer is 9.\n\n"
		"Q: There were nine computers in the server room. Five more computers were installed each day, from monday to thursday. How many computers are now in the server room?\n"
		"A: There were originally 9 computers. For each of 4 days, 5 more computers were added. So 5 * 4 = 20 computers were added. 9 + 20 is 29. The answer is 29.\n\n"
		"Q: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many golf balls did he have at the end of wednesday?\n"
		"A: Michael started with 58 golf balls. After losing 23 on tuesday, he had 58 - 23 = 35. After losing 2 more, he had 35 - 2 = 33 golf balls. The answer is 33.\n\n"
		"Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?\n"
		"A: Olivia had 23 dollars. 5 bagels for 3 dollars each will be 5 x 3 = 15 dollars. So she has 23 - 15 dollars left. 23 - 15 is 8. The answer is 8.\n\n"
		"Q: {question}\n"
		"A: "
	)
}

def call_function_with_args(parameter):
	# outstr = '\noutput = answer('
	# for parameter in case['parameter_value']:
	# 	para_name = parameter.split(':')[0]
	# 	if ': str' not in parameter:
	# 		value = str(case['parameter_value'][parameter])
	# 	else:
	# 		value = '"' + case['parameter_value'][parameter] + '"'
	# 	# print(para_name, value)
	# 	outstr += para_name + '=' + value + ', '
	# outstr += ')\nprint(output)'

	outstr = '\noutput = answer({})\nprint(output)'.format(parameter)
	return outstr


def perturb_parameter_value(case):
	prompt_template = PROMPT_DICT['prompt_new_parameter_value']
	prompt = prompt_template.format_map(
		{"question": case['question'], "parameters": case['parameters']}
	)
	response = client.chat.completions.create(
		model="gpt-4o",
		messages=[
			{"role": "system", "content": "You are a helpful assistant."},
			{"role": "user", "content": prompt}
		]
	)
	return response


def clear_parameter_output(response):
	response = response.replace('Parameters:', '').replace('```', '').replace('- ', '').strip().split('\n')
	for idx, para in enumerate(response):
		para.replace(str(idx)+'. ', '').strip()
		para.replace(str(idx+1) + '. ', '').strip()
	response = [x for x in response if len(x) > 0]
	return response

def generate_new_parameter_value():
	# infile = open('/shared/xdyu/msr/reasoning_hallucination/data/math/test_dump_gsm8k_train_perturbed.json', 'r')
	infile = open('/shared/xdyu/msr/reasoning_eval/data/math/test_dump_math_train_4o_perturbed.json', 'r')
	program_data = json.load(infile)

	correct_counter = 0
	compile_fail_counter = 0

	correct_case = []

	for idx, case in enumerate(program_data):
		if idx in [306]:
			continue
		# program = case['candidate_programs'][0]
		if len(case['selected_programs']) == 0:
			continue
		program = case['selected_programs'][0]
		if 'math.' in program:
			program = 'import math\n\n' + program
		program += call_function_with_args(case['parameters'])
		# print(program)
		try:
			f = StringIO()
			with redirect_stdout(f):
				exec(program)
			s = f.getvalue().strip()
			if round(float(s)) == round(float(case['answer'])):
				correct_counter += 1
				correct_case.append(case)
		# else:
		# 	print(s)
		# 	print(case['answer'])
		except Exception as e:
			print(e)
			print(case)
			compile_fail_counter += 1
	print(len(program_data))
	print(correct_counter)

	dead_loop_counter = 0
	for case in tqdm(correct_case):
		if 'new_answers' in case and len(case['new_answers']) == 5:
			continue
		if 'new_parameters' not in case or ('new_parameters' in case and 'new_answers' in case and len(case['new_answers']) < 5):
			response = perturb_parameter_value(case)
			new_values = clear_parameter_output(response.choices[0].message.content)
			if len(new_values) == 6:
				new_values = new_values[1:]
			case['new_parameters'] = new_values

		try:
			case['new_answers'] = []
			for parameter in case['new_parameters']:
				program = case['candidate_programs'][0]
				program += call_function_with_args(parameter)
				f = StringIO()
				if 'while True:' in program:
					dead_loop_counter += 1
					continue
				with redirect_stdout(f):
					exec(program)
				s = f.getvalue().strip()
				case['new_answers'].append(s)
		except Exception as e:
			print(e)
			print(case['new_parameters'])
			continue
	# break
	outfile = open('data/math/test_dump_math_train_4o_perturbed.json', 'w')
	json.dump(correct_case, outfile, indent=4)

	print(dead_loop_counter)

def rewrite_question(case):
	prompt_template = PROMPT_DICT['prompt_rewrite_question']
	prompt = prompt_template.format_map(
		{"question": case['question'], "parameters": case['parameters'], "new_parameters": "\n".join(case['new_parameters'])}
	)
	response = client.chat.completions.create(
		model="gpt-4o",
		messages=[
			{"role": "system", "content": "You are a helpful assistant."},
			{"role": "user", "content": prompt}
		]
	)
	return response


def update_question_with_new_parameters():
	# infile = open('/shared/xdyu/msr/reasoning_hallucination/data/math/test_dump_gsm8k_train_perturbed.json', 'r')
	infile = open('/shared/xdyu/msr/reasoning_eval/data/math/test_dump_math_train_4o_perturbed.json', 'r')
	program_data = json.load(infile)
	print(len(program_data))
	for case in tqdm(program_data):
		response = rewrite_question(case)
		new_values = [x.strip() for x in response.choices[0].message.content.split('\n') if len(x) > 0]
		# print(new_values)
		if len(new_values) == 6:
			new_values = new_values[1:]
		case['new_questions'] = new_values
		# print(case)
		# break
	outfile = open('data/math/test_dump_math_train_4o_perturbed_with_new_questions.json', 'w')
	json.dump(program_data, outfile, indent=4)


def call_answer_question(question, model_name='gpt', cot=False, temp=0.7):
	if cot:
		prompt_template = PROMPT_DICT['prompt_answer_question_few_shot_cot']
	else:
		prompt_template = PROMPT_DICT['prompt_answer_question']
	prompt = prompt_template.format_map(
		{"question": question}
	)
	# print(prompt)
	if model_name == 'gpt':
		response = client.chat.completions.create(
			model="gpt-4o",
			# model="gpt-4-turbo",
			messages=[
				{"role": "system", "content": "You are a helpful assistant."},
				{"role": "user", "content": prompt}
			],
			temperature=temp,
			max_tokens=1024,
			top_p=1
		)
		return response.choices[0].message.content
	else:
		if model_name == 'claude':
			message = claude_client.messages.create(
				model="claude-3-5-sonnet-20240620",
				max_tokens=300,
				messages=[
					{"role": "user", "content": prompt}
				],
				temperature=temp,
				top_p=1
			)
			return message.content[0].text
		# if model_name == 'phi':
		# 	messages = [
		# 		{"role": "system", "content": "You are a helpful AI assistant."},
		# 		{"role": "user", "content": prompt}
		# 	]
		#
		# 	pipe = pipeline(
		# 		"text-generation",
		# 		model=phi_model,
		# 		tokenizer=phi_tokenizer,
		# 	)
		#
		# 	generation_args = {
		# 		"max_new_tokens": 300,
		# 		"return_full_text": False,
		# 		"temperature": 0.0,
		# 		"do_sample": False,
		# 	}
		#
		# 	output = pipe(messages, **generation_args)
		# 	print(output[0]['generated_text'])

		if model_name == 'qwen':
			messages = [
				{"role": "system", "content": "You are a helpful assistant."},
				{"role": "user", "content": prompt}
			]
			text = qwen_tokenizer.apply_chat_template(
				messages,
				tokenize=False,
				add_generation_prompt=True
			)
			model_inputs = qwen_tokenizer([text], return_tensors="pt").to(qwen_model.device)

			generated_ids = qwen_model.generate(
				**model_inputs,
				max_new_tokens=300,
				temperature=temp
			)
			generated_ids = [
				output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
			]

			response = qwen_tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
			return response

		if model_name == 'llama':
			messages = [
				{"role": "system", "content": "You are a helpful assistant."},
				{"role": "user", "content": prompt},
			]
			outputs = llama_pipeline(
				messages,
				max_new_tokens=300,
				# temperature=0.00001
				temperature = temp
			)
			# print(outputs[0]["generated_text"][-1])
			return outputs[0]["generated_text"][-1]['content']


def answer_question(model_name='gpt', cot=False, temp=0.0):
	# infile = open('data/math/test_dump_gsm8k_train_perturbed_with_new_questions.json', 'r')
	infile = open('data/math/test_dump_math_train_4o_perturbed_with_new_questions.json', 'r')
	program_data = json.load(infile)
	print(len(program_data))
	for case in tqdm(program_data):
		response = call_answer_question(case['question'], model_name=model_name, cot=cot, temp=temp)
		case['prediction'] = response
		# print(case['prediction'])
		case['new_prediction'] = []
		for question in case['new_questions']:
			response = call_answer_question(question, model_name=model_name, cot=cot, temp=temp)
			case['new_prediction'].append(response)
		# print(case)
		# break
	# print(case)
	# break
	# outfile = open('data/math/test_dump_gsm8k_train_perturbed_with_new_questions_answer_few_shot_cot_llama8b.json', 'w')
	# outfile = open('data/math/gsm8k_cot_sc_qwen/temp=0.7_iter=5.json', 'w')
	# outfile = open('data/math/gsm8k_cot_sc_llama3.1_8b/temp=0.7_iter=5.json', 'w')

	# outfile = open('data/math/test_dump_math_train_4o_perturbed_with_new_questions_few_shot_cot_qwen.json', 'w')
	# outfile = open('data/math/test_dump_math_train_4o_perturbed_with_new_questions_few_shot_cot_gpt4o.json', 'w')
	outfile = open('data/math/math_cot_sc_gpt4o/temp=0.7_iter=2.json', 'w')
	# outfile = open('data/math/math_cot_sc_qwen/temp=0.7_iter=5.json', 'w')
	# outfile = open('data/math/math_cot_sc_llama3.1_8b/temp=0.7_iter=4.json', 'w')

	json.dump(program_data, outfile, indent=4)


def parse_answer(answer):
	if type(answer) is not list:
		if 'answer is' in answer:
			answer = answer.split('answer is')[-1].strip()
		else:
			if '\\(' in answer and '\\)' in answer:
				answer = answer.split('\\(')[-1].split('\\)')[0]
			else:
				# print("Before: ", answer)
				answer = answer.split(' ')[-1]

		if len(answer) > 0 and answer[-1] == '.':
				answer = answer[0:-1]
		print("##########Before: ", answer)
		answer = answer.split('=')[-1]
		answer = re.sub("[^\d\.]", "", answer)
		print("################After: ", answer)

		return answer
	else:
		answer_freq = {}
		for x in answer:
			parsed_answer = parse_answer(x)
			if parsed_answer not in answer_freq:
				answer_freq[parsed_answer] = 0
			answer_freq[parsed_answer] += 1
		answer_freq = sorted(answer_freq.items(), key=lambda item: item[1], reverse=True)
		return answer_freq[0][0]


def collect_self_consistency_result(infile_path):
	folder_data_list = []
	for file in os.listdir(infile_path):
		infile = open(infile_path + '/' + file, 'r')
		file_data = json.load(infile)
		folder_data_list.append(file_data)
	merged_data = folder_data_list[0]
	for idx, case in enumerate(merged_data):
		prediction = []
		for file_data in folder_data_list:
			prediction.append(file_data[idx]['prediction'])
		case['prediction'] = prediction
		for q_idx in range(0, len(case['new_prediction'])):
			new_prediction = []
			for file_data in folder_data_list:
				new_prediction.append(file_data[idx]['new_prediction'][q_idx])
			case['new_prediction'][q_idx] = new_prediction
	outfile = open(infile_path+'_merged_result.json', 'w')
	json.dump(merged_data, outfile, indent=4)



def evaluator(infile_path, normalize=False):
	infile = open(infile_path, 'r')
	data = json.load(infile)
	correct_case = 0
	total_case = 0
	total_percentage = 0
	new_parameter_correct_counter = {}
	for case in data:
		if 'new_answers' not in case or len(case['new_answers']) != len(case['new_prediction']):
			continue
		total_case += 1
		prediction = parse_answer(case['prediction'])
		parsed_gold = parse_answer(str(case['answer']))
		case['answer'] = str(case['answer'])
		if prediction == case['answer'] or case['answer'] in prediction or prediction == parsed_gold or parsed_gold in prediction:
			correct_case += 1
		else:
			# print(prediction)
			if normalize:
				continue
		new_parameter_correct_case = 0
		for idx, pred in enumerate(case['new_prediction']):
			parsed_pred = parse_answer(pred)
			parsed_gold = parse_answer(case['new_answers'][idx])
			if parsed_pred == case['new_answers'][idx] or case['new_answers'][idx] in parsed_pred or parsed_pred == parsed_gold or parsed_gold in parsed_pred:
				new_parameter_correct_case += 1
			else:
				try:
					parsed_pred = round(float(parsed_pred))
					new_answer = round(float(case['new_answers'][idx]))
					if parsed_pred == new_answer:
						new_parameter_correct_case += 1
					# else:
					# 	print(parsed_pred, case['new_answers'][idx])
				except:
					continue
		total_parameter_correct_case = len(case['new_prediction'])
		percentage = float(new_parameter_correct_case / total_parameter_correct_case)
		total_percentage += percentage
		if new_parameter_correct_case not in new_parameter_correct_counter:
			new_parameter_correct_counter[new_parameter_correct_case] = 0
		new_parameter_correct_counter[new_parameter_correct_case] += 1

		# else:
		# 	print(prediction, case['answer'])
	print(correct_case, total_case, correct_case/total_case)
	if normalize:
		print(total_percentage, total_percentage/correct_case)
	else:
		print(total_percentage, total_percentage/total_case)
	print(new_parameter_correct_counter)
	print(new_parameter_correct_counter[5] / correct_case)


def sample_questions(filepath):
	infile = open(filepath, 'r')
	data = json.load(infile)
	filtered_data = []
	for case in data:
		if 'new_answers' not in case or len(case['new_answers']) != 5:
			continue
		filtered_data.append(case)
	filtered_data = random.sample(filtered_data, 100)

	# with open('data/sample_verification/gsk8k_sample.csv', 'w', newline='') as csvfile:
	# 	csvwriter = csv.writer(csvfile, delimiter=' ',
	# 	                        quotechar='|', quoting=csv.QUOTE_MINIMAL)
	# 	for case in filtered_data:
	# 		csvwriter.writerow([case['question'], case['answer'], case['parameters'], case['selected_programs'][0].replace('\n', '\\n'),
	# 	                         case['new_parameters'], case['new_questions'], case['new_answers']])
	out_data = []
	for case in filtered_data:
		new_case = {
			'question': case['question'],
			'answer': case['answer'],
			'parameters': case['parameters'],
			'programs': case['candidate_programs'][0],
			'new_parameters': case['new_parameters'],
			'new_questions': case['new_questions'],
			'new_answers': case['new_answers']
		}
		out_data.append(new_case)
	outfile1 = open('data/sample_verification/math_xiaodong_split.json', 'w')
	outfile2 = open('data/sample_verification/math_ben_split.json', 'w')
	outfile3 = open('data/sample_verification/math_hao_split.json', 'w')
	json.dump(out_data[0:34], outfile1, indent=4)
	json.dump(out_data[34:67], outfile2, indent=4)
	json.dump(out_data[67:100], outfile3, indent=4)



def main():
	# generate_new_parameter_value()
	# update_question_with_new_parameters()
	# answer_question(model_name='gpt', cot=True, temp=0.7)
	# collect_self_consistency_result('data/math/math_cot_sc_gpt4turbo')
	evaluator('data/math/math_cot_sc_gpt4o/temp=0.7_iter=1.json', normalize=True)
	# evaluator('data/math/test_dump_gsm8k_train_perturbed_with_new_questions_answer_few_shot_cot_qwen.json')

	# sample_questions('data/math/test_dump_math_train_4o_perturbed_with_new_questions.json')


if __name__ == "__main__":
	main()