Xabi Ezpeleta
commited on
Commit
·
e94d61e
1
Parent(s):
a64b8b4
First trial
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- README.md +83 -0
- Whisper_finetuned_checkpoint_to_GGML.ipynb +1381 -0
- added_tokens.json +108 -0
- all_results.json +12 -0
- checkpoint-1000/config.json +41 -0
- checkpoint-1000/optimizer.pt +3 -0
- checkpoint-1000/preprocessor_config.json +0 -0
- checkpoint-1000/pytorch_model.bin +3 -0
- checkpoint-1000/rng_state.pth +3 -0
- checkpoint-1000/scaler.pt +3 -0
- checkpoint-1000/scheduler.pt +3 -0
- checkpoint-1000/trainer_state.json +265 -0
- checkpoint-1000/training_args.bin +3 -0
- checkpoint-2000/config.json +41 -0
- checkpoint-2000/optimizer.pt +3 -0
- checkpoint-2000/preprocessor_config.json +0 -0
- checkpoint-2000/pytorch_model.bin +3 -0
- checkpoint-2000/rng_state.pth +3 -0
- checkpoint-2000/scaler.pt +3 -0
- checkpoint-2000/scheduler.pt +3 -0
- checkpoint-2000/trainer_state.json +514 -0
- checkpoint-2000/training_args.bin +3 -0
- checkpoint-3000/config.json +41 -0
- checkpoint-3000/optimizer.pt +3 -0
- checkpoint-3000/preprocessor_config.json +0 -0
- checkpoint-3000/pytorch_model.bin +3 -0
- checkpoint-3000/rng_state.pth +3 -0
- checkpoint-3000/scaler.pt +3 -0
- checkpoint-3000/scheduler.pt +3 -0
- checkpoint-3000/trainer_state.json +763 -0
- checkpoint-3000/training_args.bin +3 -0
- checkpoint-4000/config.json +41 -0
- checkpoint-4000/optimizer.pt +3 -0
- checkpoint-4000/preprocessor_config.json +0 -0
- checkpoint-4000/pytorch_model.bin +3 -0
- checkpoint-4000/rng_state.pth +3 -0
- checkpoint-4000/scaler.pt +3 -0
- checkpoint-4000/scheduler.pt +3 -0
- checkpoint-4000/trainer_state.json +1012 -0
- checkpoint-4000/training_args.bin +3 -0
- checkpoint-5000/config.json +41 -0
- checkpoint-5000/optimizer.pt +3 -0
- checkpoint-5000/preprocessor_config.json +0 -0
- checkpoint-5000/pytorch_model.bin +3 -0
- checkpoint-5000/rng_state.pth +3 -0
- checkpoint-5000/scaler.pt +3 -0
- checkpoint-5000/scheduler.pt +3 -0
- checkpoint-5000/trainer_state.json +1261 -0
- checkpoint-5000/training_args.bin +3 -0
- config.json +41 -0
README.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- eu
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- whisper-event
|
7 |
+
- generated_from_trainer
|
8 |
+
datasets:
|
9 |
+
- mozilla-foundation/common_voice_13_0
|
10 |
+
metrics:
|
11 |
+
- wer
|
12 |
+
model-index:
|
13 |
+
- name: Whisper Small Basque
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Automatic Speech Recognition
|
17 |
+
type: automatic-speech-recognition
|
18 |
+
dataset:
|
19 |
+
name: mozilla-foundation/common_voice_13_0 eu
|
20 |
+
type: mozilla-foundation/common_voice_13_0
|
21 |
+
config: eu
|
22 |
+
split: test
|
23 |
+
args: eu
|
24 |
+
metrics:
|
25 |
+
- name: Wer
|
26 |
+
type: wer
|
27 |
+
value: 18.775568066750374
|
28 |
+
---
|
29 |
+
|
30 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
31 |
+
should probably proofread and complete it, then remove this comment. -->
|
32 |
+
|
33 |
+
# Whisper Small Basque
|
34 |
+
|
35 |
+
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_13_0 eu dataset.
|
36 |
+
It achieves the following results on the evaluation set:
|
37 |
+
- Loss: 0.3812
|
38 |
+
- Wer: 18.7756
|
39 |
+
|
40 |
+
## Model description
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Intended uses & limitations
|
45 |
+
|
46 |
+
More information needed
|
47 |
+
|
48 |
+
## Training and evaluation data
|
49 |
+
|
50 |
+
More information needed
|
51 |
+
|
52 |
+
## Training procedure
|
53 |
+
|
54 |
+
### Training hyperparameters
|
55 |
+
|
56 |
+
The following hyperparameters were used during training:
|
57 |
+
- learning_rate: 1e-05
|
58 |
+
- train_batch_size: 32
|
59 |
+
- eval_batch_size: 16
|
60 |
+
- seed: 42
|
61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
+
- lr_scheduler_type: linear
|
63 |
+
- lr_scheduler_warmup_steps: 500
|
64 |
+
- training_steps: 5000
|
65 |
+
- mixed_precision_training: Native AMP
|
66 |
+
|
67 |
+
### Training results
|
68 |
+
|
69 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
70 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|
|
71 |
+
| 0.1413 | 2.04 | 1000 | 0.3178 | 22.0139 |
|
72 |
+
| 0.0181 | 4.07 | 2000 | 0.3376 | 20.2864 |
|
73 |
+
| 0.0044 | 7.02 | 3000 | 0.3603 | 18.8768 |
|
74 |
+
| 0.0016 | 9.06 | 4000 | 0.3812 | 18.7756 |
|
75 |
+
| 0.0012 | 12.01 | 5000 | 0.3914 | 18.8302 |
|
76 |
+
|
77 |
+
|
78 |
+
### Framework versions
|
79 |
+
|
80 |
+
- Transformers 4.26.0.dev0
|
81 |
+
- Pytorch 1.13.1+cu117
|
82 |
+
- Datasets 2.8.1.dev0
|
83 |
+
- Tokenizers 0.13.2
|
Whisper_finetuned_checkpoint_to_GGML.ipynb
ADDED
@@ -0,0 +1,1381 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": []
|
7 |
+
},
|
8 |
+
"kernelspec": {
|
9 |
+
"name": "python3",
|
10 |
+
"display_name": "Python 3"
|
11 |
+
},
|
12 |
+
"language_info": {
|
13 |
+
"name": "python"
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"cells": [
|
17 |
+
{
|
18 |
+
"cell_type": "markdown",
|
19 |
+
"source": [
|
20 |
+
"# Convert a HF finetuned Whisper model to GGML\n",
|
21 |
+
"\n",
|
22 |
+
"Reference: https://github.com/ggerganov/whisper.cpp/tree/master/models#fine-tuned-models"
|
23 |
+
],
|
24 |
+
"metadata": {
|
25 |
+
"id": "nZPl81t1Ruvk"
|
26 |
+
}
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"cell_type": "code",
|
30 |
+
"execution_count": 3,
|
31 |
+
"metadata": {
|
32 |
+
"colab": {
|
33 |
+
"base_uri": "https://localhost:8080/"
|
34 |
+
},
|
35 |
+
"id": "jzgovx6mRpHc",
|
36 |
+
"outputId": "d95a18f3-579e-427a-d904-3976ecd6d896"
|
37 |
+
},
|
38 |
+
"outputs": [
|
39 |
+
{
|
40 |
+
"output_type": "stream",
|
41 |
+
"name": "stdout",
|
42 |
+
"text": [
|
43 |
+
"Reading package lists... Done\n",
|
44 |
+
"Building dependency tree \n",
|
45 |
+
"Reading state information... Done\n",
|
46 |
+
"git-lfs is already the newest version (2.9.2-1).\n",
|
47 |
+
"0 upgraded, 0 newly installed, 0 to remove and 23 not upgraded.\n",
|
48 |
+
"fatal: destination path 'whisper' already exists and is not an empty directory.\n",
|
49 |
+
"fatal: destination path 'whisper.cpp' already exists and is not an empty directory.\n",
|
50 |
+
"fatal: destination path 'whisper-small-eu-v2' already exists and is not an empty directory.\n"
|
51 |
+
]
|
52 |
+
}
|
53 |
+
],
|
54 |
+
"source": [
|
55 |
+
"# Download the repos\n",
|
56 |
+
"!git clone https://github.com/openai/whisper\n",
|
57 |
+
"!git clone https://github.com/ggerganov/whisper.cpp\n",
|
58 |
+
"\n",
|
59 |
+
"# clone HF fine-tuned model (this is just an example)\n",
|
60 |
+
"!git clone https://huggingface.co/xezpeleta/whisper-small-eu-v2"
|
61 |
+
]
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"cell_type": "code",
|
65 |
+
"source": [
|
66 |
+
"# Install required packages\n",
|
67 |
+
"!pip install transformers"
|
68 |
+
],
|
69 |
+
"metadata": {
|
70 |
+
"colab": {
|
71 |
+
"base_uri": "https://localhost:8080/"
|
72 |
+
},
|
73 |
+
"id": "lncO4nydT0xI",
|
74 |
+
"outputId": "f81184f4-7168-42a5-97df-d29b3ee7ac0c"
|
75 |
+
},
|
76 |
+
"execution_count": 6,
|
77 |
+
"outputs": [
|
78 |
+
{
|
79 |
+
"output_type": "stream",
|
80 |
+
"name": "stdout",
|
81 |
+
"text": [
|
82 |
+
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
|
83 |
+
"Collecting transformers\n",
|
84 |
+
" Downloading transformers-4.27.4-py3-none-any.whl (6.8 MB)\n",
|
85 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.8/6.8 MB\u001b[0m \u001b[31m84.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
86 |
+
"\u001b[?25hRequirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.9/dist-packages (from transformers) (23.0)\n",
|
87 |
+
"Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.9/dist-packages (from transformers) (1.22.4)\n",
|
88 |
+
"Requirement already satisfied: requests in /usr/local/lib/python3.9/dist-packages (from transformers) (2.27.1)\n",
|
89 |
+
"Collecting tokenizers!=0.11.3,<0.14,>=0.11.1\n",
|
90 |
+
" Downloading tokenizers-0.13.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.6 MB)\n",
|
91 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.6/7.6 MB\u001b[0m \u001b[31m88.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
92 |
+
"\u001b[?25hRequirement already satisfied: filelock in /usr/local/lib/python3.9/dist-packages (from transformers) (3.10.7)\n",
|
93 |
+
"Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.9/dist-packages (from transformers) (4.65.0)\n",
|
94 |
+
"Collecting huggingface-hub<1.0,>=0.11.0\n",
|
95 |
+
" Downloading huggingface_hub-0.13.3-py3-none-any.whl (199 kB)\n",
|
96 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m199.8/199.8 KB\u001b[0m \u001b[31m21.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
97 |
+
"\u001b[?25hRequirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.9/dist-packages (from transformers) (2022.10.31)\n",
|
98 |
+
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.9/dist-packages (from transformers) (6.0)\n",
|
99 |
+
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.9/dist-packages (from huggingface-hub<1.0,>=0.11.0->transformers) (4.5.0)\n",
|
100 |
+
"Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.9/dist-packages (from requests->transformers) (1.26.15)\n",
|
101 |
+
"Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.9/dist-packages (from requests->transformers) (2.0.12)\n",
|
102 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.9/dist-packages (from requests->transformers) (2022.12.7)\n",
|
103 |
+
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.9/dist-packages (from requests->transformers) (3.4)\n",
|
104 |
+
"Installing collected packages: tokenizers, huggingface-hub, transformers\n",
|
105 |
+
"Successfully installed huggingface-hub-0.13.3 tokenizers-0.13.2 transformers-4.27.4\n"
|
106 |
+
]
|
107 |
+
}
|
108 |
+
]
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"cell_type": "code",
|
112 |
+
"source": [
|
113 |
+
"# Convert the model to ggml\n",
|
114 |
+
"!python3 ./whisper.cpp/models/convert-h5-to-ggml.py ./whisper-small-eu-v2/ ./whisper ."
|
115 |
+
],
|
116 |
+
"metadata": {
|
117 |
+
"colab": {
|
118 |
+
"base_uri": "https://localhost:8080/"
|
119 |
+
},
|
120 |
+
"id": "uIkTQr8yTfWP",
|
121 |
+
"outputId": "ce904702-5317-48a5-9f3b-2f0c2ba126ef"
|
122 |
+
},
|
123 |
+
"execution_count": 7,
|
124 |
+
"outputs": [
|
125 |
+
{
|
126 |
+
"output_type": "stream",
|
127 |
+
"name": "stdout",
|
128 |
+
"text": [
|
129 |
+
"model.encoder.conv1.weight -> encoder.conv1.weight\n",
|
130 |
+
"encoder.conv1.weight 3 (768, 80, 3)\n",
|
131 |
+
"model.encoder.conv1.bias -> encoder.conv1.bias\n",
|
132 |
+
" Reshaped variable: encoder.conv1.bias to shape: (768, 1)\n",
|
133 |
+
"encoder.conv1.bias 2 (768, 1)\n",
|
134 |
+
" Converting to float32\n",
|
135 |
+
"model.encoder.conv2.weight -> encoder.conv2.weight\n",
|
136 |
+
"encoder.conv2.weight 3 (768, 768, 3)\n",
|
137 |
+
"model.encoder.conv2.bias -> encoder.conv2.bias\n",
|
138 |
+
" Reshaped variable: encoder.conv2.bias to shape: (768, 1)\n",
|
139 |
+
"encoder.conv2.bias 2 (768, 1)\n",
|
140 |
+
" Converting to float32\n",
|
141 |
+
"model.encoder.embed_positions.weight -> encoder.positional_embedding\n",
|
142 |
+
"encoder.positional_embedding 2 (1500, 768)\n",
|
143 |
+
" Converting to float32\n",
|
144 |
+
"model.encoder.layers.0.self_attn.k_proj.weight -> encoder.blocks.0.attn.key.weight\n",
|
145 |
+
"encoder.blocks.0.attn.key.weight 2 (768, 768)\n",
|
146 |
+
"model.encoder.layers.0.self_attn.v_proj.weight -> encoder.blocks.0.attn.value.weight\n",
|
147 |
+
"encoder.blocks.0.attn.value.weight 2 (768, 768)\n",
|
148 |
+
"model.encoder.layers.0.self_attn.v_proj.bias -> encoder.blocks.0.attn.value.bias\n",
|
149 |
+
"encoder.blocks.0.attn.value.bias 1 (768,)\n",
|
150 |
+
" Converting to float32\n",
|
151 |
+
"model.encoder.layers.0.self_attn.q_proj.weight -> encoder.blocks.0.attn.query.weight\n",
|
152 |
+
"encoder.blocks.0.attn.query.weight 2 (768, 768)\n",
|
153 |
+
"model.encoder.layers.0.self_attn.q_proj.bias -> encoder.blocks.0.attn.query.bias\n",
|
154 |
+
"encoder.blocks.0.attn.query.bias 1 (768,)\n",
|
155 |
+
" Converting to float32\n",
|
156 |
+
"model.encoder.layers.0.self_attn.out_proj.weight -> encoder.blocks.0.attn.out.weight\n",
|
157 |
+
"encoder.blocks.0.attn.out.weight 2 (768, 768)\n",
|
158 |
+
"model.encoder.layers.0.self_attn.out_proj.bias -> encoder.blocks.0.attn.out.bias\n",
|
159 |
+
"encoder.blocks.0.attn.out.bias 1 (768,)\n",
|
160 |
+
" Converting to float32\n",
|
161 |
+
"model.encoder.layers.0.self_attn_layer_norm.weight -> encoder.blocks.0.attn_ln.weight\n",
|
162 |
+
"encoder.blocks.0.attn_ln.weight 1 (768,)\n",
|
163 |
+
" Converting to float32\n",
|
164 |
+
"model.encoder.layers.0.self_attn_layer_norm.bias -> encoder.blocks.0.attn_ln.bias\n",
|
165 |
+
"encoder.blocks.0.attn_ln.bias 1 (768,)\n",
|
166 |
+
" Converting to float32\n",
|
167 |
+
"model.encoder.layers.0.fc1.weight -> encoder.blocks.0.mlp.0.weight\n",
|
168 |
+
"encoder.blocks.0.mlp.0.weight 2 (3072, 768)\n",
|
169 |
+
"model.encoder.layers.0.fc1.bias -> encoder.blocks.0.mlp.0.bias\n",
|
170 |
+
"encoder.blocks.0.mlp.0.bias 1 (3072,)\n",
|
171 |
+
" Converting to float32\n",
|
172 |
+
"model.encoder.layers.0.fc2.weight -> encoder.blocks.0.mlp.2.weight\n",
|
173 |
+
"encoder.blocks.0.mlp.2.weight 2 (768, 3072)\n",
|
174 |
+
"model.encoder.layers.0.fc2.bias -> encoder.blocks.0.mlp.2.bias\n",
|
175 |
+
"encoder.blocks.0.mlp.2.bias 1 (768,)\n",
|
176 |
+
" Converting to float32\n",
|
177 |
+
"model.encoder.layers.0.final_layer_norm.weight -> encoder.blocks.0.mlp_ln.weight\n",
|
178 |
+
"encoder.blocks.0.mlp_ln.weight 1 (768,)\n",
|
179 |
+
" Converting to float32\n",
|
180 |
+
"model.encoder.layers.0.final_layer_norm.bias -> encoder.blocks.0.mlp_ln.bias\n",
|
181 |
+
"encoder.blocks.0.mlp_ln.bias 1 (768,)\n",
|
182 |
+
" Converting to float32\n",
|
183 |
+
"model.encoder.layers.1.self_attn.k_proj.weight -> encoder.blocks.1.attn.key.weight\n",
|
184 |
+
"encoder.blocks.1.attn.key.weight 2 (768, 768)\n",
|
185 |
+
"model.encoder.layers.1.self_attn.v_proj.weight -> encoder.blocks.1.attn.value.weight\n",
|
186 |
+
"encoder.blocks.1.attn.value.weight 2 (768, 768)\n",
|
187 |
+
"model.encoder.layers.1.self_attn.v_proj.bias -> encoder.blocks.1.attn.value.bias\n",
|
188 |
+
"encoder.blocks.1.attn.value.bias 1 (768,)\n",
|
189 |
+
" Converting to float32\n",
|
190 |
+
"model.encoder.layers.1.self_attn.q_proj.weight -> encoder.blocks.1.attn.query.weight\n",
|
191 |
+
"encoder.blocks.1.attn.query.weight 2 (768, 768)\n",
|
192 |
+
"model.encoder.layers.1.self_attn.q_proj.bias -> encoder.blocks.1.attn.query.bias\n",
|
193 |
+
"encoder.blocks.1.attn.query.bias 1 (768,)\n",
|
194 |
+
" Converting to float32\n",
|
195 |
+
"model.encoder.layers.1.self_attn.out_proj.weight -> encoder.blocks.1.attn.out.weight\n",
|
196 |
+
"encoder.blocks.1.attn.out.weight 2 (768, 768)\n",
|
197 |
+
"model.encoder.layers.1.self_attn.out_proj.bias -> encoder.blocks.1.attn.out.bias\n",
|
198 |
+
"encoder.blocks.1.attn.out.bias 1 (768,)\n",
|
199 |
+
" Converting to float32\n",
|
200 |
+
"model.encoder.layers.1.self_attn_layer_norm.weight -> encoder.blocks.1.attn_ln.weight\n",
|
201 |
+
"encoder.blocks.1.attn_ln.weight 1 (768,)\n",
|
202 |
+
" Converting to float32\n",
|
203 |
+
"model.encoder.layers.1.self_attn_layer_norm.bias -> encoder.blocks.1.attn_ln.bias\n",
|
204 |
+
"encoder.blocks.1.attn_ln.bias 1 (768,)\n",
|
205 |
+
" Converting to float32\n",
|
206 |
+
"model.encoder.layers.1.fc1.weight -> encoder.blocks.1.mlp.0.weight\n",
|
207 |
+
"encoder.blocks.1.mlp.0.weight 2 (3072, 768)\n",
|
208 |
+
"model.encoder.layers.1.fc1.bias -> encoder.blocks.1.mlp.0.bias\n",
|
209 |
+
"encoder.blocks.1.mlp.0.bias 1 (3072,)\n",
|
210 |
+
" Converting to float32\n",
|
211 |
+
"model.encoder.layers.1.fc2.weight -> encoder.blocks.1.mlp.2.weight\n",
|
212 |
+
"encoder.blocks.1.mlp.2.weight 2 (768, 3072)\n",
|
213 |
+
"model.encoder.layers.1.fc2.bias -> encoder.blocks.1.mlp.2.bias\n",
|
214 |
+
"encoder.blocks.1.mlp.2.bias 1 (768,)\n",
|
215 |
+
" Converting to float32\n",
|
216 |
+
"model.encoder.layers.1.final_layer_norm.weight -> encoder.blocks.1.mlp_ln.weight\n",
|
217 |
+
"encoder.blocks.1.mlp_ln.weight 1 (768,)\n",
|
218 |
+
" Converting to float32\n",
|
219 |
+
"model.encoder.layers.1.final_layer_norm.bias -> encoder.blocks.1.mlp_ln.bias\n",
|
220 |
+
"encoder.blocks.1.mlp_ln.bias 1 (768,)\n",
|
221 |
+
" Converting to float32\n",
|
222 |
+
"model.encoder.layers.2.self_attn.k_proj.weight -> encoder.blocks.2.attn.key.weight\n",
|
223 |
+
"encoder.blocks.2.attn.key.weight 2 (768, 768)\n",
|
224 |
+
"model.encoder.layers.2.self_attn.v_proj.weight -> encoder.blocks.2.attn.value.weight\n",
|
225 |
+
"encoder.blocks.2.attn.value.weight 2 (768, 768)\n",
|
226 |
+
"model.encoder.layers.2.self_attn.v_proj.bias -> encoder.blocks.2.attn.value.bias\n",
|
227 |
+
"encoder.blocks.2.attn.value.bias 1 (768,)\n",
|
228 |
+
" Converting to float32\n",
|
229 |
+
"model.encoder.layers.2.self_attn.q_proj.weight -> encoder.blocks.2.attn.query.weight\n",
|
230 |
+
"encoder.blocks.2.attn.query.weight 2 (768, 768)\n",
|
231 |
+
"model.encoder.layers.2.self_attn.q_proj.bias -> encoder.blocks.2.attn.query.bias\n",
|
232 |
+
"encoder.blocks.2.attn.query.bias 1 (768,)\n",
|
233 |
+
" Converting to float32\n",
|
234 |
+
"model.encoder.layers.2.self_attn.out_proj.weight -> encoder.blocks.2.attn.out.weight\n",
|
235 |
+
"encoder.blocks.2.attn.out.weight 2 (768, 768)\n",
|
236 |
+
"model.encoder.layers.2.self_attn.out_proj.bias -> encoder.blocks.2.attn.out.bias\n",
|
237 |
+
"encoder.blocks.2.attn.out.bias 1 (768,)\n",
|
238 |
+
" Converting to float32\n",
|
239 |
+
"model.encoder.layers.2.self_attn_layer_norm.weight -> encoder.blocks.2.attn_ln.weight\n",
|
240 |
+
"encoder.blocks.2.attn_ln.weight 1 (768,)\n",
|
241 |
+
" Converting to float32\n",
|
242 |
+
"model.encoder.layers.2.self_attn_layer_norm.bias -> encoder.blocks.2.attn_ln.bias\n",
|
243 |
+
"encoder.blocks.2.attn_ln.bias 1 (768,)\n",
|
244 |
+
" Converting to float32\n",
|
245 |
+
"model.encoder.layers.2.fc1.weight -> encoder.blocks.2.mlp.0.weight\n",
|
246 |
+
"encoder.blocks.2.mlp.0.weight 2 (3072, 768)\n",
|
247 |
+
"model.encoder.layers.2.fc1.bias -> encoder.blocks.2.mlp.0.bias\n",
|
248 |
+
"encoder.blocks.2.mlp.0.bias 1 (3072,)\n",
|
249 |
+
" Converting to float32\n",
|
250 |
+
"model.encoder.layers.2.fc2.weight -> encoder.blocks.2.mlp.2.weight\n",
|
251 |
+
"encoder.blocks.2.mlp.2.weight 2 (768, 3072)\n",
|
252 |
+
"model.encoder.layers.2.fc2.bias -> encoder.blocks.2.mlp.2.bias\n",
|
253 |
+
"encoder.blocks.2.mlp.2.bias 1 (768,)\n",
|
254 |
+
" Converting to float32\n",
|
255 |
+
"model.encoder.layers.2.final_layer_norm.weight -> encoder.blocks.2.mlp_ln.weight\n",
|
256 |
+
"encoder.blocks.2.mlp_ln.weight 1 (768,)\n",
|
257 |
+
" Converting to float32\n",
|
258 |
+
"model.encoder.layers.2.final_layer_norm.bias -> encoder.blocks.2.mlp_ln.bias\n",
|
259 |
+
"encoder.blocks.2.mlp_ln.bias 1 (768,)\n",
|
260 |
+
" Converting to float32\n",
|
261 |
+
"model.encoder.layers.3.self_attn.k_proj.weight -> encoder.blocks.3.attn.key.weight\n",
|
262 |
+
"encoder.blocks.3.attn.key.weight 2 (768, 768)\n",
|
263 |
+
"model.encoder.layers.3.self_attn.v_proj.weight -> encoder.blocks.3.attn.value.weight\n",
|
264 |
+
"encoder.blocks.3.attn.value.weight 2 (768, 768)\n",
|
265 |
+
"model.encoder.layers.3.self_attn.v_proj.bias -> encoder.blocks.3.attn.value.bias\n",
|
266 |
+
"encoder.blocks.3.attn.value.bias 1 (768,)\n",
|
267 |
+
" Converting to float32\n",
|
268 |
+
"model.encoder.layers.3.self_attn.q_proj.weight -> encoder.blocks.3.attn.query.weight\n",
|
269 |
+
"encoder.blocks.3.attn.query.weight 2 (768, 768)\n",
|
270 |
+
"model.encoder.layers.3.self_attn.q_proj.bias -> encoder.blocks.3.attn.query.bias\n",
|
271 |
+
"encoder.blocks.3.attn.query.bias 1 (768,)\n",
|
272 |
+
" Converting to float32\n",
|
273 |
+
"model.encoder.layers.3.self_attn.out_proj.weight -> encoder.blocks.3.attn.out.weight\n",
|
274 |
+
"encoder.blocks.3.attn.out.weight 2 (768, 768)\n",
|
275 |
+
"model.encoder.layers.3.self_attn.out_proj.bias -> encoder.blocks.3.attn.out.bias\n",
|
276 |
+
"encoder.blocks.3.attn.out.bias 1 (768,)\n",
|
277 |
+
" Converting to float32\n",
|
278 |
+
"model.encoder.layers.3.self_attn_layer_norm.weight -> encoder.blocks.3.attn_ln.weight\n",
|
279 |
+
"encoder.blocks.3.attn_ln.weight 1 (768,)\n",
|
280 |
+
" Converting to float32\n",
|
281 |
+
"model.encoder.layers.3.self_attn_layer_norm.bias -> encoder.blocks.3.attn_ln.bias\n",
|
282 |
+
"encoder.blocks.3.attn_ln.bias 1 (768,)\n",
|
283 |
+
" Converting to float32\n",
|
284 |
+
"model.encoder.layers.3.fc1.weight -> encoder.blocks.3.mlp.0.weight\n",
|
285 |
+
"encoder.blocks.3.mlp.0.weight 2 (3072, 768)\n",
|
286 |
+
"model.encoder.layers.3.fc1.bias -> encoder.blocks.3.mlp.0.bias\n",
|
287 |
+
"encoder.blocks.3.mlp.0.bias 1 (3072,)\n",
|
288 |
+
" Converting to float32\n",
|
289 |
+
"model.encoder.layers.3.fc2.weight -> encoder.blocks.3.mlp.2.weight\n",
|
290 |
+
"encoder.blocks.3.mlp.2.weight 2 (768, 3072)\n",
|
291 |
+
"model.encoder.layers.3.fc2.bias -> encoder.blocks.3.mlp.2.bias\n",
|
292 |
+
"encoder.blocks.3.mlp.2.bias 1 (768,)\n",
|
293 |
+
" Converting to float32\n",
|
294 |
+
"model.encoder.layers.3.final_layer_norm.weight -> encoder.blocks.3.mlp_ln.weight\n",
|
295 |
+
"encoder.blocks.3.mlp_ln.weight 1 (768,)\n",
|
296 |
+
" Converting to float32\n",
|
297 |
+
"model.encoder.layers.3.final_layer_norm.bias -> encoder.blocks.3.mlp_ln.bias\n",
|
298 |
+
"encoder.blocks.3.mlp_ln.bias 1 (768,)\n",
|
299 |
+
" Converting to float32\n",
|
300 |
+
"model.encoder.layers.4.self_attn.k_proj.weight -> encoder.blocks.4.attn.key.weight\n",
|
301 |
+
"encoder.blocks.4.attn.key.weight 2 (768, 768)\n",
|
302 |
+
"model.encoder.layers.4.self_attn.v_proj.weight -> encoder.blocks.4.attn.value.weight\n",
|
303 |
+
"encoder.blocks.4.attn.value.weight 2 (768, 768)\n",
|
304 |
+
"model.encoder.layers.4.self_attn.v_proj.bias -> encoder.blocks.4.attn.value.bias\n",
|
305 |
+
"encoder.blocks.4.attn.value.bias 1 (768,)\n",
|
306 |
+
" Converting to float32\n",
|
307 |
+
"model.encoder.layers.4.self_attn.q_proj.weight -> encoder.blocks.4.attn.query.weight\n",
|
308 |
+
"encoder.blocks.4.attn.query.weight 2 (768, 768)\n",
|
309 |
+
"model.encoder.layers.4.self_attn.q_proj.bias -> encoder.blocks.4.attn.query.bias\n",
|
310 |
+
"encoder.blocks.4.attn.query.bias 1 (768,)\n",
|
311 |
+
" Converting to float32\n",
|
312 |
+
"model.encoder.layers.4.self_attn.out_proj.weight -> encoder.blocks.4.attn.out.weight\n",
|
313 |
+
"encoder.blocks.4.attn.out.weight 2 (768, 768)\n",
|
314 |
+
"model.encoder.layers.4.self_attn.out_proj.bias -> encoder.blocks.4.attn.out.bias\n",
|
315 |
+
"encoder.blocks.4.attn.out.bias 1 (768,)\n",
|
316 |
+
" Converting to float32\n",
|
317 |
+
"model.encoder.layers.4.self_attn_layer_norm.weight -> encoder.blocks.4.attn_ln.weight\n",
|
318 |
+
"encoder.blocks.4.attn_ln.weight 1 (768,)\n",
|
319 |
+
" Converting to float32\n",
|
320 |
+
"model.encoder.layers.4.self_attn_layer_norm.bias -> encoder.blocks.4.attn_ln.bias\n",
|
321 |
+
"encoder.blocks.4.attn_ln.bias 1 (768,)\n",
|
322 |
+
" Converting to float32\n",
|
323 |
+
"model.encoder.layers.4.fc1.weight -> encoder.blocks.4.mlp.0.weight\n",
|
324 |
+
"encoder.blocks.4.mlp.0.weight 2 (3072, 768)\n",
|
325 |
+
"model.encoder.layers.4.fc1.bias -> encoder.blocks.4.mlp.0.bias\n",
|
326 |
+
"encoder.blocks.4.mlp.0.bias 1 (3072,)\n",
|
327 |
+
" Converting to float32\n",
|
328 |
+
"model.encoder.layers.4.fc2.weight -> encoder.blocks.4.mlp.2.weight\n",
|
329 |
+
"encoder.blocks.4.mlp.2.weight 2 (768, 3072)\n",
|
330 |
+
"model.encoder.layers.4.fc2.bias -> encoder.blocks.4.mlp.2.bias\n",
|
331 |
+
"encoder.blocks.4.mlp.2.bias 1 (768,)\n",
|
332 |
+
" Converting to float32\n",
|
333 |
+
"model.encoder.layers.4.final_layer_norm.weight -> encoder.blocks.4.mlp_ln.weight\n",
|
334 |
+
"encoder.blocks.4.mlp_ln.weight 1 (768,)\n",
|
335 |
+
" Converting to float32\n",
|
336 |
+
"model.encoder.layers.4.final_layer_norm.bias -> encoder.blocks.4.mlp_ln.bias\n",
|
337 |
+
"encoder.blocks.4.mlp_ln.bias 1 (768,)\n",
|
338 |
+
" Converting to float32\n",
|
339 |
+
"model.encoder.layers.5.self_attn.k_proj.weight -> encoder.blocks.5.attn.key.weight\n",
|
340 |
+
"encoder.blocks.5.attn.key.weight 2 (768, 768)\n",
|
341 |
+
"model.encoder.layers.5.self_attn.v_proj.weight -> encoder.blocks.5.attn.value.weight\n",
|
342 |
+
"encoder.blocks.5.attn.value.weight 2 (768, 768)\n",
|
343 |
+
"model.encoder.layers.5.self_attn.v_proj.bias -> encoder.blocks.5.attn.value.bias\n",
|
344 |
+
"encoder.blocks.5.attn.value.bias 1 (768,)\n",
|
345 |
+
" Converting to float32\n",
|
346 |
+
"model.encoder.layers.5.self_attn.q_proj.weight -> encoder.blocks.5.attn.query.weight\n",
|
347 |
+
"encoder.blocks.5.attn.query.weight 2 (768, 768)\n",
|
348 |
+
"model.encoder.layers.5.self_attn.q_proj.bias -> encoder.blocks.5.attn.query.bias\n",
|
349 |
+
"encoder.blocks.5.attn.query.bias 1 (768,)\n",
|
350 |
+
" Converting to float32\n",
|
351 |
+
"model.encoder.layers.5.self_attn.out_proj.weight -> encoder.blocks.5.attn.out.weight\n",
|
352 |
+
"encoder.blocks.5.attn.out.weight 2 (768, 768)\n",
|
353 |
+
"model.encoder.layers.5.self_attn.out_proj.bias -> encoder.blocks.5.attn.out.bias\n",
|
354 |
+
"encoder.blocks.5.attn.out.bias 1 (768,)\n",
|
355 |
+
" Converting to float32\n",
|
356 |
+
"model.encoder.layers.5.self_attn_layer_norm.weight -> encoder.blocks.5.attn_ln.weight\n",
|
357 |
+
"encoder.blocks.5.attn_ln.weight 1 (768,)\n",
|
358 |
+
" Converting to float32\n",
|
359 |
+
"model.encoder.layers.5.self_attn_layer_norm.bias -> encoder.blocks.5.attn_ln.bias\n",
|
360 |
+
"encoder.blocks.5.attn_ln.bias 1 (768,)\n",
|
361 |
+
" Converting to float32\n",
|
362 |
+
"model.encoder.layers.5.fc1.weight -> encoder.blocks.5.mlp.0.weight\n",
|
363 |
+
"encoder.blocks.5.mlp.0.weight 2 (3072, 768)\n",
|
364 |
+
"model.encoder.layers.5.fc1.bias -> encoder.blocks.5.mlp.0.bias\n",
|
365 |
+
"encoder.blocks.5.mlp.0.bias 1 (3072,)\n",
|
366 |
+
" Converting to float32\n",
|
367 |
+
"model.encoder.layers.5.fc2.weight -> encoder.blocks.5.mlp.2.weight\n",
|
368 |
+
"encoder.blocks.5.mlp.2.weight 2 (768, 3072)\n",
|
369 |
+
"model.encoder.layers.5.fc2.bias -> encoder.blocks.5.mlp.2.bias\n",
|
370 |
+
"encoder.blocks.5.mlp.2.bias 1 (768,)\n",
|
371 |
+
" Converting to float32\n",
|
372 |
+
"model.encoder.layers.5.final_layer_norm.weight -> encoder.blocks.5.mlp_ln.weight\n",
|
373 |
+
"encoder.blocks.5.mlp_ln.weight 1 (768,)\n",
|
374 |
+
" Converting to float32\n",
|
375 |
+
"model.encoder.layers.5.final_layer_norm.bias -> encoder.blocks.5.mlp_ln.bias\n",
|
376 |
+
"encoder.blocks.5.mlp_ln.bias 1 (768,)\n",
|
377 |
+
" Converting to float32\n",
|
378 |
+
"model.encoder.layers.6.self_attn.k_proj.weight -> encoder.blocks.6.attn.key.weight\n",
|
379 |
+
"encoder.blocks.6.attn.key.weight 2 (768, 768)\n",
|
380 |
+
"model.encoder.layers.6.self_attn.v_proj.weight -> encoder.blocks.6.attn.value.weight\n",
|
381 |
+
"encoder.blocks.6.attn.value.weight 2 (768, 768)\n",
|
382 |
+
"model.encoder.layers.6.self_attn.v_proj.bias -> encoder.blocks.6.attn.value.bias\n",
|
383 |
+
"encoder.blocks.6.attn.value.bias 1 (768,)\n",
|
384 |
+
" Converting to float32\n",
|
385 |
+
"model.encoder.layers.6.self_attn.q_proj.weight -> encoder.blocks.6.attn.query.weight\n",
|
386 |
+
"encoder.blocks.6.attn.query.weight 2 (768, 768)\n",
|
387 |
+
"model.encoder.layers.6.self_attn.q_proj.bias -> encoder.blocks.6.attn.query.bias\n",
|
388 |
+
"encoder.blocks.6.attn.query.bias 1 (768,)\n",
|
389 |
+
" Converting to float32\n",
|
390 |
+
"model.encoder.layers.6.self_attn.out_proj.weight -> encoder.blocks.6.attn.out.weight\n",
|
391 |
+
"encoder.blocks.6.attn.out.weight 2 (768, 768)\n",
|
392 |
+
"model.encoder.layers.6.self_attn.out_proj.bias -> encoder.blocks.6.attn.out.bias\n",
|
393 |
+
"encoder.blocks.6.attn.out.bias 1 (768,)\n",
|
394 |
+
" Converting to float32\n",
|
395 |
+
"model.encoder.layers.6.self_attn_layer_norm.weight -> encoder.blocks.6.attn_ln.weight\n",
|
396 |
+
"encoder.blocks.6.attn_ln.weight 1 (768,)\n",
|
397 |
+
" Converting to float32\n",
|
398 |
+
"model.encoder.layers.6.self_attn_layer_norm.bias -> encoder.blocks.6.attn_ln.bias\n",
|
399 |
+
"encoder.blocks.6.attn_ln.bias 1 (768,)\n",
|
400 |
+
" Converting to float32\n",
|
401 |
+
"model.encoder.layers.6.fc1.weight -> encoder.blocks.6.mlp.0.weight\n",
|
402 |
+
"encoder.blocks.6.mlp.0.weight 2 (3072, 768)\n",
|
403 |
+
"model.encoder.layers.6.fc1.bias -> encoder.blocks.6.mlp.0.bias\n",
|
404 |
+
"encoder.blocks.6.mlp.0.bias 1 (3072,)\n",
|
405 |
+
" Converting to float32\n",
|
406 |
+
"model.encoder.layers.6.fc2.weight -> encoder.blocks.6.mlp.2.weight\n",
|
407 |
+
"encoder.blocks.6.mlp.2.weight 2 (768, 3072)\n",
|
408 |
+
"model.encoder.layers.6.fc2.bias -> encoder.blocks.6.mlp.2.bias\n",
|
409 |
+
"encoder.blocks.6.mlp.2.bias 1 (768,)\n",
|
410 |
+
" Converting to float32\n",
|
411 |
+
"model.encoder.layers.6.final_layer_norm.weight -> encoder.blocks.6.mlp_ln.weight\n",
|
412 |
+
"encoder.blocks.6.mlp_ln.weight 1 (768,)\n",
|
413 |
+
" Converting to float32\n",
|
414 |
+
"model.encoder.layers.6.final_layer_norm.bias -> encoder.blocks.6.mlp_ln.bias\n",
|
415 |
+
"encoder.blocks.6.mlp_ln.bias 1 (768,)\n",
|
416 |
+
" Converting to float32\n",
|
417 |
+
"model.encoder.layers.7.self_attn.k_proj.weight -> encoder.blocks.7.attn.key.weight\n",
|
418 |
+
"encoder.blocks.7.attn.key.weight 2 (768, 768)\n",
|
419 |
+
"model.encoder.layers.7.self_attn.v_proj.weight -> encoder.blocks.7.attn.value.weight\n",
|
420 |
+
"encoder.blocks.7.attn.value.weight 2 (768, 768)\n",
|
421 |
+
"model.encoder.layers.7.self_attn.v_proj.bias -> encoder.blocks.7.attn.value.bias\n",
|
422 |
+
"encoder.blocks.7.attn.value.bias 1 (768,)\n",
|
423 |
+
" Converting to float32\n",
|
424 |
+
"model.encoder.layers.7.self_attn.q_proj.weight -> encoder.blocks.7.attn.query.weight\n",
|
425 |
+
"encoder.blocks.7.attn.query.weight 2 (768, 768)\n",
|
426 |
+
"model.encoder.layers.7.self_attn.q_proj.bias -> encoder.blocks.7.attn.query.bias\n",
|
427 |
+
"encoder.blocks.7.attn.query.bias 1 (768,)\n",
|
428 |
+
" Converting to float32\n",
|
429 |
+
"model.encoder.layers.7.self_attn.out_proj.weight -> encoder.blocks.7.attn.out.weight\n",
|
430 |
+
"encoder.blocks.7.attn.out.weight 2 (768, 768)\n",
|
431 |
+
"model.encoder.layers.7.self_attn.out_proj.bias -> encoder.blocks.7.attn.out.bias\n",
|
432 |
+
"encoder.blocks.7.attn.out.bias 1 (768,)\n",
|
433 |
+
" Converting to float32\n",
|
434 |
+
"model.encoder.layers.7.self_attn_layer_norm.weight -> encoder.blocks.7.attn_ln.weight\n",
|
435 |
+
"encoder.blocks.7.attn_ln.weight 1 (768,)\n",
|
436 |
+
" Converting to float32\n",
|
437 |
+
"model.encoder.layers.7.self_attn_layer_norm.bias -> encoder.blocks.7.attn_ln.bias\n",
|
438 |
+
"encoder.blocks.7.attn_ln.bias 1 (768,)\n",
|
439 |
+
" Converting to float32\n",
|
440 |
+
"model.encoder.layers.7.fc1.weight -> encoder.blocks.7.mlp.0.weight\n",
|
441 |
+
"encoder.blocks.7.mlp.0.weight 2 (3072, 768)\n",
|
442 |
+
"model.encoder.layers.7.fc1.bias -> encoder.blocks.7.mlp.0.bias\n",
|
443 |
+
"encoder.blocks.7.mlp.0.bias 1 (3072,)\n",
|
444 |
+
" Converting to float32\n",
|
445 |
+
"model.encoder.layers.7.fc2.weight -> encoder.blocks.7.mlp.2.weight\n",
|
446 |
+
"encoder.blocks.7.mlp.2.weight 2 (768, 3072)\n",
|
447 |
+
"model.encoder.layers.7.fc2.bias -> encoder.blocks.7.mlp.2.bias\n",
|
448 |
+
"encoder.blocks.7.mlp.2.bias 1 (768,)\n",
|
449 |
+
" Converting to float32\n",
|
450 |
+
"model.encoder.layers.7.final_layer_norm.weight -> encoder.blocks.7.mlp_ln.weight\n",
|
451 |
+
"encoder.blocks.7.mlp_ln.weight 1 (768,)\n",
|
452 |
+
" Converting to float32\n",
|
453 |
+
"model.encoder.layers.7.final_layer_norm.bias -> encoder.blocks.7.mlp_ln.bias\n",
|
454 |
+
"encoder.blocks.7.mlp_ln.bias 1 (768,)\n",
|
455 |
+
" Converting to float32\n",
|
456 |
+
"model.encoder.layers.8.self_attn.k_proj.weight -> encoder.blocks.8.attn.key.weight\n",
|
457 |
+
"encoder.blocks.8.attn.key.weight 2 (768, 768)\n",
|
458 |
+
"model.encoder.layers.8.self_attn.v_proj.weight -> encoder.blocks.8.attn.value.weight\n",
|
459 |
+
"encoder.blocks.8.attn.value.weight 2 (768, 768)\n",
|
460 |
+
"model.encoder.layers.8.self_attn.v_proj.bias -> encoder.blocks.8.attn.value.bias\n",
|
461 |
+
"encoder.blocks.8.attn.value.bias 1 (768,)\n",
|
462 |
+
" Converting to float32\n",
|
463 |
+
"model.encoder.layers.8.self_attn.q_proj.weight -> encoder.blocks.8.attn.query.weight\n",
|
464 |
+
"encoder.blocks.8.attn.query.weight 2 (768, 768)\n",
|
465 |
+
"model.encoder.layers.8.self_attn.q_proj.bias -> encoder.blocks.8.attn.query.bias\n",
|
466 |
+
"encoder.blocks.8.attn.query.bias 1 (768,)\n",
|
467 |
+
" Converting to float32\n",
|
468 |
+
"model.encoder.layers.8.self_attn.out_proj.weight -> encoder.blocks.8.attn.out.weight\n",
|
469 |
+
"encoder.blocks.8.attn.out.weight 2 (768, 768)\n",
|
470 |
+
"model.encoder.layers.8.self_attn.out_proj.bias -> encoder.blocks.8.attn.out.bias\n",
|
471 |
+
"encoder.blocks.8.attn.out.bias 1 (768,)\n",
|
472 |
+
" Converting to float32\n",
|
473 |
+
"model.encoder.layers.8.self_attn_layer_norm.weight -> encoder.blocks.8.attn_ln.weight\n",
|
474 |
+
"encoder.blocks.8.attn_ln.weight 1 (768,)\n",
|
475 |
+
" Converting to float32\n",
|
476 |
+
"model.encoder.layers.8.self_attn_layer_norm.bias -> encoder.blocks.8.attn_ln.bias\n",
|
477 |
+
"encoder.blocks.8.attn_ln.bias 1 (768,)\n",
|
478 |
+
" Converting to float32\n",
|
479 |
+
"model.encoder.layers.8.fc1.weight -> encoder.blocks.8.mlp.0.weight\n",
|
480 |
+
"encoder.blocks.8.mlp.0.weight 2 (3072, 768)\n",
|
481 |
+
"model.encoder.layers.8.fc1.bias -> encoder.blocks.8.mlp.0.bias\n",
|
482 |
+
"encoder.blocks.8.mlp.0.bias 1 (3072,)\n",
|
483 |
+
" Converting to float32\n",
|
484 |
+
"model.encoder.layers.8.fc2.weight -> encoder.blocks.8.mlp.2.weight\n",
|
485 |
+
"encoder.blocks.8.mlp.2.weight 2 (768, 3072)\n",
|
486 |
+
"model.encoder.layers.8.fc2.bias -> encoder.blocks.8.mlp.2.bias\n",
|
487 |
+
"encoder.blocks.8.mlp.2.bias 1 (768,)\n",
|
488 |
+
" Converting to float32\n",
|
489 |
+
"model.encoder.layers.8.final_layer_norm.weight -> encoder.blocks.8.mlp_ln.weight\n",
|
490 |
+
"encoder.blocks.8.mlp_ln.weight 1 (768,)\n",
|
491 |
+
" Converting to float32\n",
|
492 |
+
"model.encoder.layers.8.final_layer_norm.bias -> encoder.blocks.8.mlp_ln.bias\n",
|
493 |
+
"encoder.blocks.8.mlp_ln.bias 1 (768,)\n",
|
494 |
+
" Converting to float32\n",
|
495 |
+
"model.encoder.layers.9.self_attn.k_proj.weight -> encoder.blocks.9.attn.key.weight\n",
|
496 |
+
"encoder.blocks.9.attn.key.weight 2 (768, 768)\n",
|
497 |
+
"model.encoder.layers.9.self_attn.v_proj.weight -> encoder.blocks.9.attn.value.weight\n",
|
498 |
+
"encoder.blocks.9.attn.value.weight 2 (768, 768)\n",
|
499 |
+
"model.encoder.layers.9.self_attn.v_proj.bias -> encoder.blocks.9.attn.value.bias\n",
|
500 |
+
"encoder.blocks.9.attn.value.bias 1 (768,)\n",
|
501 |
+
" Converting to float32\n",
|
502 |
+
"model.encoder.layers.9.self_attn.q_proj.weight -> encoder.blocks.9.attn.query.weight\n",
|
503 |
+
"encoder.blocks.9.attn.query.weight 2 (768, 768)\n",
|
504 |
+
"model.encoder.layers.9.self_attn.q_proj.bias -> encoder.blocks.9.attn.query.bias\n",
|
505 |
+
"encoder.blocks.9.attn.query.bias 1 (768,)\n",
|
506 |
+
" Converting to float32\n",
|
507 |
+
"model.encoder.layers.9.self_attn.out_proj.weight -> encoder.blocks.9.attn.out.weight\n",
|
508 |
+
"encoder.blocks.9.attn.out.weight 2 (768, 768)\n",
|
509 |
+
"model.encoder.layers.9.self_attn.out_proj.bias -> encoder.blocks.9.attn.out.bias\n",
|
510 |
+
"encoder.blocks.9.attn.out.bias 1 (768,)\n",
|
511 |
+
" Converting to float32\n",
|
512 |
+
"model.encoder.layers.9.self_attn_layer_norm.weight -> encoder.blocks.9.attn_ln.weight\n",
|
513 |
+
"encoder.blocks.9.attn_ln.weight 1 (768,)\n",
|
514 |
+
" Converting to float32\n",
|
515 |
+
"model.encoder.layers.9.self_attn_layer_norm.bias -> encoder.blocks.9.attn_ln.bias\n",
|
516 |
+
"encoder.blocks.9.attn_ln.bias 1 (768,)\n",
|
517 |
+
" Converting to float32\n",
|
518 |
+
"model.encoder.layers.9.fc1.weight -> encoder.blocks.9.mlp.0.weight\n",
|
519 |
+
"encoder.blocks.9.mlp.0.weight 2 (3072, 768)\n",
|
520 |
+
"model.encoder.layers.9.fc1.bias -> encoder.blocks.9.mlp.0.bias\n",
|
521 |
+
"encoder.blocks.9.mlp.0.bias 1 (3072,)\n",
|
522 |
+
" Converting to float32\n",
|
523 |
+
"model.encoder.layers.9.fc2.weight -> encoder.blocks.9.mlp.2.weight\n",
|
524 |
+
"encoder.blocks.9.mlp.2.weight 2 (768, 3072)\n",
|
525 |
+
"model.encoder.layers.9.fc2.bias -> encoder.blocks.9.mlp.2.bias\n",
|
526 |
+
"encoder.blocks.9.mlp.2.bias 1 (768,)\n",
|
527 |
+
" Converting to float32\n",
|
528 |
+
"model.encoder.layers.9.final_layer_norm.weight -> encoder.blocks.9.mlp_ln.weight\n",
|
529 |
+
"encoder.blocks.9.mlp_ln.weight 1 (768,)\n",
|
530 |
+
" Converting to float32\n",
|
531 |
+
"model.encoder.layers.9.final_layer_norm.bias -> encoder.blocks.9.mlp_ln.bias\n",
|
532 |
+
"encoder.blocks.9.mlp_ln.bias 1 (768,)\n",
|
533 |
+
" Converting to float32\n",
|
534 |
+
"model.encoder.layers.10.self_attn.k_proj.weight -> encoder.blocks.10.attn.key.weight\n",
|
535 |
+
"encoder.blocks.10.attn.key.weight 2 (768, 768)\n",
|
536 |
+
"model.encoder.layers.10.self_attn.v_proj.weight -> encoder.blocks.10.attn.value.weight\n",
|
537 |
+
"encoder.blocks.10.attn.value.weight 2 (768, 768)\n",
|
538 |
+
"model.encoder.layers.10.self_attn.v_proj.bias -> encoder.blocks.10.attn.value.bias\n",
|
539 |
+
"encoder.blocks.10.attn.value.bias 1 (768,)\n",
|
540 |
+
" Converting to float32\n",
|
541 |
+
"model.encoder.layers.10.self_attn.q_proj.weight -> encoder.blocks.10.attn.query.weight\n",
|
542 |
+
"encoder.blocks.10.attn.query.weight 2 (768, 768)\n",
|
543 |
+
"model.encoder.layers.10.self_attn.q_proj.bias -> encoder.blocks.10.attn.query.bias\n",
|
544 |
+
"encoder.blocks.10.attn.query.bias 1 (768,)\n",
|
545 |
+
" Converting to float32\n",
|
546 |
+
"model.encoder.layers.10.self_attn.out_proj.weight -> encoder.blocks.10.attn.out.weight\n",
|
547 |
+
"encoder.blocks.10.attn.out.weight 2 (768, 768)\n",
|
548 |
+
"model.encoder.layers.10.self_attn.out_proj.bias -> encoder.blocks.10.attn.out.bias\n",
|
549 |
+
"encoder.blocks.10.attn.out.bias 1 (768,)\n",
|
550 |
+
" Converting to float32\n",
|
551 |
+
"model.encoder.layers.10.self_attn_layer_norm.weight -> encoder.blocks.10.attn_ln.weight\n",
|
552 |
+
"encoder.blocks.10.attn_ln.weight 1 (768,)\n",
|
553 |
+
" Converting to float32\n",
|
554 |
+
"model.encoder.layers.10.self_attn_layer_norm.bias -> encoder.blocks.10.attn_ln.bias\n",
|
555 |
+
"encoder.blocks.10.attn_ln.bias 1 (768,)\n",
|
556 |
+
" Converting to float32\n",
|
557 |
+
"model.encoder.layers.10.fc1.weight -> encoder.blocks.10.mlp.0.weight\n",
|
558 |
+
"encoder.blocks.10.mlp.0.weight 2 (3072, 768)\n",
|
559 |
+
"model.encoder.layers.10.fc1.bias -> encoder.blocks.10.mlp.0.bias\n",
|
560 |
+
"encoder.blocks.10.mlp.0.bias 1 (3072,)\n",
|
561 |
+
" Converting to float32\n",
|
562 |
+
"model.encoder.layers.10.fc2.weight -> encoder.blocks.10.mlp.2.weight\n",
|
563 |
+
"encoder.blocks.10.mlp.2.weight 2 (768, 3072)\n",
|
564 |
+
"model.encoder.layers.10.fc2.bias -> encoder.blocks.10.mlp.2.bias\n",
|
565 |
+
"encoder.blocks.10.mlp.2.bias 1 (768,)\n",
|
566 |
+
" Converting to float32\n",
|
567 |
+
"model.encoder.layers.10.final_layer_norm.weight -> encoder.blocks.10.mlp_ln.weight\n",
|
568 |
+
"encoder.blocks.10.mlp_ln.weight 1 (768,)\n",
|
569 |
+
" Converting to float32\n",
|
570 |
+
"model.encoder.layers.10.final_layer_norm.bias -> encoder.blocks.10.mlp_ln.bias\n",
|
571 |
+
"encoder.blocks.10.mlp_ln.bias 1 (768,)\n",
|
572 |
+
" Converting to float32\n",
|
573 |
+
"model.encoder.layers.11.self_attn.k_proj.weight -> encoder.blocks.11.attn.key.weight\n",
|
574 |
+
"encoder.blocks.11.attn.key.weight 2 (768, 768)\n",
|
575 |
+
"model.encoder.layers.11.self_attn.v_proj.weight -> encoder.blocks.11.attn.value.weight\n",
|
576 |
+
"encoder.blocks.11.attn.value.weight 2 (768, 768)\n",
|
577 |
+
"model.encoder.layers.11.self_attn.v_proj.bias -> encoder.blocks.11.attn.value.bias\n",
|
578 |
+
"encoder.blocks.11.attn.value.bias 1 (768,)\n",
|
579 |
+
" Converting to float32\n",
|
580 |
+
"model.encoder.layers.11.self_attn.q_proj.weight -> encoder.blocks.11.attn.query.weight\n",
|
581 |
+
"encoder.blocks.11.attn.query.weight 2 (768, 768)\n",
|
582 |
+
"model.encoder.layers.11.self_attn.q_proj.bias -> encoder.blocks.11.attn.query.bias\n",
|
583 |
+
"encoder.blocks.11.attn.query.bias 1 (768,)\n",
|
584 |
+
" Converting to float32\n",
|
585 |
+
"model.encoder.layers.11.self_attn.out_proj.weight -> encoder.blocks.11.attn.out.weight\n",
|
586 |
+
"encoder.blocks.11.attn.out.weight 2 (768, 768)\n",
|
587 |
+
"model.encoder.layers.11.self_attn.out_proj.bias -> encoder.blocks.11.attn.out.bias\n",
|
588 |
+
"encoder.blocks.11.attn.out.bias 1 (768,)\n",
|
589 |
+
" Converting to float32\n",
|
590 |
+
"model.encoder.layers.11.self_attn_layer_norm.weight -> encoder.blocks.11.attn_ln.weight\n",
|
591 |
+
"encoder.blocks.11.attn_ln.weight 1 (768,)\n",
|
592 |
+
" Converting to float32\n",
|
593 |
+
"model.encoder.layers.11.self_attn_layer_norm.bias -> encoder.blocks.11.attn_ln.bias\n",
|
594 |
+
"encoder.blocks.11.attn_ln.bias 1 (768,)\n",
|
595 |
+
" Converting to float32\n",
|
596 |
+
"model.encoder.layers.11.fc1.weight -> encoder.blocks.11.mlp.0.weight\n",
|
597 |
+
"encoder.blocks.11.mlp.0.weight 2 (3072, 768)\n",
|
598 |
+
"model.encoder.layers.11.fc1.bias -> encoder.blocks.11.mlp.0.bias\n",
|
599 |
+
"encoder.blocks.11.mlp.0.bias 1 (3072,)\n",
|
600 |
+
" Converting to float32\n",
|
601 |
+
"model.encoder.layers.11.fc2.weight -> encoder.blocks.11.mlp.2.weight\n",
|
602 |
+
"encoder.blocks.11.mlp.2.weight 2 (768, 3072)\n",
|
603 |
+
"model.encoder.layers.11.fc2.bias -> encoder.blocks.11.mlp.2.bias\n",
|
604 |
+
"encoder.blocks.11.mlp.2.bias 1 (768,)\n",
|
605 |
+
" Converting to float32\n",
|
606 |
+
"model.encoder.layers.11.final_layer_norm.weight -> encoder.blocks.11.mlp_ln.weight\n",
|
607 |
+
"encoder.blocks.11.mlp_ln.weight 1 (768,)\n",
|
608 |
+
" Converting to float32\n",
|
609 |
+
"model.encoder.layers.11.final_layer_norm.bias -> encoder.blocks.11.mlp_ln.bias\n",
|
610 |
+
"encoder.blocks.11.mlp_ln.bias 1 (768,)\n",
|
611 |
+
" Converting to float32\n",
|
612 |
+
"model.encoder.layer_norm.weight -> encoder.ln_post.weight\n",
|
613 |
+
"encoder.ln_post.weight 1 (768,)\n",
|
614 |
+
" Converting to float32\n",
|
615 |
+
"model.encoder.layer_norm.bias -> encoder.ln_post.bias\n",
|
616 |
+
"encoder.ln_post.bias 1 (768,)\n",
|
617 |
+
" Converting to float32\n",
|
618 |
+
"model.decoder.embed_tokens.weight -> decoder.token_embedding.weight\n",
|
619 |
+
"decoder.token_embedding.weight 2 (51865, 768)\n",
|
620 |
+
"model.decoder.embed_positions.weight -> decoder.positional_embedding\n",
|
621 |
+
"decoder.positional_embedding 2 (448, 768)\n",
|
622 |
+
" Converting to float32\n",
|
623 |
+
"model.decoder.layers.0.self_attn.k_proj.weight -> decoder.blocks.0.attn.key.weight\n",
|
624 |
+
"decoder.blocks.0.attn.key.weight 2 (768, 768)\n",
|
625 |
+
"model.decoder.layers.0.self_attn.v_proj.weight -> decoder.blocks.0.attn.value.weight\n",
|
626 |
+
"decoder.blocks.0.attn.value.weight 2 (768, 768)\n",
|
627 |
+
"model.decoder.layers.0.self_attn.v_proj.bias -> decoder.blocks.0.attn.value.bias\n",
|
628 |
+
"decoder.blocks.0.attn.value.bias 1 (768,)\n",
|
629 |
+
" Converting to float32\n",
|
630 |
+
"model.decoder.layers.0.self_attn.q_proj.weight -> decoder.blocks.0.attn.query.weight\n",
|
631 |
+
"decoder.blocks.0.attn.query.weight 2 (768, 768)\n",
|
632 |
+
"model.decoder.layers.0.self_attn.q_proj.bias -> decoder.blocks.0.attn.query.bias\n",
|
633 |
+
"decoder.blocks.0.attn.query.bias 1 (768,)\n",
|
634 |
+
" Converting to float32\n",
|
635 |
+
"model.decoder.layers.0.self_attn.out_proj.weight -> decoder.blocks.0.attn.out.weight\n",
|
636 |
+
"decoder.blocks.0.attn.out.weight 2 (768, 768)\n",
|
637 |
+
"model.decoder.layers.0.self_attn.out_proj.bias -> decoder.blocks.0.attn.out.bias\n",
|
638 |
+
"decoder.blocks.0.attn.out.bias 1 (768,)\n",
|
639 |
+
" Converting to float32\n",
|
640 |
+
"model.decoder.layers.0.self_attn_layer_norm.weight -> decoder.blocks.0.attn_ln.weight\n",
|
641 |
+
"decoder.blocks.0.attn_ln.weight 1 (768,)\n",
|
642 |
+
" Converting to float32\n",
|
643 |
+
"model.decoder.layers.0.self_attn_layer_norm.bias -> decoder.blocks.0.attn_ln.bias\n",
|
644 |
+
"decoder.blocks.0.attn_ln.bias 1 (768,)\n",
|
645 |
+
" Converting to float32\n",
|
646 |
+
"model.decoder.layers.0.encoder_attn.k_proj.weight -> decoder.blocks.0.cross_attn.key.weight\n",
|
647 |
+
"decoder.blocks.0.cross_attn.key.weight 2 (768, 768)\n",
|
648 |
+
"model.decoder.layers.0.encoder_attn.v_proj.weight -> decoder.blocks.0.cross_attn.value.weight\n",
|
649 |
+
"decoder.blocks.0.cross_attn.value.weight 2 (768, 768)\n",
|
650 |
+
"model.decoder.layers.0.encoder_attn.v_proj.bias -> decoder.blocks.0.cross_attn.value.bias\n",
|
651 |
+
"decoder.blocks.0.cross_attn.value.bias 1 (768,)\n",
|
652 |
+
" Converting to float32\n",
|
653 |
+
"model.decoder.layers.0.encoder_attn.q_proj.weight -> decoder.blocks.0.cross_attn.query.weight\n",
|
654 |
+
"decoder.blocks.0.cross_attn.query.weight 2 (768, 768)\n",
|
655 |
+
"model.decoder.layers.0.encoder_attn.q_proj.bias -> decoder.blocks.0.cross_attn.query.bias\n",
|
656 |
+
"decoder.blocks.0.cross_attn.query.bias 1 (768,)\n",
|
657 |
+
" Converting to float32\n",
|
658 |
+
"model.decoder.layers.0.encoder_attn.out_proj.weight -> decoder.blocks.0.cross_attn.out.weight\n",
|
659 |
+
"decoder.blocks.0.cross_attn.out.weight 2 (768, 768)\n",
|
660 |
+
"model.decoder.layers.0.encoder_attn.out_proj.bias -> decoder.blocks.0.cross_attn.out.bias\n",
|
661 |
+
"decoder.blocks.0.cross_attn.out.bias 1 (768,)\n",
|
662 |
+
" Converting to float32\n",
|
663 |
+
"model.decoder.layers.0.encoder_attn_layer_norm.weight -> decoder.blocks.0.cross_attn_ln.weight\n",
|
664 |
+
"decoder.blocks.0.cross_attn_ln.weight 1 (768,)\n",
|
665 |
+
" Converting to float32\n",
|
666 |
+
"model.decoder.layers.0.encoder_attn_layer_norm.bias -> decoder.blocks.0.cross_attn_ln.bias\n",
|
667 |
+
"decoder.blocks.0.cross_attn_ln.bias 1 (768,)\n",
|
668 |
+
" Converting to float32\n",
|
669 |
+
"model.decoder.layers.0.fc1.weight -> decoder.blocks.0.mlp.0.weight\n",
|
670 |
+
"decoder.blocks.0.mlp.0.weight 2 (3072, 768)\n",
|
671 |
+
"model.decoder.layers.0.fc1.bias -> decoder.blocks.0.mlp.0.bias\n",
|
672 |
+
"decoder.blocks.0.mlp.0.bias 1 (3072,)\n",
|
673 |
+
" Converting to float32\n",
|
674 |
+
"model.decoder.layers.0.fc2.weight -> decoder.blocks.0.mlp.2.weight\n",
|
675 |
+
"decoder.blocks.0.mlp.2.weight 2 (768, 3072)\n",
|
676 |
+
"model.decoder.layers.0.fc2.bias -> decoder.blocks.0.mlp.2.bias\n",
|
677 |
+
"decoder.blocks.0.mlp.2.bias 1 (768,)\n",
|
678 |
+
" Converting to float32\n",
|
679 |
+
"model.decoder.layers.0.final_layer_norm.weight -> decoder.blocks.0.mlp_ln.weight\n",
|
680 |
+
"decoder.blocks.0.mlp_ln.weight 1 (768,)\n",
|
681 |
+
" Converting to float32\n",
|
682 |
+
"model.decoder.layers.0.final_layer_norm.bias -> decoder.blocks.0.mlp_ln.bias\n",
|
683 |
+
"decoder.blocks.0.mlp_ln.bias 1 (768,)\n",
|
684 |
+
" Converting to float32\n",
|
685 |
+
"model.decoder.layers.1.self_attn.k_proj.weight -> decoder.blocks.1.attn.key.weight\n",
|
686 |
+
"decoder.blocks.1.attn.key.weight 2 (768, 768)\n",
|
687 |
+
"model.decoder.layers.1.self_attn.v_proj.weight -> decoder.blocks.1.attn.value.weight\n",
|
688 |
+
"decoder.blocks.1.attn.value.weight 2 (768, 768)\n",
|
689 |
+
"model.decoder.layers.1.self_attn.v_proj.bias -> decoder.blocks.1.attn.value.bias\n",
|
690 |
+
"decoder.blocks.1.attn.value.bias 1 (768,)\n",
|
691 |
+
" Converting to float32\n",
|
692 |
+
"model.decoder.layers.1.self_attn.q_proj.weight -> decoder.blocks.1.attn.query.weight\n",
|
693 |
+
"decoder.blocks.1.attn.query.weight 2 (768, 768)\n",
|
694 |
+
"model.decoder.layers.1.self_attn.q_proj.bias -> decoder.blocks.1.attn.query.bias\n",
|
695 |
+
"decoder.blocks.1.attn.query.bias 1 (768,)\n",
|
696 |
+
" Converting to float32\n",
|
697 |
+
"model.decoder.layers.1.self_attn.out_proj.weight -> decoder.blocks.1.attn.out.weight\n",
|
698 |
+
"decoder.blocks.1.attn.out.weight 2 (768, 768)\n",
|
699 |
+
"model.decoder.layers.1.self_attn.out_proj.bias -> decoder.blocks.1.attn.out.bias\n",
|
700 |
+
"decoder.blocks.1.attn.out.bias 1 (768,)\n",
|
701 |
+
" Converting to float32\n",
|
702 |
+
"model.decoder.layers.1.self_attn_layer_norm.weight -> decoder.blocks.1.attn_ln.weight\n",
|
703 |
+
"decoder.blocks.1.attn_ln.weight 1 (768,)\n",
|
704 |
+
" Converting to float32\n",
|
705 |
+
"model.decoder.layers.1.self_attn_layer_norm.bias -> decoder.blocks.1.attn_ln.bias\n",
|
706 |
+
"decoder.blocks.1.attn_ln.bias 1 (768,)\n",
|
707 |
+
" Converting to float32\n",
|
708 |
+
"model.decoder.layers.1.encoder_attn.k_proj.weight -> decoder.blocks.1.cross_attn.key.weight\n",
|
709 |
+
"decoder.blocks.1.cross_attn.key.weight 2 (768, 768)\n",
|
710 |
+
"model.decoder.layers.1.encoder_attn.v_proj.weight -> decoder.blocks.1.cross_attn.value.weight\n",
|
711 |
+
"decoder.blocks.1.cross_attn.value.weight 2 (768, 768)\n",
|
712 |
+
"model.decoder.layers.1.encoder_attn.v_proj.bias -> decoder.blocks.1.cross_attn.value.bias\n",
|
713 |
+
"decoder.blocks.1.cross_attn.value.bias 1 (768,)\n",
|
714 |
+
" Converting to float32\n",
|
715 |
+
"model.decoder.layers.1.encoder_attn.q_proj.weight -> decoder.blocks.1.cross_attn.query.weight\n",
|
716 |
+
"decoder.blocks.1.cross_attn.query.weight 2 (768, 768)\n",
|
717 |
+
"model.decoder.layers.1.encoder_attn.q_proj.bias -> decoder.blocks.1.cross_attn.query.bias\n",
|
718 |
+
"decoder.blocks.1.cross_attn.query.bias 1 (768,)\n",
|
719 |
+
" Converting to float32\n",
|
720 |
+
"model.decoder.layers.1.encoder_attn.out_proj.weight -> decoder.blocks.1.cross_attn.out.weight\n",
|
721 |
+
"decoder.blocks.1.cross_attn.out.weight 2 (768, 768)\n",
|
722 |
+
"model.decoder.layers.1.encoder_attn.out_proj.bias -> decoder.blocks.1.cross_attn.out.bias\n",
|
723 |
+
"decoder.blocks.1.cross_attn.out.bias 1 (768,)\n",
|
724 |
+
" Converting to float32\n",
|
725 |
+
"model.decoder.layers.1.encoder_attn_layer_norm.weight -> decoder.blocks.1.cross_attn_ln.weight\n",
|
726 |
+
"decoder.blocks.1.cross_attn_ln.weight 1 (768,)\n",
|
727 |
+
" Converting to float32\n",
|
728 |
+
"model.decoder.layers.1.encoder_attn_layer_norm.bias -> decoder.blocks.1.cross_attn_ln.bias\n",
|
729 |
+
"decoder.blocks.1.cross_attn_ln.bias 1 (768,)\n",
|
730 |
+
" Converting to float32\n",
|
731 |
+
"model.decoder.layers.1.fc1.weight -> decoder.blocks.1.mlp.0.weight\n",
|
732 |
+
"decoder.blocks.1.mlp.0.weight 2 (3072, 768)\n",
|
733 |
+
"model.decoder.layers.1.fc1.bias -> decoder.blocks.1.mlp.0.bias\n",
|
734 |
+
"decoder.blocks.1.mlp.0.bias 1 (3072,)\n",
|
735 |
+
" Converting to float32\n",
|
736 |
+
"model.decoder.layers.1.fc2.weight -> decoder.blocks.1.mlp.2.weight\n",
|
737 |
+
"decoder.blocks.1.mlp.2.weight 2 (768, 3072)\n",
|
738 |
+
"model.decoder.layers.1.fc2.bias -> decoder.blocks.1.mlp.2.bias\n",
|
739 |
+
"decoder.blocks.1.mlp.2.bias 1 (768,)\n",
|
740 |
+
" Converting to float32\n",
|
741 |
+
"model.decoder.layers.1.final_layer_norm.weight -> decoder.blocks.1.mlp_ln.weight\n",
|
742 |
+
"decoder.blocks.1.mlp_ln.weight 1 (768,)\n",
|
743 |
+
" Converting to float32\n",
|
744 |
+
"model.decoder.layers.1.final_layer_norm.bias -> decoder.blocks.1.mlp_ln.bias\n",
|
745 |
+
"decoder.blocks.1.mlp_ln.bias 1 (768,)\n",
|
746 |
+
" Converting to float32\n",
|
747 |
+
"model.decoder.layers.2.self_attn.k_proj.weight -> decoder.blocks.2.attn.key.weight\n",
|
748 |
+
"decoder.blocks.2.attn.key.weight 2 (768, 768)\n",
|
749 |
+
"model.decoder.layers.2.self_attn.v_proj.weight -> decoder.blocks.2.attn.value.weight\n",
|
750 |
+
"decoder.blocks.2.attn.value.weight 2 (768, 768)\n",
|
751 |
+
"model.decoder.layers.2.self_attn.v_proj.bias -> decoder.blocks.2.attn.value.bias\n",
|
752 |
+
"decoder.blocks.2.attn.value.bias 1 (768,)\n",
|
753 |
+
" Converting to float32\n",
|
754 |
+
"model.decoder.layers.2.self_attn.q_proj.weight -> decoder.blocks.2.attn.query.weight\n",
|
755 |
+
"decoder.blocks.2.attn.query.weight 2 (768, 768)\n",
|
756 |
+
"model.decoder.layers.2.self_attn.q_proj.bias -> decoder.blocks.2.attn.query.bias\n",
|
757 |
+
"decoder.blocks.2.attn.query.bias 1 (768,)\n",
|
758 |
+
" Converting to float32\n",
|
759 |
+
"model.decoder.layers.2.self_attn.out_proj.weight -> decoder.blocks.2.attn.out.weight\n",
|
760 |
+
"decoder.blocks.2.attn.out.weight 2 (768, 768)\n",
|
761 |
+
"model.decoder.layers.2.self_attn.out_proj.bias -> decoder.blocks.2.attn.out.bias\n",
|
762 |
+
"decoder.blocks.2.attn.out.bias 1 (768,)\n",
|
763 |
+
" Converting to float32\n",
|
764 |
+
"model.decoder.layers.2.self_attn_layer_norm.weight -> decoder.blocks.2.attn_ln.weight\n",
|
765 |
+
"decoder.blocks.2.attn_ln.weight 1 (768,)\n",
|
766 |
+
" Converting to float32\n",
|
767 |
+
"model.decoder.layers.2.self_attn_layer_norm.bias -> decoder.blocks.2.attn_ln.bias\n",
|
768 |
+
"decoder.blocks.2.attn_ln.bias 1 (768,)\n",
|
769 |
+
" Converting to float32\n",
|
770 |
+
"model.decoder.layers.2.encoder_attn.k_proj.weight -> decoder.blocks.2.cross_attn.key.weight\n",
|
771 |
+
"decoder.blocks.2.cross_attn.key.weight 2 (768, 768)\n",
|
772 |
+
"model.decoder.layers.2.encoder_attn.v_proj.weight -> decoder.blocks.2.cross_attn.value.weight\n",
|
773 |
+
"decoder.blocks.2.cross_attn.value.weight 2 (768, 768)\n",
|
774 |
+
"model.decoder.layers.2.encoder_attn.v_proj.bias -> decoder.blocks.2.cross_attn.value.bias\n",
|
775 |
+
"decoder.blocks.2.cross_attn.value.bias 1 (768,)\n",
|
776 |
+
" Converting to float32\n",
|
777 |
+
"model.decoder.layers.2.encoder_attn.q_proj.weight -> decoder.blocks.2.cross_attn.query.weight\n",
|
778 |
+
"decoder.blocks.2.cross_attn.query.weight 2 (768, 768)\n",
|
779 |
+
"model.decoder.layers.2.encoder_attn.q_proj.bias -> decoder.blocks.2.cross_attn.query.bias\n",
|
780 |
+
"decoder.blocks.2.cross_attn.query.bias 1 (768,)\n",
|
781 |
+
" Converting to float32\n",
|
782 |
+
"model.decoder.layers.2.encoder_attn.out_proj.weight -> decoder.blocks.2.cross_attn.out.weight\n",
|
783 |
+
"decoder.blocks.2.cross_attn.out.weight 2 (768, 768)\n",
|
784 |
+
"model.decoder.layers.2.encoder_attn.out_proj.bias -> decoder.blocks.2.cross_attn.out.bias\n",
|
785 |
+
"decoder.blocks.2.cross_attn.out.bias 1 (768,)\n",
|
786 |
+
" Converting to float32\n",
|
787 |
+
"model.decoder.layers.2.encoder_attn_layer_norm.weight -> decoder.blocks.2.cross_attn_ln.weight\n",
|
788 |
+
"decoder.blocks.2.cross_attn_ln.weight 1 (768,)\n",
|
789 |
+
" Converting to float32\n",
|
790 |
+
"model.decoder.layers.2.encoder_attn_layer_norm.bias -> decoder.blocks.2.cross_attn_ln.bias\n",
|
791 |
+
"decoder.blocks.2.cross_attn_ln.bias 1 (768,)\n",
|
792 |
+
" Converting to float32\n",
|
793 |
+
"model.decoder.layers.2.fc1.weight -> decoder.blocks.2.mlp.0.weight\n",
|
794 |
+
"decoder.blocks.2.mlp.0.weight 2 (3072, 768)\n",
|
795 |
+
"model.decoder.layers.2.fc1.bias -> decoder.blocks.2.mlp.0.bias\n",
|
796 |
+
"decoder.blocks.2.mlp.0.bias 1 (3072,)\n",
|
797 |
+
" Converting to float32\n",
|
798 |
+
"model.decoder.layers.2.fc2.weight -> decoder.blocks.2.mlp.2.weight\n",
|
799 |
+
"decoder.blocks.2.mlp.2.weight 2 (768, 3072)\n",
|
800 |
+
"model.decoder.layers.2.fc2.bias -> decoder.blocks.2.mlp.2.bias\n",
|
801 |
+
"decoder.blocks.2.mlp.2.bias 1 (768,)\n",
|
802 |
+
" Converting to float32\n",
|
803 |
+
"model.decoder.layers.2.final_layer_norm.weight -> decoder.blocks.2.mlp_ln.weight\n",
|
804 |
+
"decoder.blocks.2.mlp_ln.weight 1 (768,)\n",
|
805 |
+
" Converting to float32\n",
|
806 |
+
"model.decoder.layers.2.final_layer_norm.bias -> decoder.blocks.2.mlp_ln.bias\n",
|
807 |
+
"decoder.blocks.2.mlp_ln.bias 1 (768,)\n",
|
808 |
+
" Converting to float32\n",
|
809 |
+
"model.decoder.layers.3.self_attn.k_proj.weight -> decoder.blocks.3.attn.key.weight\n",
|
810 |
+
"decoder.blocks.3.attn.key.weight 2 (768, 768)\n",
|
811 |
+
"model.decoder.layers.3.self_attn.v_proj.weight -> decoder.blocks.3.attn.value.weight\n",
|
812 |
+
"decoder.blocks.3.attn.value.weight 2 (768, 768)\n",
|
813 |
+
"model.decoder.layers.3.self_attn.v_proj.bias -> decoder.blocks.3.attn.value.bias\n",
|
814 |
+
"decoder.blocks.3.attn.value.bias 1 (768,)\n",
|
815 |
+
" Converting to float32\n",
|
816 |
+
"model.decoder.layers.3.self_attn.q_proj.weight -> decoder.blocks.3.attn.query.weight\n",
|
817 |
+
"decoder.blocks.3.attn.query.weight 2 (768, 768)\n",
|
818 |
+
"model.decoder.layers.3.self_attn.q_proj.bias -> decoder.blocks.3.attn.query.bias\n",
|
819 |
+
"decoder.blocks.3.attn.query.bias 1 (768,)\n",
|
820 |
+
" Converting to float32\n",
|
821 |
+
"model.decoder.layers.3.self_attn.out_proj.weight -> decoder.blocks.3.attn.out.weight\n",
|
822 |
+
"decoder.blocks.3.attn.out.weight 2 (768, 768)\n",
|
823 |
+
"model.decoder.layers.3.self_attn.out_proj.bias -> decoder.blocks.3.attn.out.bias\n",
|
824 |
+
"decoder.blocks.3.attn.out.bias 1 (768,)\n",
|
825 |
+
" Converting to float32\n",
|
826 |
+
"model.decoder.layers.3.self_attn_layer_norm.weight -> decoder.blocks.3.attn_ln.weight\n",
|
827 |
+
"decoder.blocks.3.attn_ln.weight 1 (768,)\n",
|
828 |
+
" Converting to float32\n",
|
829 |
+
"model.decoder.layers.3.self_attn_layer_norm.bias -> decoder.blocks.3.attn_ln.bias\n",
|
830 |
+
"decoder.blocks.3.attn_ln.bias 1 (768,)\n",
|
831 |
+
" Converting to float32\n",
|
832 |
+
"model.decoder.layers.3.encoder_attn.k_proj.weight -> decoder.blocks.3.cross_attn.key.weight\n",
|
833 |
+
"decoder.blocks.3.cross_attn.key.weight 2 (768, 768)\n",
|
834 |
+
"model.decoder.layers.3.encoder_attn.v_proj.weight -> decoder.blocks.3.cross_attn.value.weight\n",
|
835 |
+
"decoder.blocks.3.cross_attn.value.weight 2 (768, 768)\n",
|
836 |
+
"model.decoder.layers.3.encoder_attn.v_proj.bias -> decoder.blocks.3.cross_attn.value.bias\n",
|
837 |
+
"decoder.blocks.3.cross_attn.value.bias 1 (768,)\n",
|
838 |
+
" Converting to float32\n",
|
839 |
+
"model.decoder.layers.3.encoder_attn.q_proj.weight -> decoder.blocks.3.cross_attn.query.weight\n",
|
840 |
+
"decoder.blocks.3.cross_attn.query.weight 2 (768, 768)\n",
|
841 |
+
"model.decoder.layers.3.encoder_attn.q_proj.bias -> decoder.blocks.3.cross_attn.query.bias\n",
|
842 |
+
"decoder.blocks.3.cross_attn.query.bias 1 (768,)\n",
|
843 |
+
" Converting to float32\n",
|
844 |
+
"model.decoder.layers.3.encoder_attn.out_proj.weight -> decoder.blocks.3.cross_attn.out.weight\n",
|
845 |
+
"decoder.blocks.3.cross_attn.out.weight 2 (768, 768)\n",
|
846 |
+
"model.decoder.layers.3.encoder_attn.out_proj.bias -> decoder.blocks.3.cross_attn.out.bias\n",
|
847 |
+
"decoder.blocks.3.cross_attn.out.bias 1 (768,)\n",
|
848 |
+
" Converting to float32\n",
|
849 |
+
"model.decoder.layers.3.encoder_attn_layer_norm.weight -> decoder.blocks.3.cross_attn_ln.weight\n",
|
850 |
+
"decoder.blocks.3.cross_attn_ln.weight 1 (768,)\n",
|
851 |
+
" Converting to float32\n",
|
852 |
+
"model.decoder.layers.3.encoder_attn_layer_norm.bias -> decoder.blocks.3.cross_attn_ln.bias\n",
|
853 |
+
"decoder.blocks.3.cross_attn_ln.bias 1 (768,)\n",
|
854 |
+
" Converting to float32\n",
|
855 |
+
"model.decoder.layers.3.fc1.weight -> decoder.blocks.3.mlp.0.weight\n",
|
856 |
+
"decoder.blocks.3.mlp.0.weight 2 (3072, 768)\n",
|
857 |
+
"model.decoder.layers.3.fc1.bias -> decoder.blocks.3.mlp.0.bias\n",
|
858 |
+
"decoder.blocks.3.mlp.0.bias 1 (3072,)\n",
|
859 |
+
" Converting to float32\n",
|
860 |
+
"model.decoder.layers.3.fc2.weight -> decoder.blocks.3.mlp.2.weight\n",
|
861 |
+
"decoder.blocks.3.mlp.2.weight 2 (768, 3072)\n",
|
862 |
+
"model.decoder.layers.3.fc2.bias -> decoder.blocks.3.mlp.2.bias\n",
|
863 |
+
"decoder.blocks.3.mlp.2.bias 1 (768,)\n",
|
864 |
+
" Converting to float32\n",
|
865 |
+
"model.decoder.layers.3.final_layer_norm.weight -> decoder.blocks.3.mlp_ln.weight\n",
|
866 |
+
"decoder.blocks.3.mlp_ln.weight 1 (768,)\n",
|
867 |
+
" Converting to float32\n",
|
868 |
+
"model.decoder.layers.3.final_layer_norm.bias -> decoder.blocks.3.mlp_ln.bias\n",
|
869 |
+
"decoder.blocks.3.mlp_ln.bias 1 (768,)\n",
|
870 |
+
" Converting to float32\n",
|
871 |
+
"model.decoder.layers.4.self_attn.k_proj.weight -> decoder.blocks.4.attn.key.weight\n",
|
872 |
+
"decoder.blocks.4.attn.key.weight 2 (768, 768)\n",
|
873 |
+
"model.decoder.layers.4.self_attn.v_proj.weight -> decoder.blocks.4.attn.value.weight\n",
|
874 |
+
"decoder.blocks.4.attn.value.weight 2 (768, 768)\n",
|
875 |
+
"model.decoder.layers.4.self_attn.v_proj.bias -> decoder.blocks.4.attn.value.bias\n",
|
876 |
+
"decoder.blocks.4.attn.value.bias 1 (768,)\n",
|
877 |
+
" Converting to float32\n",
|
878 |
+
"model.decoder.layers.4.self_attn.q_proj.weight -> decoder.blocks.4.attn.query.weight\n",
|
879 |
+
"decoder.blocks.4.attn.query.weight 2 (768, 768)\n",
|
880 |
+
"model.decoder.layers.4.self_attn.q_proj.bias -> decoder.blocks.4.attn.query.bias\n",
|
881 |
+
"decoder.blocks.4.attn.query.bias 1 (768,)\n",
|
882 |
+
" Converting to float32\n",
|
883 |
+
"model.decoder.layers.4.self_attn.out_proj.weight -> decoder.blocks.4.attn.out.weight\n",
|
884 |
+
"decoder.blocks.4.attn.out.weight 2 (768, 768)\n",
|
885 |
+
"model.decoder.layers.4.self_attn.out_proj.bias -> decoder.blocks.4.attn.out.bias\n",
|
886 |
+
"decoder.blocks.4.attn.out.bias 1 (768,)\n",
|
887 |
+
" Converting to float32\n",
|
888 |
+
"model.decoder.layers.4.self_attn_layer_norm.weight -> decoder.blocks.4.attn_ln.weight\n",
|
889 |
+
"decoder.blocks.4.attn_ln.weight 1 (768,)\n",
|
890 |
+
" Converting to float32\n",
|
891 |
+
"model.decoder.layers.4.self_attn_layer_norm.bias -> decoder.blocks.4.attn_ln.bias\n",
|
892 |
+
"decoder.blocks.4.attn_ln.bias 1 (768,)\n",
|
893 |
+
" Converting to float32\n",
|
894 |
+
"model.decoder.layers.4.encoder_attn.k_proj.weight -> decoder.blocks.4.cross_attn.key.weight\n",
|
895 |
+
"decoder.blocks.4.cross_attn.key.weight 2 (768, 768)\n",
|
896 |
+
"model.decoder.layers.4.encoder_attn.v_proj.weight -> decoder.blocks.4.cross_attn.value.weight\n",
|
897 |
+
"decoder.blocks.4.cross_attn.value.weight 2 (768, 768)\n",
|
898 |
+
"model.decoder.layers.4.encoder_attn.v_proj.bias -> decoder.blocks.4.cross_attn.value.bias\n",
|
899 |
+
"decoder.blocks.4.cross_attn.value.bias 1 (768,)\n",
|
900 |
+
" Converting to float32\n",
|
901 |
+
"model.decoder.layers.4.encoder_attn.q_proj.weight -> decoder.blocks.4.cross_attn.query.weight\n",
|
902 |
+
"decoder.blocks.4.cross_attn.query.weight 2 (768, 768)\n",
|
903 |
+
"model.decoder.layers.4.encoder_attn.q_proj.bias -> decoder.blocks.4.cross_attn.query.bias\n",
|
904 |
+
"decoder.blocks.4.cross_attn.query.bias 1 (768,)\n",
|
905 |
+
" Converting to float32\n",
|
906 |
+
"model.decoder.layers.4.encoder_attn.out_proj.weight -> decoder.blocks.4.cross_attn.out.weight\n",
|
907 |
+
"decoder.blocks.4.cross_attn.out.weight 2 (768, 768)\n",
|
908 |
+
"model.decoder.layers.4.encoder_attn.out_proj.bias -> decoder.blocks.4.cross_attn.out.bias\n",
|
909 |
+
"decoder.blocks.4.cross_attn.out.bias 1 (768,)\n",
|
910 |
+
" Converting to float32\n",
|
911 |
+
"model.decoder.layers.4.encoder_attn_layer_norm.weight -> decoder.blocks.4.cross_attn_ln.weight\n",
|
912 |
+
"decoder.blocks.4.cross_attn_ln.weight 1 (768,)\n",
|
913 |
+
" Converting to float32\n",
|
914 |
+
"model.decoder.layers.4.encoder_attn_layer_norm.bias -> decoder.blocks.4.cross_attn_ln.bias\n",
|
915 |
+
"decoder.blocks.4.cross_attn_ln.bias 1 (768,)\n",
|
916 |
+
" Converting to float32\n",
|
917 |
+
"model.decoder.layers.4.fc1.weight -> decoder.blocks.4.mlp.0.weight\n",
|
918 |
+
"decoder.blocks.4.mlp.0.weight 2 (3072, 768)\n",
|
919 |
+
"model.decoder.layers.4.fc1.bias -> decoder.blocks.4.mlp.0.bias\n",
|
920 |
+
"decoder.blocks.4.mlp.0.bias 1 (3072,)\n",
|
921 |
+
" Converting to float32\n",
|
922 |
+
"model.decoder.layers.4.fc2.weight -> decoder.blocks.4.mlp.2.weight\n",
|
923 |
+
"decoder.blocks.4.mlp.2.weight 2 (768, 3072)\n",
|
924 |
+
"model.decoder.layers.4.fc2.bias -> decoder.blocks.4.mlp.2.bias\n",
|
925 |
+
"decoder.blocks.4.mlp.2.bias 1 (768,)\n",
|
926 |
+
" Converting to float32\n",
|
927 |
+
"model.decoder.layers.4.final_layer_norm.weight -> decoder.blocks.4.mlp_ln.weight\n",
|
928 |
+
"decoder.blocks.4.mlp_ln.weight 1 (768,)\n",
|
929 |
+
" Converting to float32\n",
|
930 |
+
"model.decoder.layers.4.final_layer_norm.bias -> decoder.blocks.4.mlp_ln.bias\n",
|
931 |
+
"decoder.blocks.4.mlp_ln.bias 1 (768,)\n",
|
932 |
+
" Converting to float32\n",
|
933 |
+
"model.decoder.layers.5.self_attn.k_proj.weight -> decoder.blocks.5.attn.key.weight\n",
|
934 |
+
"decoder.blocks.5.attn.key.weight 2 (768, 768)\n",
|
935 |
+
"model.decoder.layers.5.self_attn.v_proj.weight -> decoder.blocks.5.attn.value.weight\n",
|
936 |
+
"decoder.blocks.5.attn.value.weight 2 (768, 768)\n",
|
937 |
+
"model.decoder.layers.5.self_attn.v_proj.bias -> decoder.blocks.5.attn.value.bias\n",
|
938 |
+
"decoder.blocks.5.attn.value.bias 1 (768,)\n",
|
939 |
+
" Converting to float32\n",
|
940 |
+
"model.decoder.layers.5.self_attn.q_proj.weight -> decoder.blocks.5.attn.query.weight\n",
|
941 |
+
"decoder.blocks.5.attn.query.weight 2 (768, 768)\n",
|
942 |
+
"model.decoder.layers.5.self_attn.q_proj.bias -> decoder.blocks.5.attn.query.bias\n",
|
943 |
+
"decoder.blocks.5.attn.query.bias 1 (768,)\n",
|
944 |
+
" Converting to float32\n",
|
945 |
+
"model.decoder.layers.5.self_attn.out_proj.weight -> decoder.blocks.5.attn.out.weight\n",
|
946 |
+
"decoder.blocks.5.attn.out.weight 2 (768, 768)\n",
|
947 |
+
"model.decoder.layers.5.self_attn.out_proj.bias -> decoder.blocks.5.attn.out.bias\n",
|
948 |
+
"decoder.blocks.5.attn.out.bias 1 (768,)\n",
|
949 |
+
" Converting to float32\n",
|
950 |
+
"model.decoder.layers.5.self_attn_layer_norm.weight -> decoder.blocks.5.attn_ln.weight\n",
|
951 |
+
"decoder.blocks.5.attn_ln.weight 1 (768,)\n",
|
952 |
+
" Converting to float32\n",
|
953 |
+
"model.decoder.layers.5.self_attn_layer_norm.bias -> decoder.blocks.5.attn_ln.bias\n",
|
954 |
+
"decoder.blocks.5.attn_ln.bias 1 (768,)\n",
|
955 |
+
" Converting to float32\n",
|
956 |
+
"model.decoder.layers.5.encoder_attn.k_proj.weight -> decoder.blocks.5.cross_attn.key.weight\n",
|
957 |
+
"decoder.blocks.5.cross_attn.key.weight 2 (768, 768)\n",
|
958 |
+
"model.decoder.layers.5.encoder_attn.v_proj.weight -> decoder.blocks.5.cross_attn.value.weight\n",
|
959 |
+
"decoder.blocks.5.cross_attn.value.weight 2 (768, 768)\n",
|
960 |
+
"model.decoder.layers.5.encoder_attn.v_proj.bias -> decoder.blocks.5.cross_attn.value.bias\n",
|
961 |
+
"decoder.blocks.5.cross_attn.value.bias 1 (768,)\n",
|
962 |
+
" Converting to float32\n",
|
963 |
+
"model.decoder.layers.5.encoder_attn.q_proj.weight -> decoder.blocks.5.cross_attn.query.weight\n",
|
964 |
+
"decoder.blocks.5.cross_attn.query.weight 2 (768, 768)\n",
|
965 |
+
"model.decoder.layers.5.encoder_attn.q_proj.bias -> decoder.blocks.5.cross_attn.query.bias\n",
|
966 |
+
"decoder.blocks.5.cross_attn.query.bias 1 (768,)\n",
|
967 |
+
" Converting to float32\n",
|
968 |
+
"model.decoder.layers.5.encoder_attn.out_proj.weight -> decoder.blocks.5.cross_attn.out.weight\n",
|
969 |
+
"decoder.blocks.5.cross_attn.out.weight 2 (768, 768)\n",
|
970 |
+
"model.decoder.layers.5.encoder_attn.out_proj.bias -> decoder.blocks.5.cross_attn.out.bias\n",
|
971 |
+
"decoder.blocks.5.cross_attn.out.bias 1 (768,)\n",
|
972 |
+
" Converting to float32\n",
|
973 |
+
"model.decoder.layers.5.encoder_attn_layer_norm.weight -> decoder.blocks.5.cross_attn_ln.weight\n",
|
974 |
+
"decoder.blocks.5.cross_attn_ln.weight 1 (768,)\n",
|
975 |
+
" Converting to float32\n",
|
976 |
+
"model.decoder.layers.5.encoder_attn_layer_norm.bias -> decoder.blocks.5.cross_attn_ln.bias\n",
|
977 |
+
"decoder.blocks.5.cross_attn_ln.bias 1 (768,)\n",
|
978 |
+
" Converting to float32\n",
|
979 |
+
"model.decoder.layers.5.fc1.weight -> decoder.blocks.5.mlp.0.weight\n",
|
980 |
+
"decoder.blocks.5.mlp.0.weight 2 (3072, 768)\n",
|
981 |
+
"model.decoder.layers.5.fc1.bias -> decoder.blocks.5.mlp.0.bias\n",
|
982 |
+
"decoder.blocks.5.mlp.0.bias 1 (3072,)\n",
|
983 |
+
" Converting to float32\n",
|
984 |
+
"model.decoder.layers.5.fc2.weight -> decoder.blocks.5.mlp.2.weight\n",
|
985 |
+
"decoder.blocks.5.mlp.2.weight 2 (768, 3072)\n",
|
986 |
+
"model.decoder.layers.5.fc2.bias -> decoder.blocks.5.mlp.2.bias\n",
|
987 |
+
"decoder.blocks.5.mlp.2.bias 1 (768,)\n",
|
988 |
+
" Converting to float32\n",
|
989 |
+
"model.decoder.layers.5.final_layer_norm.weight -> decoder.blocks.5.mlp_ln.weight\n",
|
990 |
+
"decoder.blocks.5.mlp_ln.weight 1 (768,)\n",
|
991 |
+
" Converting to float32\n",
|
992 |
+
"model.decoder.layers.5.final_layer_norm.bias -> decoder.blocks.5.mlp_ln.bias\n",
|
993 |
+
"decoder.blocks.5.mlp_ln.bias 1 (768,)\n",
|
994 |
+
" Converting to float32\n",
|
995 |
+
"model.decoder.layers.6.self_attn.k_proj.weight -> decoder.blocks.6.attn.key.weight\n",
|
996 |
+
"decoder.blocks.6.attn.key.weight 2 (768, 768)\n",
|
997 |
+
"model.decoder.layers.6.self_attn.v_proj.weight -> decoder.blocks.6.attn.value.weight\n",
|
998 |
+
"decoder.blocks.6.attn.value.weight 2 (768, 768)\n",
|
999 |
+
"model.decoder.layers.6.self_attn.v_proj.bias -> decoder.blocks.6.attn.value.bias\n",
|
1000 |
+
"decoder.blocks.6.attn.value.bias 1 (768,)\n",
|
1001 |
+
" Converting to float32\n",
|
1002 |
+
"model.decoder.layers.6.self_attn.q_proj.weight -> decoder.blocks.6.attn.query.weight\n",
|
1003 |
+
"decoder.blocks.6.attn.query.weight 2 (768, 768)\n",
|
1004 |
+
"model.decoder.layers.6.self_attn.q_proj.bias -> decoder.blocks.6.attn.query.bias\n",
|
1005 |
+
"decoder.blocks.6.attn.query.bias 1 (768,)\n",
|
1006 |
+
" Converting to float32\n",
|
1007 |
+
"model.decoder.layers.6.self_attn.out_proj.weight -> decoder.blocks.6.attn.out.weight\n",
|
1008 |
+
"decoder.blocks.6.attn.out.weight 2 (768, 768)\n",
|
1009 |
+
"model.decoder.layers.6.self_attn.out_proj.bias -> decoder.blocks.6.attn.out.bias\n",
|
1010 |
+
"decoder.blocks.6.attn.out.bias 1 (768,)\n",
|
1011 |
+
" Converting to float32\n",
|
1012 |
+
"model.decoder.layers.6.self_attn_layer_norm.weight -> decoder.blocks.6.attn_ln.weight\n",
|
1013 |
+
"decoder.blocks.6.attn_ln.weight 1 (768,)\n",
|
1014 |
+
" Converting to float32\n",
|
1015 |
+
"model.decoder.layers.6.self_attn_layer_norm.bias -> decoder.blocks.6.attn_ln.bias\n",
|
1016 |
+
"decoder.blocks.6.attn_ln.bias 1 (768,)\n",
|
1017 |
+
" Converting to float32\n",
|
1018 |
+
"model.decoder.layers.6.encoder_attn.k_proj.weight -> decoder.blocks.6.cross_attn.key.weight\n",
|
1019 |
+
"decoder.blocks.6.cross_attn.key.weight 2 (768, 768)\n",
|
1020 |
+
"model.decoder.layers.6.encoder_attn.v_proj.weight -> decoder.blocks.6.cross_attn.value.weight\n",
|
1021 |
+
"decoder.blocks.6.cross_attn.value.weight 2 (768, 768)\n",
|
1022 |
+
"model.decoder.layers.6.encoder_attn.v_proj.bias -> decoder.blocks.6.cross_attn.value.bias\n",
|
1023 |
+
"decoder.blocks.6.cross_attn.value.bias 1 (768,)\n",
|
1024 |
+
" Converting to float32\n",
|
1025 |
+
"model.decoder.layers.6.encoder_attn.q_proj.weight -> decoder.blocks.6.cross_attn.query.weight\n",
|
1026 |
+
"decoder.blocks.6.cross_attn.query.weight 2 (768, 768)\n",
|
1027 |
+
"model.decoder.layers.6.encoder_attn.q_proj.bias -> decoder.blocks.6.cross_attn.query.bias\n",
|
1028 |
+
"decoder.blocks.6.cross_attn.query.bias 1 (768,)\n",
|
1029 |
+
" Converting to float32\n",
|
1030 |
+
"model.decoder.layers.6.encoder_attn.out_proj.weight -> decoder.blocks.6.cross_attn.out.weight\n",
|
1031 |
+
"decoder.blocks.6.cross_attn.out.weight 2 (768, 768)\n",
|
1032 |
+
"model.decoder.layers.6.encoder_attn.out_proj.bias -> decoder.blocks.6.cross_attn.out.bias\n",
|
1033 |
+
"decoder.blocks.6.cross_attn.out.bias 1 (768,)\n",
|
1034 |
+
" Converting to float32\n",
|
1035 |
+
"model.decoder.layers.6.encoder_attn_layer_norm.weight -> decoder.blocks.6.cross_attn_ln.weight\n",
|
1036 |
+
"decoder.blocks.6.cross_attn_ln.weight 1 (768,)\n",
|
1037 |
+
" Converting to float32\n",
|
1038 |
+
"model.decoder.layers.6.encoder_attn_layer_norm.bias -> decoder.blocks.6.cross_attn_ln.bias\n",
|
1039 |
+
"decoder.blocks.6.cross_attn_ln.bias 1 (768,)\n",
|
1040 |
+
" Converting to float32\n",
|
1041 |
+
"model.decoder.layers.6.fc1.weight -> decoder.blocks.6.mlp.0.weight\n",
|
1042 |
+
"decoder.blocks.6.mlp.0.weight 2 (3072, 768)\n",
|
1043 |
+
"model.decoder.layers.6.fc1.bias -> decoder.blocks.6.mlp.0.bias\n",
|
1044 |
+
"decoder.blocks.6.mlp.0.bias 1 (3072,)\n",
|
1045 |
+
" Converting to float32\n",
|
1046 |
+
"model.decoder.layers.6.fc2.weight -> decoder.blocks.6.mlp.2.weight\n",
|
1047 |
+
"decoder.blocks.6.mlp.2.weight 2 (768, 3072)\n",
|
1048 |
+
"model.decoder.layers.6.fc2.bias -> decoder.blocks.6.mlp.2.bias\n",
|
1049 |
+
"decoder.blocks.6.mlp.2.bias 1 (768,)\n",
|
1050 |
+
" Converting to float32\n",
|
1051 |
+
"model.decoder.layers.6.final_layer_norm.weight -> decoder.blocks.6.mlp_ln.weight\n",
|
1052 |
+
"decoder.blocks.6.mlp_ln.weight 1 (768,)\n",
|
1053 |
+
" Converting to float32\n",
|
1054 |
+
"model.decoder.layers.6.final_layer_norm.bias -> decoder.blocks.6.mlp_ln.bias\n",
|
1055 |
+
"decoder.blocks.6.mlp_ln.bias 1 (768,)\n",
|
1056 |
+
" Converting to float32\n",
|
1057 |
+
"model.decoder.layers.7.self_attn.k_proj.weight -> decoder.blocks.7.attn.key.weight\n",
|
1058 |
+
"decoder.blocks.7.attn.key.weight 2 (768, 768)\n",
|
1059 |
+
"model.decoder.layers.7.self_attn.v_proj.weight -> decoder.blocks.7.attn.value.weight\n",
|
1060 |
+
"decoder.blocks.7.attn.value.weight 2 (768, 768)\n",
|
1061 |
+
"model.decoder.layers.7.self_attn.v_proj.bias -> decoder.blocks.7.attn.value.bias\n",
|
1062 |
+
"decoder.blocks.7.attn.value.bias 1 (768,)\n",
|
1063 |
+
" Converting to float32\n",
|
1064 |
+
"model.decoder.layers.7.self_attn.q_proj.weight -> decoder.blocks.7.attn.query.weight\n",
|
1065 |
+
"decoder.blocks.7.attn.query.weight 2 (768, 768)\n",
|
1066 |
+
"model.decoder.layers.7.self_attn.q_proj.bias -> decoder.blocks.7.attn.query.bias\n",
|
1067 |
+
"decoder.blocks.7.attn.query.bias 1 (768,)\n",
|
1068 |
+
" Converting to float32\n",
|
1069 |
+
"model.decoder.layers.7.self_attn.out_proj.weight -> decoder.blocks.7.attn.out.weight\n",
|
1070 |
+
"decoder.blocks.7.attn.out.weight 2 (768, 768)\n",
|
1071 |
+
"model.decoder.layers.7.self_attn.out_proj.bias -> decoder.blocks.7.attn.out.bias\n",
|
1072 |
+
"decoder.blocks.7.attn.out.bias 1 (768,)\n",
|
1073 |
+
" Converting to float32\n",
|
1074 |
+
"model.decoder.layers.7.self_attn_layer_norm.weight -> decoder.blocks.7.attn_ln.weight\n",
|
1075 |
+
"decoder.blocks.7.attn_ln.weight 1 (768,)\n",
|
1076 |
+
" Converting to float32\n",
|
1077 |
+
"model.decoder.layers.7.self_attn_layer_norm.bias -> decoder.blocks.7.attn_ln.bias\n",
|
1078 |
+
"decoder.blocks.7.attn_ln.bias 1 (768,)\n",
|
1079 |
+
" Converting to float32\n",
|
1080 |
+
"model.decoder.layers.7.encoder_attn.k_proj.weight -> decoder.blocks.7.cross_attn.key.weight\n",
|
1081 |
+
"decoder.blocks.7.cross_attn.key.weight 2 (768, 768)\n",
|
1082 |
+
"model.decoder.layers.7.encoder_attn.v_proj.weight -> decoder.blocks.7.cross_attn.value.weight\n",
|
1083 |
+
"decoder.blocks.7.cross_attn.value.weight 2 (768, 768)\n",
|
1084 |
+
"model.decoder.layers.7.encoder_attn.v_proj.bias -> decoder.blocks.7.cross_attn.value.bias\n",
|
1085 |
+
"decoder.blocks.7.cross_attn.value.bias 1 (768,)\n",
|
1086 |
+
" Converting to float32\n",
|
1087 |
+
"model.decoder.layers.7.encoder_attn.q_proj.weight -> decoder.blocks.7.cross_attn.query.weight\n",
|
1088 |
+
"decoder.blocks.7.cross_attn.query.weight 2 (768, 768)\n",
|
1089 |
+
"model.decoder.layers.7.encoder_attn.q_proj.bias -> decoder.blocks.7.cross_attn.query.bias\n",
|
1090 |
+
"decoder.blocks.7.cross_attn.query.bias 1 (768,)\n",
|
1091 |
+
" Converting to float32\n",
|
1092 |
+
"model.decoder.layers.7.encoder_attn.out_proj.weight -> decoder.blocks.7.cross_attn.out.weight\n",
|
1093 |
+
"decoder.blocks.7.cross_attn.out.weight 2 (768, 768)\n",
|
1094 |
+
"model.decoder.layers.7.encoder_attn.out_proj.bias -> decoder.blocks.7.cross_attn.out.bias\n",
|
1095 |
+
"decoder.blocks.7.cross_attn.out.bias 1 (768,)\n",
|
1096 |
+
" Converting to float32\n",
|
1097 |
+
"model.decoder.layers.7.encoder_attn_layer_norm.weight -> decoder.blocks.7.cross_attn_ln.weight\n",
|
1098 |
+
"decoder.blocks.7.cross_attn_ln.weight 1 (768,)\n",
|
1099 |
+
" Converting to float32\n",
|
1100 |
+
"model.decoder.layers.7.encoder_attn_layer_norm.bias -> decoder.blocks.7.cross_attn_ln.bias\n",
|
1101 |
+
"decoder.blocks.7.cross_attn_ln.bias 1 (768,)\n",
|
1102 |
+
" Converting to float32\n",
|
1103 |
+
"model.decoder.layers.7.fc1.weight -> decoder.blocks.7.mlp.0.weight\n",
|
1104 |
+
"decoder.blocks.7.mlp.0.weight 2 (3072, 768)\n",
|
1105 |
+
"model.decoder.layers.7.fc1.bias -> decoder.blocks.7.mlp.0.bias\n",
|
1106 |
+
"decoder.blocks.7.mlp.0.bias 1 (3072,)\n",
|
1107 |
+
" Converting to float32\n",
|
1108 |
+
"model.decoder.layers.7.fc2.weight -> decoder.blocks.7.mlp.2.weight\n",
|
1109 |
+
"decoder.blocks.7.mlp.2.weight 2 (768, 3072)\n",
|
1110 |
+
"model.decoder.layers.7.fc2.bias -> decoder.blocks.7.mlp.2.bias\n",
|
1111 |
+
"decoder.blocks.7.mlp.2.bias 1 (768,)\n",
|
1112 |
+
" Converting to float32\n",
|
1113 |
+
"model.decoder.layers.7.final_layer_norm.weight -> decoder.blocks.7.mlp_ln.weight\n",
|
1114 |
+
"decoder.blocks.7.mlp_ln.weight 1 (768,)\n",
|
1115 |
+
" Converting to float32\n",
|
1116 |
+
"model.decoder.layers.7.final_layer_norm.bias -> decoder.blocks.7.mlp_ln.bias\n",
|
1117 |
+
"decoder.blocks.7.mlp_ln.bias 1 (768,)\n",
|
1118 |
+
" Converting to float32\n",
|
1119 |
+
"model.decoder.layers.8.self_attn.k_proj.weight -> decoder.blocks.8.attn.key.weight\n",
|
1120 |
+
"decoder.blocks.8.attn.key.weight 2 (768, 768)\n",
|
1121 |
+
"model.decoder.layers.8.self_attn.v_proj.weight -> decoder.blocks.8.attn.value.weight\n",
|
1122 |
+
"decoder.blocks.8.attn.value.weight 2 (768, 768)\n",
|
1123 |
+
"model.decoder.layers.8.self_attn.v_proj.bias -> decoder.blocks.8.attn.value.bias\n",
|
1124 |
+
"decoder.blocks.8.attn.value.bias 1 (768,)\n",
|
1125 |
+
" Converting to float32\n",
|
1126 |
+
"model.decoder.layers.8.self_attn.q_proj.weight -> decoder.blocks.8.attn.query.weight\n",
|
1127 |
+
"decoder.blocks.8.attn.query.weight 2 (768, 768)\n",
|
1128 |
+
"model.decoder.layers.8.self_attn.q_proj.bias -> decoder.blocks.8.attn.query.bias\n",
|
1129 |
+
"decoder.blocks.8.attn.query.bias 1 (768,)\n",
|
1130 |
+
" Converting to float32\n",
|
1131 |
+
"model.decoder.layers.8.self_attn.out_proj.weight -> decoder.blocks.8.attn.out.weight\n",
|
1132 |
+
"decoder.blocks.8.attn.out.weight 2 (768, 768)\n",
|
1133 |
+
"model.decoder.layers.8.self_attn.out_proj.bias -> decoder.blocks.8.attn.out.bias\n",
|
1134 |
+
"decoder.blocks.8.attn.out.bias 1 (768,)\n",
|
1135 |
+
" Converting to float32\n",
|
1136 |
+
"model.decoder.layers.8.self_attn_layer_norm.weight -> decoder.blocks.8.attn_ln.weight\n",
|
1137 |
+
"decoder.blocks.8.attn_ln.weight 1 (768,)\n",
|
1138 |
+
" Converting to float32\n",
|
1139 |
+
"model.decoder.layers.8.self_attn_layer_norm.bias -> decoder.blocks.8.attn_ln.bias\n",
|
1140 |
+
"decoder.blocks.8.attn_ln.bias 1 (768,)\n",
|
1141 |
+
" Converting to float32\n",
|
1142 |
+
"model.decoder.layers.8.encoder_attn.k_proj.weight -> decoder.blocks.8.cross_attn.key.weight\n",
|
1143 |
+
"decoder.blocks.8.cross_attn.key.weight 2 (768, 768)\n",
|
1144 |
+
"model.decoder.layers.8.encoder_attn.v_proj.weight -> decoder.blocks.8.cross_attn.value.weight\n",
|
1145 |
+
"decoder.blocks.8.cross_attn.value.weight 2 (768, 768)\n",
|
1146 |
+
"model.decoder.layers.8.encoder_attn.v_proj.bias -> decoder.blocks.8.cross_attn.value.bias\n",
|
1147 |
+
"decoder.blocks.8.cross_attn.value.bias 1 (768,)\n",
|
1148 |
+
" Converting to float32\n",
|
1149 |
+
"model.decoder.layers.8.encoder_attn.q_proj.weight -> decoder.blocks.8.cross_attn.query.weight\n",
|
1150 |
+
"decoder.blocks.8.cross_attn.query.weight 2 (768, 768)\n",
|
1151 |
+
"model.decoder.layers.8.encoder_attn.q_proj.bias -> decoder.blocks.8.cross_attn.query.bias\n",
|
1152 |
+
"decoder.blocks.8.cross_attn.query.bias 1 (768,)\n",
|
1153 |
+
" Converting to float32\n",
|
1154 |
+
"model.decoder.layers.8.encoder_attn.out_proj.weight -> decoder.blocks.8.cross_attn.out.weight\n",
|
1155 |
+
"decoder.blocks.8.cross_attn.out.weight 2 (768, 768)\n",
|
1156 |
+
"model.decoder.layers.8.encoder_attn.out_proj.bias -> decoder.blocks.8.cross_attn.out.bias\n",
|
1157 |
+
"decoder.blocks.8.cross_attn.out.bias 1 (768,)\n",
|
1158 |
+
" Converting to float32\n",
|
1159 |
+
"model.decoder.layers.8.encoder_attn_layer_norm.weight -> decoder.blocks.8.cross_attn_ln.weight\n",
|
1160 |
+
"decoder.blocks.8.cross_attn_ln.weight 1 (768,)\n",
|
1161 |
+
" Converting to float32\n",
|
1162 |
+
"model.decoder.layers.8.encoder_attn_layer_norm.bias -> decoder.blocks.8.cross_attn_ln.bias\n",
|
1163 |
+
"decoder.blocks.8.cross_attn_ln.bias 1 (768,)\n",
|
1164 |
+
" Converting to float32\n",
|
1165 |
+
"model.decoder.layers.8.fc1.weight -> decoder.blocks.8.mlp.0.weight\n",
|
1166 |
+
"decoder.blocks.8.mlp.0.weight 2 (3072, 768)\n",
|
1167 |
+
"model.decoder.layers.8.fc1.bias -> decoder.blocks.8.mlp.0.bias\n",
|
1168 |
+
"decoder.blocks.8.mlp.0.bias 1 (3072,)\n",
|
1169 |
+
" Converting to float32\n",
|
1170 |
+
"model.decoder.layers.8.fc2.weight -> decoder.blocks.8.mlp.2.weight\n",
|
1171 |
+
"decoder.blocks.8.mlp.2.weight 2 (768, 3072)\n",
|
1172 |
+
"model.decoder.layers.8.fc2.bias -> decoder.blocks.8.mlp.2.bias\n",
|
1173 |
+
"decoder.blocks.8.mlp.2.bias 1 (768,)\n",
|
1174 |
+
" Converting to float32\n",
|
1175 |
+
"model.decoder.layers.8.final_layer_norm.weight -> decoder.blocks.8.mlp_ln.weight\n",
|
1176 |
+
"decoder.blocks.8.mlp_ln.weight 1 (768,)\n",
|
1177 |
+
" Converting to float32\n",
|
1178 |
+
"model.decoder.layers.8.final_layer_norm.bias -> decoder.blocks.8.mlp_ln.bias\n",
|
1179 |
+
"decoder.blocks.8.mlp_ln.bias 1 (768,)\n",
|
1180 |
+
" Converting to float32\n",
|
1181 |
+
"model.decoder.layers.9.self_attn.k_proj.weight -> decoder.blocks.9.attn.key.weight\n",
|
1182 |
+
"decoder.blocks.9.attn.key.weight 2 (768, 768)\n",
|
1183 |
+
"model.decoder.layers.9.self_attn.v_proj.weight -> decoder.blocks.9.attn.value.weight\n",
|
1184 |
+
"decoder.blocks.9.attn.value.weight 2 (768, 768)\n",
|
1185 |
+
"model.decoder.layers.9.self_attn.v_proj.bias -> decoder.blocks.9.attn.value.bias\n",
|
1186 |
+
"decoder.blocks.9.attn.value.bias 1 (768,)\n",
|
1187 |
+
" Converting to float32\n",
|
1188 |
+
"model.decoder.layers.9.self_attn.q_proj.weight -> decoder.blocks.9.attn.query.weight\n",
|
1189 |
+
"decoder.blocks.9.attn.query.weight 2 (768, 768)\n",
|
1190 |
+
"model.decoder.layers.9.self_attn.q_proj.bias -> decoder.blocks.9.attn.query.bias\n",
|
1191 |
+
"decoder.blocks.9.attn.query.bias 1 (768,)\n",
|
1192 |
+
" Converting to float32\n",
|
1193 |
+
"model.decoder.layers.9.self_attn.out_proj.weight -> decoder.blocks.9.attn.out.weight\n",
|
1194 |
+
"decoder.blocks.9.attn.out.weight 2 (768, 768)\n",
|
1195 |
+
"model.decoder.layers.9.self_attn.out_proj.bias -> decoder.blocks.9.attn.out.bias\n",
|
1196 |
+
"decoder.blocks.9.attn.out.bias 1 (768,)\n",
|
1197 |
+
" Converting to float32\n",
|
1198 |
+
"model.decoder.layers.9.self_attn_layer_norm.weight -> decoder.blocks.9.attn_ln.weight\n",
|
1199 |
+
"decoder.blocks.9.attn_ln.weight 1 (768,)\n",
|
1200 |
+
" Converting to float32\n",
|
1201 |
+
"model.decoder.layers.9.self_attn_layer_norm.bias -> decoder.blocks.9.attn_ln.bias\n",
|
1202 |
+
"decoder.blocks.9.attn_ln.bias 1 (768,)\n",
|
1203 |
+
" Converting to float32\n",
|
1204 |
+
"model.decoder.layers.9.encoder_attn.k_proj.weight -> decoder.blocks.9.cross_attn.key.weight\n",
|
1205 |
+
"decoder.blocks.9.cross_attn.key.weight 2 (768, 768)\n",
|
1206 |
+
"model.decoder.layers.9.encoder_attn.v_proj.weight -> decoder.blocks.9.cross_attn.value.weight\n",
|
1207 |
+
"decoder.blocks.9.cross_attn.value.weight 2 (768, 768)\n",
|
1208 |
+
"model.decoder.layers.9.encoder_attn.v_proj.bias -> decoder.blocks.9.cross_attn.value.bias\n",
|
1209 |
+
"decoder.blocks.9.cross_attn.value.bias 1 (768,)\n",
|
1210 |
+
" Converting to float32\n",
|
1211 |
+
"model.decoder.layers.9.encoder_attn.q_proj.weight -> decoder.blocks.9.cross_attn.query.weight\n",
|
1212 |
+
"decoder.blocks.9.cross_attn.query.weight 2 (768, 768)\n",
|
1213 |
+
"model.decoder.layers.9.encoder_attn.q_proj.bias -> decoder.blocks.9.cross_attn.query.bias\n",
|
1214 |
+
"decoder.blocks.9.cross_attn.query.bias 1 (768,)\n",
|
1215 |
+
" Converting to float32\n",
|
1216 |
+
"model.decoder.layers.9.encoder_attn.out_proj.weight -> decoder.blocks.9.cross_attn.out.weight\n",
|
1217 |
+
"decoder.blocks.9.cross_attn.out.weight 2 (768, 768)\n",
|
1218 |
+
"model.decoder.layers.9.encoder_attn.out_proj.bias -> decoder.blocks.9.cross_attn.out.bias\n",
|
1219 |
+
"decoder.blocks.9.cross_attn.out.bias 1 (768,)\n",
|
1220 |
+
" Converting to float32\n",
|
1221 |
+
"model.decoder.layers.9.encoder_attn_layer_norm.weight -> decoder.blocks.9.cross_attn_ln.weight\n",
|
1222 |
+
"decoder.blocks.9.cross_attn_ln.weight 1 (768,)\n",
|
1223 |
+
" Converting to float32\n",
|
1224 |
+
"model.decoder.layers.9.encoder_attn_layer_norm.bias -> decoder.blocks.9.cross_attn_ln.bias\n",
|
1225 |
+
"decoder.blocks.9.cross_attn_ln.bias 1 (768,)\n",
|
1226 |
+
" Converting to float32\n",
|
1227 |
+
"model.decoder.layers.9.fc1.weight -> decoder.blocks.9.mlp.0.weight\n",
|
1228 |
+
"decoder.blocks.9.mlp.0.weight 2 (3072, 768)\n",
|
1229 |
+
"model.decoder.layers.9.fc1.bias -> decoder.blocks.9.mlp.0.bias\n",
|
1230 |
+
"decoder.blocks.9.mlp.0.bias 1 (3072,)\n",
|
1231 |
+
" Converting to float32\n",
|
1232 |
+
"model.decoder.layers.9.fc2.weight -> decoder.blocks.9.mlp.2.weight\n",
|
1233 |
+
"decoder.blocks.9.mlp.2.weight 2 (768, 3072)\n",
|
1234 |
+
"model.decoder.layers.9.fc2.bias -> decoder.blocks.9.mlp.2.bias\n",
|
1235 |
+
"decoder.blocks.9.mlp.2.bias 1 (768,)\n",
|
1236 |
+
" Converting to float32\n",
|
1237 |
+
"model.decoder.layers.9.final_layer_norm.weight -> decoder.blocks.9.mlp_ln.weight\n",
|
1238 |
+
"decoder.blocks.9.mlp_ln.weight 1 (768,)\n",
|
1239 |
+
" Converting to float32\n",
|
1240 |
+
"model.decoder.layers.9.final_layer_norm.bias -> decoder.blocks.9.mlp_ln.bias\n",
|
1241 |
+
"decoder.blocks.9.mlp_ln.bias 1 (768,)\n",
|
1242 |
+
" Converting to float32\n",
|
1243 |
+
"model.decoder.layers.10.self_attn.k_proj.weight -> decoder.blocks.10.attn.key.weight\n",
|
1244 |
+
"decoder.blocks.10.attn.key.weight 2 (768, 768)\n",
|
1245 |
+
"model.decoder.layers.10.self_attn.v_proj.weight -> decoder.blocks.10.attn.value.weight\n",
|
1246 |
+
"decoder.blocks.10.attn.value.weight 2 (768, 768)\n",
|
1247 |
+
"model.decoder.layers.10.self_attn.v_proj.bias -> decoder.blocks.10.attn.value.bias\n",
|
1248 |
+
"decoder.blocks.10.attn.value.bias 1 (768,)\n",
|
1249 |
+
" Converting to float32\n",
|
1250 |
+
"model.decoder.layers.10.self_attn.q_proj.weight -> decoder.blocks.10.attn.query.weight\n",
|
1251 |
+
"decoder.blocks.10.attn.query.weight 2 (768, 768)\n",
|
1252 |
+
"model.decoder.layers.10.self_attn.q_proj.bias -> decoder.blocks.10.attn.query.bias\n",
|
1253 |
+
"decoder.blocks.10.attn.query.bias 1 (768,)\n",
|
1254 |
+
" Converting to float32\n",
|
1255 |
+
"model.decoder.layers.10.self_attn.out_proj.weight -> decoder.blocks.10.attn.out.weight\n",
|
1256 |
+
"decoder.blocks.10.attn.out.weight 2 (768, 768)\n",
|
1257 |
+
"model.decoder.layers.10.self_attn.out_proj.bias -> decoder.blocks.10.attn.out.bias\n",
|
1258 |
+
"decoder.blocks.10.attn.out.bias 1 (768,)\n",
|
1259 |
+
" Converting to float32\n",
|
1260 |
+
"model.decoder.layers.10.self_attn_layer_norm.weight -> decoder.blocks.10.attn_ln.weight\n",
|
1261 |
+
"decoder.blocks.10.attn_ln.weight 1 (768,)\n",
|
1262 |
+
" Converting to float32\n",
|
1263 |
+
"model.decoder.layers.10.self_attn_layer_norm.bias -> decoder.blocks.10.attn_ln.bias\n",
|
1264 |
+
"decoder.blocks.10.attn_ln.bias 1 (768,)\n",
|
1265 |
+
" Converting to float32\n",
|
1266 |
+
"model.decoder.layers.10.encoder_attn.k_proj.weight -> decoder.blocks.10.cross_attn.key.weight\n",
|
1267 |
+
"decoder.blocks.10.cross_attn.key.weight 2 (768, 768)\n",
|
1268 |
+
"model.decoder.layers.10.encoder_attn.v_proj.weight -> decoder.blocks.10.cross_attn.value.weight\n",
|
1269 |
+
"decoder.blocks.10.cross_attn.value.weight 2 (768, 768)\n",
|
1270 |
+
"model.decoder.layers.10.encoder_attn.v_proj.bias -> decoder.blocks.10.cross_attn.value.bias\n",
|
1271 |
+
"decoder.blocks.10.cross_attn.value.bias 1 (768,)\n",
|
1272 |
+
" Converting to float32\n",
|
1273 |
+
"model.decoder.layers.10.encoder_attn.q_proj.weight -> decoder.blocks.10.cross_attn.query.weight\n",
|
1274 |
+
"decoder.blocks.10.cross_attn.query.weight 2 (768, 768)\n",
|
1275 |
+
"model.decoder.layers.10.encoder_attn.q_proj.bias -> decoder.blocks.10.cross_attn.query.bias\n",
|
1276 |
+
"decoder.blocks.10.cross_attn.query.bias 1 (768,)\n",
|
1277 |
+
" Converting to float32\n",
|
1278 |
+
"model.decoder.layers.10.encoder_attn.out_proj.weight -> decoder.blocks.10.cross_attn.out.weight\n",
|
1279 |
+
"decoder.blocks.10.cross_attn.out.weight 2 (768, 768)\n",
|
1280 |
+
"model.decoder.layers.10.encoder_attn.out_proj.bias -> decoder.blocks.10.cross_attn.out.bias\n",
|
1281 |
+
"decoder.blocks.10.cross_attn.out.bias 1 (768,)\n",
|
1282 |
+
" Converting to float32\n",
|
1283 |
+
"model.decoder.layers.10.encoder_attn_layer_norm.weight -> decoder.blocks.10.cross_attn_ln.weight\n",
|
1284 |
+
"decoder.blocks.10.cross_attn_ln.weight 1 (768,)\n",
|
1285 |
+
" Converting to float32\n",
|
1286 |
+
"model.decoder.layers.10.encoder_attn_layer_norm.bias -> decoder.blocks.10.cross_attn_ln.bias\n",
|
1287 |
+
"decoder.blocks.10.cross_attn_ln.bias 1 (768,)\n",
|
1288 |
+
" Converting to float32\n",
|
1289 |
+
"model.decoder.layers.10.fc1.weight -> decoder.blocks.10.mlp.0.weight\n",
|
1290 |
+
"decoder.blocks.10.mlp.0.weight 2 (3072, 768)\n",
|
1291 |
+
"model.decoder.layers.10.fc1.bias -> decoder.blocks.10.mlp.0.bias\n",
|
1292 |
+
"decoder.blocks.10.mlp.0.bias 1 (3072,)\n",
|
1293 |
+
" Converting to float32\n",
|
1294 |
+
"model.decoder.layers.10.fc2.weight -> decoder.blocks.10.mlp.2.weight\n",
|
1295 |
+
"decoder.blocks.10.mlp.2.weight 2 (768, 3072)\n",
|
1296 |
+
"model.decoder.layers.10.fc2.bias -> decoder.blocks.10.mlp.2.bias\n",
|
1297 |
+
"decoder.blocks.10.mlp.2.bias 1 (768,)\n",
|
1298 |
+
" Converting to float32\n",
|
1299 |
+
"model.decoder.layers.10.final_layer_norm.weight -> decoder.blocks.10.mlp_ln.weight\n",
|
1300 |
+
"decoder.blocks.10.mlp_ln.weight 1 (768,)\n",
|
1301 |
+
" Converting to float32\n",
|
1302 |
+
"model.decoder.layers.10.final_layer_norm.bias -> decoder.blocks.10.mlp_ln.bias\n",
|
1303 |
+
"decoder.blocks.10.mlp_ln.bias 1 (768,)\n",
|
1304 |
+
" Converting to float32\n",
|
1305 |
+
"model.decoder.layers.11.self_attn.k_proj.weight -> decoder.blocks.11.attn.key.weight\n",
|
1306 |
+
"decoder.blocks.11.attn.key.weight 2 (768, 768)\n",
|
1307 |
+
"model.decoder.layers.11.self_attn.v_proj.weight -> decoder.blocks.11.attn.value.weight\n",
|
1308 |
+
"decoder.blocks.11.attn.value.weight 2 (768, 768)\n",
|
1309 |
+
"model.decoder.layers.11.self_attn.v_proj.bias -> decoder.blocks.11.attn.value.bias\n",
|
1310 |
+
"decoder.blocks.11.attn.value.bias 1 (768,)\n",
|
1311 |
+
" Converting to float32\n",
|
1312 |
+
"model.decoder.layers.11.self_attn.q_proj.weight -> decoder.blocks.11.attn.query.weight\n",
|
1313 |
+
"decoder.blocks.11.attn.query.weight 2 (768, 768)\n",
|
1314 |
+
"model.decoder.layers.11.self_attn.q_proj.bias -> decoder.blocks.11.attn.query.bias\n",
|
1315 |
+
"decoder.blocks.11.attn.query.bias 1 (768,)\n",
|
1316 |
+
" Converting to float32\n",
|
1317 |
+
"model.decoder.layers.11.self_attn.out_proj.weight -> decoder.blocks.11.attn.out.weight\n",
|
1318 |
+
"decoder.blocks.11.attn.out.weight 2 (768, 768)\n",
|
1319 |
+
"model.decoder.layers.11.self_attn.out_proj.bias -> decoder.blocks.11.attn.out.bias\n",
|
1320 |
+
"decoder.blocks.11.attn.out.bias 1 (768,)\n",
|
1321 |
+
" Converting to float32\n",
|
1322 |
+
"model.decoder.layers.11.self_attn_layer_norm.weight -> decoder.blocks.11.attn_ln.weight\n",
|
1323 |
+
"decoder.blocks.11.attn_ln.weight 1 (768,)\n",
|
1324 |
+
" Converting to float32\n",
|
1325 |
+
"model.decoder.layers.11.self_attn_layer_norm.bias -> decoder.blocks.11.attn_ln.bias\n",
|
1326 |
+
"decoder.blocks.11.attn_ln.bias 1 (768,)\n",
|
1327 |
+
" Converting to float32\n",
|
1328 |
+
"model.decoder.layers.11.encoder_attn.k_proj.weight -> decoder.blocks.11.cross_attn.key.weight\n",
|
1329 |
+
"decoder.blocks.11.cross_attn.key.weight 2 (768, 768)\n",
|
1330 |
+
"model.decoder.layers.11.encoder_attn.v_proj.weight -> decoder.blocks.11.cross_attn.value.weight\n",
|
1331 |
+
"decoder.blocks.11.cross_attn.value.weight 2 (768, 768)\n",
|
1332 |
+
"model.decoder.layers.11.encoder_attn.v_proj.bias -> decoder.blocks.11.cross_attn.value.bias\n",
|
1333 |
+
"decoder.blocks.11.cross_attn.value.bias 1 (768,)\n",
|
1334 |
+
" Converting to float32\n",
|
1335 |
+
"model.decoder.layers.11.encoder_attn.q_proj.weight -> decoder.blocks.11.cross_attn.query.weight\n",
|
1336 |
+
"decoder.blocks.11.cross_attn.query.weight 2 (768, 768)\n",
|
1337 |
+
"model.decoder.layers.11.encoder_attn.q_proj.bias -> decoder.blocks.11.cross_attn.query.bias\n",
|
1338 |
+
"decoder.blocks.11.cross_attn.query.bias 1 (768,)\n",
|
1339 |
+
" Converting to float32\n",
|
1340 |
+
"model.decoder.layers.11.encoder_attn.out_proj.weight -> decoder.blocks.11.cross_attn.out.weight\n",
|
1341 |
+
"decoder.blocks.11.cross_attn.out.weight 2 (768, 768)\n",
|
1342 |
+
"model.decoder.layers.11.encoder_attn.out_proj.bias -> decoder.blocks.11.cross_attn.out.bias\n",
|
1343 |
+
"decoder.blocks.11.cross_attn.out.bias 1 (768,)\n",
|
1344 |
+
" Converting to float32\n",
|
1345 |
+
"model.decoder.layers.11.encoder_attn_layer_norm.weight -> decoder.blocks.11.cross_attn_ln.weight\n",
|
1346 |
+
"decoder.blocks.11.cross_attn_ln.weight 1 (768,)\n",
|
1347 |
+
" Converting to float32\n",
|
1348 |
+
"model.decoder.layers.11.encoder_attn_layer_norm.bias -> decoder.blocks.11.cross_attn_ln.bias\n",
|
1349 |
+
"decoder.blocks.11.cross_attn_ln.bias 1 (768,)\n",
|
1350 |
+
" Converting to float32\n",
|
1351 |
+
"model.decoder.layers.11.fc1.weight -> decoder.blocks.11.mlp.0.weight\n",
|
1352 |
+
"decoder.blocks.11.mlp.0.weight 2 (3072, 768)\n",
|
1353 |
+
"model.decoder.layers.11.fc1.bias -> decoder.blocks.11.mlp.0.bias\n",
|
1354 |
+
"decoder.blocks.11.mlp.0.bias 1 (3072,)\n",
|
1355 |
+
" Converting to float32\n",
|
1356 |
+
"model.decoder.layers.11.fc2.weight -> decoder.blocks.11.mlp.2.weight\n",
|
1357 |
+
"decoder.blocks.11.mlp.2.weight 2 (768, 3072)\n",
|
1358 |
+
"model.decoder.layers.11.fc2.bias -> decoder.blocks.11.mlp.2.bias\n",
|
1359 |
+
"decoder.blocks.11.mlp.2.bias 1 (768,)\n",
|
1360 |
+
" Converting to float32\n",
|
1361 |
+
"model.decoder.layers.11.final_layer_norm.weight -> decoder.blocks.11.mlp_ln.weight\n",
|
1362 |
+
"decoder.blocks.11.mlp_ln.weight 1 (768,)\n",
|
1363 |
+
" Converting to float32\n",
|
1364 |
+
"model.decoder.layers.11.final_layer_norm.bias -> decoder.blocks.11.mlp_ln.bias\n",
|
1365 |
+
"decoder.blocks.11.mlp_ln.bias 1 (768,)\n",
|
1366 |
+
" Converting to float32\n",
|
1367 |
+
"model.decoder.layer_norm.weight -> decoder.ln.weight\n",
|
1368 |
+
"decoder.ln.weight 1 (768,)\n",
|
1369 |
+
" Converting to float32\n",
|
1370 |
+
"model.decoder.layer_norm.bias -> decoder.ln.bias\n",
|
1371 |
+
"decoder.ln.bias 1 (768,)\n",
|
1372 |
+
" Converting to float32\n",
|
1373 |
+
"Skipping proj_out.weight\n",
|
1374 |
+
"Done. Output file: ./ggml-model.bin\n",
|
1375 |
+
"\n"
|
1376 |
+
]
|
1377 |
+
}
|
1378 |
+
]
|
1379 |
+
}
|
1380 |
+
]
|
1381 |
+
}
|
added_tokens.json
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|af|>": 50327,
|
3 |
+
"<|am|>": 50334,
|
4 |
+
"<|ar|>": 50272,
|
5 |
+
"<|as|>": 50350,
|
6 |
+
"<|az|>": 50304,
|
7 |
+
"<|ba|>": 50355,
|
8 |
+
"<|be|>": 50330,
|
9 |
+
"<|bg|>": 50292,
|
10 |
+
"<|bn|>": 50302,
|
11 |
+
"<|bo|>": 50347,
|
12 |
+
"<|br|>": 50309,
|
13 |
+
"<|bs|>": 50315,
|
14 |
+
"<|ca|>": 50270,
|
15 |
+
"<|cs|>": 50283,
|
16 |
+
"<|cy|>": 50297,
|
17 |
+
"<|da|>": 50285,
|
18 |
+
"<|de|>": 50261,
|
19 |
+
"<|el|>": 50281,
|
20 |
+
"<|en|>": 50259,
|
21 |
+
"<|es|>": 50262,
|
22 |
+
"<|et|>": 50307,
|
23 |
+
"<|eu|>": 50310,
|
24 |
+
"<|fa|>": 50300,
|
25 |
+
"<|fi|>": 50277,
|
26 |
+
"<|fo|>": 50338,
|
27 |
+
"<|fr|>": 50265,
|
28 |
+
"<|gl|>": 50319,
|
29 |
+
"<|gu|>": 50333,
|
30 |
+
"<|haw|>": 50352,
|
31 |
+
"<|ha|>": 50354,
|
32 |
+
"<|he|>": 50279,
|
33 |
+
"<|hi|>": 50276,
|
34 |
+
"<|hr|>": 50291,
|
35 |
+
"<|ht|>": 50339,
|
36 |
+
"<|hu|>": 50286,
|
37 |
+
"<|hy|>": 50312,
|
38 |
+
"<|id|>": 50275,
|
39 |
+
"<|is|>": 50311,
|
40 |
+
"<|it|>": 50274,
|
41 |
+
"<|ja|>": 50266,
|
42 |
+
"<|jw|>": 50356,
|
43 |
+
"<|ka|>": 50329,
|
44 |
+
"<|kk|>": 50316,
|
45 |
+
"<|km|>": 50323,
|
46 |
+
"<|kn|>": 50306,
|
47 |
+
"<|ko|>": 50264,
|
48 |
+
"<|la|>": 50294,
|
49 |
+
"<|lb|>": 50345,
|
50 |
+
"<|ln|>": 50353,
|
51 |
+
"<|lo|>": 50336,
|
52 |
+
"<|lt|>": 50293,
|
53 |
+
"<|lv|>": 50301,
|
54 |
+
"<|mg|>": 50349,
|
55 |
+
"<|mi|>": 50295,
|
56 |
+
"<|mk|>": 50308,
|
57 |
+
"<|ml|>": 50296,
|
58 |
+
"<|mn|>": 50314,
|
59 |
+
"<|mr|>": 50320,
|
60 |
+
"<|ms|>": 50282,
|
61 |
+
"<|mt|>": 50343,
|
62 |
+
"<|my|>": 50346,
|
63 |
+
"<|ne|>": 50313,
|
64 |
+
"<|nl|>": 50271,
|
65 |
+
"<|nn|>": 50342,
|
66 |
+
"<|nocaptions|>": 50362,
|
67 |
+
"<|notimestamps|>": 50363,
|
68 |
+
"<|no|>": 50288,
|
69 |
+
"<|oc|>": 50328,
|
70 |
+
"<|pa|>": 50321,
|
71 |
+
"<|pl|>": 50269,
|
72 |
+
"<|ps|>": 50340,
|
73 |
+
"<|pt|>": 50267,
|
74 |
+
"<|ro|>": 50284,
|
75 |
+
"<|ru|>": 50263,
|
76 |
+
"<|sa|>": 50344,
|
77 |
+
"<|sd|>": 50332,
|
78 |
+
"<|si|>": 50322,
|
79 |
+
"<|sk|>": 50298,
|
80 |
+
"<|sl|>": 50305,
|
81 |
+
"<|sn|>": 50324,
|
82 |
+
"<|so|>": 50326,
|
83 |
+
"<|sq|>": 50317,
|
84 |
+
"<|sr|>": 50303,
|
85 |
+
"<|startoflm|>": 50360,
|
86 |
+
"<|startofprev|>": 50361,
|
87 |
+
"<|startoftranscript|>": 50258,
|
88 |
+
"<|su|>": 50357,
|
89 |
+
"<|sv|>": 50273,
|
90 |
+
"<|sw|>": 50318,
|
91 |
+
"<|ta|>": 50287,
|
92 |
+
"<|te|>": 50299,
|
93 |
+
"<|tg|>": 50331,
|
94 |
+
"<|th|>": 50289,
|
95 |
+
"<|tk|>": 50341,
|
96 |
+
"<|tl|>": 50348,
|
97 |
+
"<|transcribe|>": 50359,
|
98 |
+
"<|translate|>": 50358,
|
99 |
+
"<|tr|>": 50268,
|
100 |
+
"<|tt|>": 50351,
|
101 |
+
"<|uk|>": 50280,
|
102 |
+
"<|ur|>": 50290,
|
103 |
+
"<|uz|>": 50337,
|
104 |
+
"<|vi|>": 50278,
|
105 |
+
"<|yi|>": 50335,
|
106 |
+
"<|yo|>": 50325,
|
107 |
+
"<|zh|>": 50260
|
108 |
+
}
|
all_results.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 12.01,
|
3 |
+
"eval_loss": 0.3812163174152374,
|
4 |
+
"eval_runtime": 951.9575,
|
5 |
+
"eval_samples_per_second": 6.924,
|
6 |
+
"eval_steps_per_second": 0.433,
|
7 |
+
"eval_wer": 18.775568066750374,
|
8 |
+
"train_loss": 0.106446673027426,
|
9 |
+
"train_runtime": 27653.1068,
|
10 |
+
"train_samples_per_second": 5.786,
|
11 |
+
"train_steps_per_second": 0.181
|
12 |
+
}
|
checkpoint-1000/config.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "openai/whisper-medium",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"activation_function": "gelu",
|
5 |
+
"architectures": [
|
6 |
+
"WhisperForConditionalGeneration"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.0,
|
9 |
+
"begin_suppress_tokens": [
|
10 |
+
220,
|
11 |
+
50257
|
12 |
+
],
|
13 |
+
"bos_token_id": 50257,
|
14 |
+
"d_model": 1024,
|
15 |
+
"decoder_attention_heads": 16,
|
16 |
+
"decoder_ffn_dim": 4096,
|
17 |
+
"decoder_layerdrop": 0.0,
|
18 |
+
"decoder_layers": 24,
|
19 |
+
"decoder_start_token_id": 50258,
|
20 |
+
"dropout": 0.0,
|
21 |
+
"encoder_attention_heads": 16,
|
22 |
+
"encoder_ffn_dim": 4096,
|
23 |
+
"encoder_layerdrop": 0.0,
|
24 |
+
"encoder_layers": 24,
|
25 |
+
"eos_token_id": 50257,
|
26 |
+
"forced_decoder_ids": null,
|
27 |
+
"init_std": 0.02,
|
28 |
+
"is_encoder_decoder": true,
|
29 |
+
"max_length": 448,
|
30 |
+
"max_source_positions": 1500,
|
31 |
+
"max_target_positions": 448,
|
32 |
+
"model_type": "whisper",
|
33 |
+
"num_hidden_layers": 24,
|
34 |
+
"num_mel_bins": 80,
|
35 |
+
"pad_token_id": 50257,
|
36 |
+
"scale_embedding": false,
|
37 |
+
"torch_dtype": "float32",
|
38 |
+
"transformers_version": "4.26.0.dev0",
|
39 |
+
"use_cache": false,
|
40 |
+
"vocab_size": 51865
|
41 |
+
}
|
checkpoint-1000/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07ceaafff6dfa572e5b63e54f0d02c51a7f7062534e6b38aa9e601ddb6888a11
|
3 |
+
size 6111428695
|
checkpoint-1000/preprocessor_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-1000/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:85fff927f86a1224f3364d93a1923c8b597b5ae4054ce50e4e6367f876338da3
|
3 |
+
size 3055754841
|
checkpoint-1000/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c457058d9706972e5066ee37d0cdebd1bec14ec4a839fe2833426578f2bc6224
|
3 |
+
size 14575
|
checkpoint-1000/scaler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:15056addf4be2ba630e63bf371888824481831c339ee213b5ce99a63a72cb007
|
3 |
+
size 557
|
checkpoint-1000/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ca970d66f7f07c0e8752869b05b946fd6e8bf2f6a38832ab3db1935c1c221fd
|
3 |
+
size 627
|
checkpoint-1000/trainer_state.json
ADDED
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 28.34865729677184,
|
3 |
+
"best_model_checkpoint": "./checkpoint-1000",
|
4 |
+
"epoch": 0.2,
|
5 |
+
"global_step": 1000,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.01,
|
12 |
+
"learning_rate": 4.6000000000000004e-07,
|
13 |
+
"loss": 1.4182,
|
14 |
+
"step": 25
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.01,
|
18 |
+
"learning_rate": 9.400000000000001e-07,
|
19 |
+
"loss": 1.292,
|
20 |
+
"step": 50
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.01,
|
24 |
+
"learning_rate": 1.44e-06,
|
25 |
+
"loss": 1.0018,
|
26 |
+
"step": 75
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.02,
|
30 |
+
"learning_rate": 1.94e-06,
|
31 |
+
"loss": 0.7765,
|
32 |
+
"step": 100
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.03,
|
36 |
+
"learning_rate": 2.4400000000000004e-06,
|
37 |
+
"loss": 0.7103,
|
38 |
+
"step": 125
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.03,
|
42 |
+
"learning_rate": 2.9400000000000002e-06,
|
43 |
+
"loss": 0.6597,
|
44 |
+
"step": 150
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.04,
|
48 |
+
"learning_rate": 3.44e-06,
|
49 |
+
"loss": 0.6657,
|
50 |
+
"step": 175
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.04,
|
54 |
+
"learning_rate": 3.94e-06,
|
55 |
+
"loss": 0.5853,
|
56 |
+
"step": 200
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.04,
|
60 |
+
"learning_rate": 4.440000000000001e-06,
|
61 |
+
"loss": 0.5273,
|
62 |
+
"step": 225
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.05,
|
66 |
+
"learning_rate": 4.94e-06,
|
67 |
+
"loss": 0.5979,
|
68 |
+
"step": 250
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 0.06,
|
72 |
+
"learning_rate": 5.4400000000000004e-06,
|
73 |
+
"loss": 0.5861,
|
74 |
+
"step": 275
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.06,
|
78 |
+
"learning_rate": 5.94e-06,
|
79 |
+
"loss": 0.5085,
|
80 |
+
"step": 300
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.07,
|
84 |
+
"learning_rate": 6.440000000000001e-06,
|
85 |
+
"loss": 0.4827,
|
86 |
+
"step": 325
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.07,
|
90 |
+
"learning_rate": 6.9400000000000005e-06,
|
91 |
+
"loss": 0.4909,
|
92 |
+
"step": 350
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 0.07,
|
96 |
+
"learning_rate": 7.440000000000001e-06,
|
97 |
+
"loss": 0.4651,
|
98 |
+
"step": 375
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 0.08,
|
102 |
+
"learning_rate": 7.94e-06,
|
103 |
+
"loss": 0.494,
|
104 |
+
"step": 400
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 0.09,
|
108 |
+
"learning_rate": 8.44e-06,
|
109 |
+
"loss": 0.4188,
|
110 |
+
"step": 425
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 0.09,
|
114 |
+
"learning_rate": 8.94e-06,
|
115 |
+
"loss": 0.3849,
|
116 |
+
"step": 450
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.1,
|
120 |
+
"learning_rate": 9.440000000000001e-06,
|
121 |
+
"loss": 0.4577,
|
122 |
+
"step": 475
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.1,
|
126 |
+
"learning_rate": 9.940000000000001e-06,
|
127 |
+
"loss": 0.4415,
|
128 |
+
"step": 500
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.1,
|
132 |
+
"learning_rate": 9.951111111111111e-06,
|
133 |
+
"loss": 0.4615,
|
134 |
+
"step": 525
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 0.11,
|
138 |
+
"learning_rate": 9.895555555555557e-06,
|
139 |
+
"loss": 0.4282,
|
140 |
+
"step": 550
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 0.12,
|
144 |
+
"learning_rate": 9.842222222222223e-06,
|
145 |
+
"loss": 0.4481,
|
146 |
+
"step": 575
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 0.12,
|
150 |
+
"learning_rate": 9.786666666666667e-06,
|
151 |
+
"loss": 0.4441,
|
152 |
+
"step": 600
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 0.12,
|
156 |
+
"learning_rate": 9.731111111111113e-06,
|
157 |
+
"loss": 0.4238,
|
158 |
+
"step": 625
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.13,
|
162 |
+
"learning_rate": 9.675555555555555e-06,
|
163 |
+
"loss": 0.4245,
|
164 |
+
"step": 650
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.14,
|
168 |
+
"learning_rate": 9.620000000000001e-06,
|
169 |
+
"loss": 0.4118,
|
170 |
+
"step": 675
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.14,
|
174 |
+
"learning_rate": 9.564444444444445e-06,
|
175 |
+
"loss": 0.4111,
|
176 |
+
"step": 700
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 0.14,
|
180 |
+
"learning_rate": 9.508888888888889e-06,
|
181 |
+
"loss": 0.3642,
|
182 |
+
"step": 725
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 0.15,
|
186 |
+
"learning_rate": 9.453333333333335e-06,
|
187 |
+
"loss": 0.401,
|
188 |
+
"step": 750
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 0.15,
|
192 |
+
"learning_rate": 9.397777777777779e-06,
|
193 |
+
"loss": 0.3855,
|
194 |
+
"step": 775
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 0.16,
|
198 |
+
"learning_rate": 9.342222222222223e-06,
|
199 |
+
"loss": 0.3668,
|
200 |
+
"step": 800
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.17,
|
204 |
+
"learning_rate": 9.286666666666667e-06,
|
205 |
+
"loss": 0.3794,
|
206 |
+
"step": 825
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.17,
|
210 |
+
"learning_rate": 9.231111111111111e-06,
|
211 |
+
"loss": 0.4296,
|
212 |
+
"step": 850
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.17,
|
216 |
+
"learning_rate": 9.175555555555557e-06,
|
217 |
+
"loss": 0.4003,
|
218 |
+
"step": 875
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 0.18,
|
222 |
+
"learning_rate": 9.12e-06,
|
223 |
+
"loss": 0.374,
|
224 |
+
"step": 900
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 0.18,
|
228 |
+
"learning_rate": 9.064444444444447e-06,
|
229 |
+
"loss": 0.4051,
|
230 |
+
"step": 925
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 0.19,
|
234 |
+
"learning_rate": 9.008888888888889e-06,
|
235 |
+
"loss": 0.3806,
|
236 |
+
"step": 950
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 0.2,
|
240 |
+
"learning_rate": 8.953333333333335e-06,
|
241 |
+
"loss": 0.4161,
|
242 |
+
"step": 975
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 0.2,
|
246 |
+
"learning_rate": 8.897777777777779e-06,
|
247 |
+
"loss": 0.4198,
|
248 |
+
"step": 1000
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.2,
|
252 |
+
"eval_loss": 0.41016528010368347,
|
253 |
+
"eval_runtime": 1788.2777,
|
254 |
+
"eval_samples_per_second": 3.686,
|
255 |
+
"eval_steps_per_second": 0.461,
|
256 |
+
"eval_wer": 28.34865729677184,
|
257 |
+
"step": 1000
|
258 |
+
}
|
259 |
+
],
|
260 |
+
"max_steps": 5000,
|
261 |
+
"num_train_epochs": 9223372036854775807,
|
262 |
+
"total_flos": 4.08241963008e+18,
|
263 |
+
"trial_name": null,
|
264 |
+
"trial_params": null
|
265 |
+
}
|
checkpoint-1000/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d66007a736788880333f143a38bacc2f66a8cab53d5a9aba13249e3048d3a20
|
3 |
+
size 3643
|
checkpoint-2000/config.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "openai/whisper-medium",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"activation_function": "gelu",
|
5 |
+
"architectures": [
|
6 |
+
"WhisperForConditionalGeneration"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.0,
|
9 |
+
"begin_suppress_tokens": [
|
10 |
+
220,
|
11 |
+
50257
|
12 |
+
],
|
13 |
+
"bos_token_id": 50257,
|
14 |
+
"d_model": 1024,
|
15 |
+
"decoder_attention_heads": 16,
|
16 |
+
"decoder_ffn_dim": 4096,
|
17 |
+
"decoder_layerdrop": 0.0,
|
18 |
+
"decoder_layers": 24,
|
19 |
+
"decoder_start_token_id": 50258,
|
20 |
+
"dropout": 0.0,
|
21 |
+
"encoder_attention_heads": 16,
|
22 |
+
"encoder_ffn_dim": 4096,
|
23 |
+
"encoder_layerdrop": 0.0,
|
24 |
+
"encoder_layers": 24,
|
25 |
+
"eos_token_id": 50257,
|
26 |
+
"forced_decoder_ids": null,
|
27 |
+
"init_std": 0.02,
|
28 |
+
"is_encoder_decoder": true,
|
29 |
+
"max_length": 448,
|
30 |
+
"max_source_positions": 1500,
|
31 |
+
"max_target_positions": 448,
|
32 |
+
"model_type": "whisper",
|
33 |
+
"num_hidden_layers": 24,
|
34 |
+
"num_mel_bins": 80,
|
35 |
+
"pad_token_id": 50257,
|
36 |
+
"scale_embedding": false,
|
37 |
+
"torch_dtype": "float32",
|
38 |
+
"transformers_version": "4.26.0.dev0",
|
39 |
+
"use_cache": false,
|
40 |
+
"vocab_size": 51865
|
41 |
+
}
|
checkpoint-2000/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8033f291a3607a20baa0f14e1ab9f8075d4e6ef533973c18faad72bc1e5ba3db
|
3 |
+
size 6111428695
|
checkpoint-2000/preprocessor_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-2000/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:add92c332b51984180ce855373fbb639f52a796cc9e55e4a6404bb25d67ff497
|
3 |
+
size 3055754841
|
checkpoint-2000/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0bb0390d721c90ec6fd2b8ea52942b347007b88e20008360bd8e28893110a1f1
|
3 |
+
size 14575
|
checkpoint-2000/scaler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fcffb28e66da2431802059757c8c091b67c99c1e5a84bc2549b0b9990ce04fea
|
3 |
+
size 557
|
checkpoint-2000/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6fd6bc27e7186f611a794f2cf9a3fde69378928c584c002486004b9d0cc4bf4e
|
3 |
+
size 627
|
checkpoint-2000/trainer_state.json
ADDED
@@ -0,0 +1,514 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 21.643241929604276,
|
3 |
+
"best_model_checkpoint": "./checkpoint-2000",
|
4 |
+
"epoch": 0.4,
|
5 |
+
"global_step": 2000,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.01,
|
12 |
+
"learning_rate": 4.6000000000000004e-07,
|
13 |
+
"loss": 1.4182,
|
14 |
+
"step": 25
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.01,
|
18 |
+
"learning_rate": 9.400000000000001e-07,
|
19 |
+
"loss": 1.292,
|
20 |
+
"step": 50
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.01,
|
24 |
+
"learning_rate": 1.44e-06,
|
25 |
+
"loss": 1.0018,
|
26 |
+
"step": 75
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.02,
|
30 |
+
"learning_rate": 1.94e-06,
|
31 |
+
"loss": 0.7765,
|
32 |
+
"step": 100
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.03,
|
36 |
+
"learning_rate": 2.4400000000000004e-06,
|
37 |
+
"loss": 0.7103,
|
38 |
+
"step": 125
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.03,
|
42 |
+
"learning_rate": 2.9400000000000002e-06,
|
43 |
+
"loss": 0.6597,
|
44 |
+
"step": 150
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.04,
|
48 |
+
"learning_rate": 3.44e-06,
|
49 |
+
"loss": 0.6657,
|
50 |
+
"step": 175
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.04,
|
54 |
+
"learning_rate": 3.94e-06,
|
55 |
+
"loss": 0.5853,
|
56 |
+
"step": 200
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.04,
|
60 |
+
"learning_rate": 4.440000000000001e-06,
|
61 |
+
"loss": 0.5273,
|
62 |
+
"step": 225
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.05,
|
66 |
+
"learning_rate": 4.94e-06,
|
67 |
+
"loss": 0.5979,
|
68 |
+
"step": 250
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 0.06,
|
72 |
+
"learning_rate": 5.4400000000000004e-06,
|
73 |
+
"loss": 0.5861,
|
74 |
+
"step": 275
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.06,
|
78 |
+
"learning_rate": 5.94e-06,
|
79 |
+
"loss": 0.5085,
|
80 |
+
"step": 300
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.07,
|
84 |
+
"learning_rate": 6.440000000000001e-06,
|
85 |
+
"loss": 0.4827,
|
86 |
+
"step": 325
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.07,
|
90 |
+
"learning_rate": 6.9400000000000005e-06,
|
91 |
+
"loss": 0.4909,
|
92 |
+
"step": 350
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 0.07,
|
96 |
+
"learning_rate": 7.440000000000001e-06,
|
97 |
+
"loss": 0.4651,
|
98 |
+
"step": 375
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 0.08,
|
102 |
+
"learning_rate": 7.94e-06,
|
103 |
+
"loss": 0.494,
|
104 |
+
"step": 400
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 0.09,
|
108 |
+
"learning_rate": 8.44e-06,
|
109 |
+
"loss": 0.4188,
|
110 |
+
"step": 425
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 0.09,
|
114 |
+
"learning_rate": 8.94e-06,
|
115 |
+
"loss": 0.3849,
|
116 |
+
"step": 450
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.1,
|
120 |
+
"learning_rate": 9.440000000000001e-06,
|
121 |
+
"loss": 0.4577,
|
122 |
+
"step": 475
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.1,
|
126 |
+
"learning_rate": 9.940000000000001e-06,
|
127 |
+
"loss": 0.4415,
|
128 |
+
"step": 500
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.1,
|
132 |
+
"learning_rate": 9.951111111111111e-06,
|
133 |
+
"loss": 0.4615,
|
134 |
+
"step": 525
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 0.11,
|
138 |
+
"learning_rate": 9.895555555555557e-06,
|
139 |
+
"loss": 0.4282,
|
140 |
+
"step": 550
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 0.12,
|
144 |
+
"learning_rate": 9.842222222222223e-06,
|
145 |
+
"loss": 0.4481,
|
146 |
+
"step": 575
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 0.12,
|
150 |
+
"learning_rate": 9.786666666666667e-06,
|
151 |
+
"loss": 0.4441,
|
152 |
+
"step": 600
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 0.12,
|
156 |
+
"learning_rate": 9.731111111111113e-06,
|
157 |
+
"loss": 0.4238,
|
158 |
+
"step": 625
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.13,
|
162 |
+
"learning_rate": 9.675555555555555e-06,
|
163 |
+
"loss": 0.4245,
|
164 |
+
"step": 650
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.14,
|
168 |
+
"learning_rate": 9.620000000000001e-06,
|
169 |
+
"loss": 0.4118,
|
170 |
+
"step": 675
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.14,
|
174 |
+
"learning_rate": 9.564444444444445e-06,
|
175 |
+
"loss": 0.4111,
|
176 |
+
"step": 700
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 0.14,
|
180 |
+
"learning_rate": 9.508888888888889e-06,
|
181 |
+
"loss": 0.3642,
|
182 |
+
"step": 725
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 0.15,
|
186 |
+
"learning_rate": 9.453333333333335e-06,
|
187 |
+
"loss": 0.401,
|
188 |
+
"step": 750
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 0.15,
|
192 |
+
"learning_rate": 9.397777777777779e-06,
|
193 |
+
"loss": 0.3855,
|
194 |
+
"step": 775
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 0.16,
|
198 |
+
"learning_rate": 9.342222222222223e-06,
|
199 |
+
"loss": 0.3668,
|
200 |
+
"step": 800
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.17,
|
204 |
+
"learning_rate": 9.286666666666667e-06,
|
205 |
+
"loss": 0.3794,
|
206 |
+
"step": 825
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.17,
|
210 |
+
"learning_rate": 9.231111111111111e-06,
|
211 |
+
"loss": 0.4296,
|
212 |
+
"step": 850
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.17,
|
216 |
+
"learning_rate": 9.175555555555557e-06,
|
217 |
+
"loss": 0.4003,
|
218 |
+
"step": 875
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 0.18,
|
222 |
+
"learning_rate": 9.12e-06,
|
223 |
+
"loss": 0.374,
|
224 |
+
"step": 900
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 0.18,
|
228 |
+
"learning_rate": 9.064444444444447e-06,
|
229 |
+
"loss": 0.4051,
|
230 |
+
"step": 925
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 0.19,
|
234 |
+
"learning_rate": 9.008888888888889e-06,
|
235 |
+
"loss": 0.3806,
|
236 |
+
"step": 950
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 0.2,
|
240 |
+
"learning_rate": 8.953333333333335e-06,
|
241 |
+
"loss": 0.4161,
|
242 |
+
"step": 975
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 0.2,
|
246 |
+
"learning_rate": 8.897777777777779e-06,
|
247 |
+
"loss": 0.4198,
|
248 |
+
"step": 1000
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.2,
|
252 |
+
"eval_loss": 0.41016528010368347,
|
253 |
+
"eval_runtime": 1788.2777,
|
254 |
+
"eval_samples_per_second": 3.686,
|
255 |
+
"eval_steps_per_second": 0.461,
|
256 |
+
"eval_wer": 28.34865729677184,
|
257 |
+
"step": 1000
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"epoch": 0.2,
|
261 |
+
"learning_rate": 8.842222222222223e-06,
|
262 |
+
"loss": 0.409,
|
263 |
+
"step": 1025
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"epoch": 0.21,
|
267 |
+
"learning_rate": 8.786666666666668e-06,
|
268 |
+
"loss": 0.3674,
|
269 |
+
"step": 1050
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.21,
|
273 |
+
"learning_rate": 8.73111111111111e-06,
|
274 |
+
"loss": 0.3591,
|
275 |
+
"step": 1075
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.22,
|
279 |
+
"learning_rate": 8.675555555555556e-06,
|
280 |
+
"loss": 0.3892,
|
281 |
+
"step": 1100
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"epoch": 0.23,
|
285 |
+
"learning_rate": 8.62e-06,
|
286 |
+
"loss": 0.3843,
|
287 |
+
"step": 1125
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"epoch": 0.23,
|
291 |
+
"learning_rate": 8.564444444444445e-06,
|
292 |
+
"loss": 0.3605,
|
293 |
+
"step": 1150
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"epoch": 0.23,
|
297 |
+
"learning_rate": 8.50888888888889e-06,
|
298 |
+
"loss": 0.326,
|
299 |
+
"step": 1175
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"epoch": 0.24,
|
303 |
+
"learning_rate": 8.453333333333334e-06,
|
304 |
+
"loss": 0.3103,
|
305 |
+
"step": 1200
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"epoch": 0.24,
|
309 |
+
"learning_rate": 8.397777777777778e-06,
|
310 |
+
"loss": 0.2766,
|
311 |
+
"step": 1225
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 0.25,
|
315 |
+
"learning_rate": 8.342222222222222e-06,
|
316 |
+
"loss": 0.3204,
|
317 |
+
"step": 1250
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.26,
|
321 |
+
"learning_rate": 8.286666666666668e-06,
|
322 |
+
"loss": 0.3426,
|
323 |
+
"step": 1275
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"epoch": 0.26,
|
327 |
+
"learning_rate": 8.231111111111112e-06,
|
328 |
+
"loss": 0.3417,
|
329 |
+
"step": 1300
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"epoch": 0.27,
|
333 |
+
"learning_rate": 8.175555555555556e-06,
|
334 |
+
"loss": 0.3179,
|
335 |
+
"step": 1325
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"epoch": 0.27,
|
339 |
+
"learning_rate": 8.120000000000002e-06,
|
340 |
+
"loss": 0.2598,
|
341 |
+
"step": 1350
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"epoch": 0.28,
|
345 |
+
"learning_rate": 8.064444444444444e-06,
|
346 |
+
"loss": 0.3453,
|
347 |
+
"step": 1375
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"epoch": 0.28,
|
351 |
+
"learning_rate": 8.00888888888889e-06,
|
352 |
+
"loss": 0.2752,
|
353 |
+
"step": 1400
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.28,
|
357 |
+
"learning_rate": 7.953333333333334e-06,
|
358 |
+
"loss": 0.2927,
|
359 |
+
"step": 1425
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.29,
|
363 |
+
"learning_rate": 7.897777777777778e-06,
|
364 |
+
"loss": 0.3859,
|
365 |
+
"step": 1450
|
366 |
+
},
|
367 |
+
{
|
368 |
+
"epoch": 0.29,
|
369 |
+
"learning_rate": 7.842222222222224e-06,
|
370 |
+
"loss": 0.3137,
|
371 |
+
"step": 1475
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"epoch": 0.3,
|
375 |
+
"learning_rate": 7.786666666666666e-06,
|
376 |
+
"loss": 0.2678,
|
377 |
+
"step": 1500
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"epoch": 0.3,
|
381 |
+
"learning_rate": 7.731111111111112e-06,
|
382 |
+
"loss": 0.2803,
|
383 |
+
"step": 1525
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"epoch": 0.31,
|
387 |
+
"learning_rate": 7.675555555555556e-06,
|
388 |
+
"loss": 0.2828,
|
389 |
+
"step": 1550
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"epoch": 0.32,
|
393 |
+
"learning_rate": 7.620000000000001e-06,
|
394 |
+
"loss": 0.3655,
|
395 |
+
"step": 1575
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.32,
|
399 |
+
"learning_rate": 7.564444444444446e-06,
|
400 |
+
"loss": 0.3321,
|
401 |
+
"step": 1600
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.33,
|
405 |
+
"learning_rate": 7.50888888888889e-06,
|
406 |
+
"loss": 0.3649,
|
407 |
+
"step": 1625
|
408 |
+
},
|
409 |
+
{
|
410 |
+
"epoch": 0.33,
|
411 |
+
"learning_rate": 7.453333333333334e-06,
|
412 |
+
"loss": 0.3229,
|
413 |
+
"step": 1650
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"epoch": 0.34,
|
417 |
+
"learning_rate": 7.3977777777777786e-06,
|
418 |
+
"loss": 0.3115,
|
419 |
+
"step": 1675
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"epoch": 0.34,
|
423 |
+
"learning_rate": 7.342222222222223e-06,
|
424 |
+
"loss": 0.2925,
|
425 |
+
"step": 1700
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"epoch": 0.34,
|
429 |
+
"learning_rate": 7.2866666666666675e-06,
|
430 |
+
"loss": 0.3014,
|
431 |
+
"step": 1725
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"epoch": 0.35,
|
435 |
+
"learning_rate": 7.231111111111112e-06,
|
436 |
+
"loss": 0.3303,
|
437 |
+
"step": 1750
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 0.35,
|
441 |
+
"learning_rate": 7.1755555555555556e-06,
|
442 |
+
"loss": 0.3174,
|
443 |
+
"step": 1775
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.36,
|
447 |
+
"learning_rate": 7.1200000000000004e-06,
|
448 |
+
"loss": 0.3249,
|
449 |
+
"step": 1800
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"epoch": 0.36,
|
453 |
+
"learning_rate": 7.0644444444444445e-06,
|
454 |
+
"loss": 0.2678,
|
455 |
+
"step": 1825
|
456 |
+
},
|
457 |
+
{
|
458 |
+
"epoch": 0.37,
|
459 |
+
"learning_rate": 7.008888888888889e-06,
|
460 |
+
"loss": 0.3088,
|
461 |
+
"step": 1850
|
462 |
+
},
|
463 |
+
{
|
464 |
+
"epoch": 0.38,
|
465 |
+
"learning_rate": 6.953333333333334e-06,
|
466 |
+
"loss": 0.2515,
|
467 |
+
"step": 1875
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"epoch": 0.38,
|
471 |
+
"learning_rate": 6.897777777777779e-06,
|
472 |
+
"loss": 0.2838,
|
473 |
+
"step": 1900
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"epoch": 0.39,
|
477 |
+
"learning_rate": 6.842222222222222e-06,
|
478 |
+
"loss": 0.2494,
|
479 |
+
"step": 1925
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.39,
|
483 |
+
"learning_rate": 6.786666666666667e-06,
|
484 |
+
"loss": 0.205,
|
485 |
+
"step": 1950
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.4,
|
489 |
+
"learning_rate": 6.731111111111111e-06,
|
490 |
+
"loss": 0.2439,
|
491 |
+
"step": 1975
|
492 |
+
},
|
493 |
+
{
|
494 |
+
"epoch": 0.4,
|
495 |
+
"learning_rate": 6.675555555555556e-06,
|
496 |
+
"loss": 0.2547,
|
497 |
+
"step": 2000
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"epoch": 0.4,
|
501 |
+
"eval_loss": 0.31417879462242126,
|
502 |
+
"eval_runtime": 1808.8984,
|
503 |
+
"eval_samples_per_second": 3.644,
|
504 |
+
"eval_steps_per_second": 0.456,
|
505 |
+
"eval_wer": 21.643241929604276,
|
506 |
+
"step": 2000
|
507 |
+
}
|
508 |
+
],
|
509 |
+
"max_steps": 5000,
|
510 |
+
"num_train_epochs": 9223372036854775807,
|
511 |
+
"total_flos": 8.16483926016e+18,
|
512 |
+
"trial_name": null,
|
513 |
+
"trial_params": null
|
514 |
+
}
|
checkpoint-2000/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d66007a736788880333f143a38bacc2f66a8cab53d5a9aba13249e3048d3a20
|
3 |
+
size 3643
|
checkpoint-3000/config.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "openai/whisper-medium",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"activation_function": "gelu",
|
5 |
+
"architectures": [
|
6 |
+
"WhisperForConditionalGeneration"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.0,
|
9 |
+
"begin_suppress_tokens": [
|
10 |
+
220,
|
11 |
+
50257
|
12 |
+
],
|
13 |
+
"bos_token_id": 50257,
|
14 |
+
"d_model": 1024,
|
15 |
+
"decoder_attention_heads": 16,
|
16 |
+
"decoder_ffn_dim": 4096,
|
17 |
+
"decoder_layerdrop": 0.0,
|
18 |
+
"decoder_layers": 24,
|
19 |
+
"decoder_start_token_id": 50258,
|
20 |
+
"dropout": 0.0,
|
21 |
+
"encoder_attention_heads": 16,
|
22 |
+
"encoder_ffn_dim": 4096,
|
23 |
+
"encoder_layerdrop": 0.0,
|
24 |
+
"encoder_layers": 24,
|
25 |
+
"eos_token_id": 50257,
|
26 |
+
"forced_decoder_ids": null,
|
27 |
+
"init_std": 0.02,
|
28 |
+
"is_encoder_decoder": true,
|
29 |
+
"max_length": 448,
|
30 |
+
"max_source_positions": 1500,
|
31 |
+
"max_target_positions": 448,
|
32 |
+
"model_type": "whisper",
|
33 |
+
"num_hidden_layers": 24,
|
34 |
+
"num_mel_bins": 80,
|
35 |
+
"pad_token_id": 50257,
|
36 |
+
"scale_embedding": false,
|
37 |
+
"torch_dtype": "float32",
|
38 |
+
"transformers_version": "4.26.0.dev0",
|
39 |
+
"use_cache": false,
|
40 |
+
"vocab_size": 51865
|
41 |
+
}
|
checkpoint-3000/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac1f77d6585daa6593d4b2789937b9c30227974c5f4d5de58b2e37c656d8f593
|
3 |
+
size 6111428695
|
checkpoint-3000/preprocessor_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-3000/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c51228e1f36a171deffb849850e004ddddfd20b562af7703558e88873cea98aa
|
3 |
+
size 3055754841
|
checkpoint-3000/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:266a1d22ebd8d112aafa8c8e3c3a9d59cfd8661d002ecfe5ca821ace3604d5d0
|
3 |
+
size 14511
|
checkpoint-3000/scaler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:36b1343d51bfdc4cb25254f5a22ad5412b8fe28ce21f587a38c8684a85baf9aa
|
3 |
+
size 557
|
checkpoint-3000/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c7ac18b548a5f57b43479491efeef75333701321d878addd7822f27ec30f6d9
|
3 |
+
size 627
|
checkpoint-3000/trainer_state.json
ADDED
@@ -0,0 +1,763 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 17.515897768236865,
|
3 |
+
"best_model_checkpoint": "./checkpoint-3000",
|
4 |
+
"epoch": 0.6,
|
5 |
+
"global_step": 3000,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.01,
|
12 |
+
"learning_rate": 4.6000000000000004e-07,
|
13 |
+
"loss": 1.4182,
|
14 |
+
"step": 25
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.01,
|
18 |
+
"learning_rate": 9.400000000000001e-07,
|
19 |
+
"loss": 1.292,
|
20 |
+
"step": 50
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.01,
|
24 |
+
"learning_rate": 1.44e-06,
|
25 |
+
"loss": 1.0018,
|
26 |
+
"step": 75
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.02,
|
30 |
+
"learning_rate": 1.94e-06,
|
31 |
+
"loss": 0.7765,
|
32 |
+
"step": 100
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.03,
|
36 |
+
"learning_rate": 2.4400000000000004e-06,
|
37 |
+
"loss": 0.7103,
|
38 |
+
"step": 125
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.03,
|
42 |
+
"learning_rate": 2.9400000000000002e-06,
|
43 |
+
"loss": 0.6597,
|
44 |
+
"step": 150
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.04,
|
48 |
+
"learning_rate": 3.44e-06,
|
49 |
+
"loss": 0.6657,
|
50 |
+
"step": 175
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.04,
|
54 |
+
"learning_rate": 3.94e-06,
|
55 |
+
"loss": 0.5853,
|
56 |
+
"step": 200
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.04,
|
60 |
+
"learning_rate": 4.440000000000001e-06,
|
61 |
+
"loss": 0.5273,
|
62 |
+
"step": 225
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.05,
|
66 |
+
"learning_rate": 4.94e-06,
|
67 |
+
"loss": 0.5979,
|
68 |
+
"step": 250
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 0.06,
|
72 |
+
"learning_rate": 5.4400000000000004e-06,
|
73 |
+
"loss": 0.5861,
|
74 |
+
"step": 275
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.06,
|
78 |
+
"learning_rate": 5.94e-06,
|
79 |
+
"loss": 0.5085,
|
80 |
+
"step": 300
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.07,
|
84 |
+
"learning_rate": 6.440000000000001e-06,
|
85 |
+
"loss": 0.4827,
|
86 |
+
"step": 325
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.07,
|
90 |
+
"learning_rate": 6.9400000000000005e-06,
|
91 |
+
"loss": 0.4909,
|
92 |
+
"step": 350
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 0.07,
|
96 |
+
"learning_rate": 7.440000000000001e-06,
|
97 |
+
"loss": 0.4651,
|
98 |
+
"step": 375
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 0.08,
|
102 |
+
"learning_rate": 7.94e-06,
|
103 |
+
"loss": 0.494,
|
104 |
+
"step": 400
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 0.09,
|
108 |
+
"learning_rate": 8.44e-06,
|
109 |
+
"loss": 0.4188,
|
110 |
+
"step": 425
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 0.09,
|
114 |
+
"learning_rate": 8.94e-06,
|
115 |
+
"loss": 0.3849,
|
116 |
+
"step": 450
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.1,
|
120 |
+
"learning_rate": 9.440000000000001e-06,
|
121 |
+
"loss": 0.4577,
|
122 |
+
"step": 475
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.1,
|
126 |
+
"learning_rate": 9.940000000000001e-06,
|
127 |
+
"loss": 0.4415,
|
128 |
+
"step": 500
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.1,
|
132 |
+
"learning_rate": 9.951111111111111e-06,
|
133 |
+
"loss": 0.4615,
|
134 |
+
"step": 525
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 0.11,
|
138 |
+
"learning_rate": 9.895555555555557e-06,
|
139 |
+
"loss": 0.4282,
|
140 |
+
"step": 550
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 0.12,
|
144 |
+
"learning_rate": 9.842222222222223e-06,
|
145 |
+
"loss": 0.4481,
|
146 |
+
"step": 575
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 0.12,
|
150 |
+
"learning_rate": 9.786666666666667e-06,
|
151 |
+
"loss": 0.4441,
|
152 |
+
"step": 600
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 0.12,
|
156 |
+
"learning_rate": 9.731111111111113e-06,
|
157 |
+
"loss": 0.4238,
|
158 |
+
"step": 625
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.13,
|
162 |
+
"learning_rate": 9.675555555555555e-06,
|
163 |
+
"loss": 0.4245,
|
164 |
+
"step": 650
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.14,
|
168 |
+
"learning_rate": 9.620000000000001e-06,
|
169 |
+
"loss": 0.4118,
|
170 |
+
"step": 675
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.14,
|
174 |
+
"learning_rate": 9.564444444444445e-06,
|
175 |
+
"loss": 0.4111,
|
176 |
+
"step": 700
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 0.14,
|
180 |
+
"learning_rate": 9.508888888888889e-06,
|
181 |
+
"loss": 0.3642,
|
182 |
+
"step": 725
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 0.15,
|
186 |
+
"learning_rate": 9.453333333333335e-06,
|
187 |
+
"loss": 0.401,
|
188 |
+
"step": 750
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 0.15,
|
192 |
+
"learning_rate": 9.397777777777779e-06,
|
193 |
+
"loss": 0.3855,
|
194 |
+
"step": 775
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 0.16,
|
198 |
+
"learning_rate": 9.342222222222223e-06,
|
199 |
+
"loss": 0.3668,
|
200 |
+
"step": 800
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.17,
|
204 |
+
"learning_rate": 9.286666666666667e-06,
|
205 |
+
"loss": 0.3794,
|
206 |
+
"step": 825
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.17,
|
210 |
+
"learning_rate": 9.231111111111111e-06,
|
211 |
+
"loss": 0.4296,
|
212 |
+
"step": 850
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.17,
|
216 |
+
"learning_rate": 9.175555555555557e-06,
|
217 |
+
"loss": 0.4003,
|
218 |
+
"step": 875
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 0.18,
|
222 |
+
"learning_rate": 9.12e-06,
|
223 |
+
"loss": 0.374,
|
224 |
+
"step": 900
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 0.18,
|
228 |
+
"learning_rate": 9.064444444444447e-06,
|
229 |
+
"loss": 0.4051,
|
230 |
+
"step": 925
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 0.19,
|
234 |
+
"learning_rate": 9.008888888888889e-06,
|
235 |
+
"loss": 0.3806,
|
236 |
+
"step": 950
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 0.2,
|
240 |
+
"learning_rate": 8.953333333333335e-06,
|
241 |
+
"loss": 0.4161,
|
242 |
+
"step": 975
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 0.2,
|
246 |
+
"learning_rate": 8.897777777777779e-06,
|
247 |
+
"loss": 0.4198,
|
248 |
+
"step": 1000
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.2,
|
252 |
+
"eval_loss": 0.41016528010368347,
|
253 |
+
"eval_runtime": 1788.2777,
|
254 |
+
"eval_samples_per_second": 3.686,
|
255 |
+
"eval_steps_per_second": 0.461,
|
256 |
+
"eval_wer": 28.34865729677184,
|
257 |
+
"step": 1000
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"epoch": 0.2,
|
261 |
+
"learning_rate": 8.842222222222223e-06,
|
262 |
+
"loss": 0.409,
|
263 |
+
"step": 1025
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"epoch": 0.21,
|
267 |
+
"learning_rate": 8.786666666666668e-06,
|
268 |
+
"loss": 0.3674,
|
269 |
+
"step": 1050
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.21,
|
273 |
+
"learning_rate": 8.73111111111111e-06,
|
274 |
+
"loss": 0.3591,
|
275 |
+
"step": 1075
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.22,
|
279 |
+
"learning_rate": 8.675555555555556e-06,
|
280 |
+
"loss": 0.3892,
|
281 |
+
"step": 1100
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"epoch": 0.23,
|
285 |
+
"learning_rate": 8.62e-06,
|
286 |
+
"loss": 0.3843,
|
287 |
+
"step": 1125
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"epoch": 0.23,
|
291 |
+
"learning_rate": 8.564444444444445e-06,
|
292 |
+
"loss": 0.3605,
|
293 |
+
"step": 1150
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"epoch": 0.23,
|
297 |
+
"learning_rate": 8.50888888888889e-06,
|
298 |
+
"loss": 0.326,
|
299 |
+
"step": 1175
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"epoch": 0.24,
|
303 |
+
"learning_rate": 8.453333333333334e-06,
|
304 |
+
"loss": 0.3103,
|
305 |
+
"step": 1200
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"epoch": 0.24,
|
309 |
+
"learning_rate": 8.397777777777778e-06,
|
310 |
+
"loss": 0.2766,
|
311 |
+
"step": 1225
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 0.25,
|
315 |
+
"learning_rate": 8.342222222222222e-06,
|
316 |
+
"loss": 0.3204,
|
317 |
+
"step": 1250
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.26,
|
321 |
+
"learning_rate": 8.286666666666668e-06,
|
322 |
+
"loss": 0.3426,
|
323 |
+
"step": 1275
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"epoch": 0.26,
|
327 |
+
"learning_rate": 8.231111111111112e-06,
|
328 |
+
"loss": 0.3417,
|
329 |
+
"step": 1300
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"epoch": 0.27,
|
333 |
+
"learning_rate": 8.175555555555556e-06,
|
334 |
+
"loss": 0.3179,
|
335 |
+
"step": 1325
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"epoch": 0.27,
|
339 |
+
"learning_rate": 8.120000000000002e-06,
|
340 |
+
"loss": 0.2598,
|
341 |
+
"step": 1350
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"epoch": 0.28,
|
345 |
+
"learning_rate": 8.064444444444444e-06,
|
346 |
+
"loss": 0.3453,
|
347 |
+
"step": 1375
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"epoch": 0.28,
|
351 |
+
"learning_rate": 8.00888888888889e-06,
|
352 |
+
"loss": 0.2752,
|
353 |
+
"step": 1400
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.28,
|
357 |
+
"learning_rate": 7.953333333333334e-06,
|
358 |
+
"loss": 0.2927,
|
359 |
+
"step": 1425
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.29,
|
363 |
+
"learning_rate": 7.897777777777778e-06,
|
364 |
+
"loss": 0.3859,
|
365 |
+
"step": 1450
|
366 |
+
},
|
367 |
+
{
|
368 |
+
"epoch": 0.29,
|
369 |
+
"learning_rate": 7.842222222222224e-06,
|
370 |
+
"loss": 0.3137,
|
371 |
+
"step": 1475
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"epoch": 0.3,
|
375 |
+
"learning_rate": 7.786666666666666e-06,
|
376 |
+
"loss": 0.2678,
|
377 |
+
"step": 1500
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"epoch": 0.3,
|
381 |
+
"learning_rate": 7.731111111111112e-06,
|
382 |
+
"loss": 0.2803,
|
383 |
+
"step": 1525
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"epoch": 0.31,
|
387 |
+
"learning_rate": 7.675555555555556e-06,
|
388 |
+
"loss": 0.2828,
|
389 |
+
"step": 1550
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"epoch": 0.32,
|
393 |
+
"learning_rate": 7.620000000000001e-06,
|
394 |
+
"loss": 0.3655,
|
395 |
+
"step": 1575
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.32,
|
399 |
+
"learning_rate": 7.564444444444446e-06,
|
400 |
+
"loss": 0.3321,
|
401 |
+
"step": 1600
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.33,
|
405 |
+
"learning_rate": 7.50888888888889e-06,
|
406 |
+
"loss": 0.3649,
|
407 |
+
"step": 1625
|
408 |
+
},
|
409 |
+
{
|
410 |
+
"epoch": 0.33,
|
411 |
+
"learning_rate": 7.453333333333334e-06,
|
412 |
+
"loss": 0.3229,
|
413 |
+
"step": 1650
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"epoch": 0.34,
|
417 |
+
"learning_rate": 7.3977777777777786e-06,
|
418 |
+
"loss": 0.3115,
|
419 |
+
"step": 1675
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"epoch": 0.34,
|
423 |
+
"learning_rate": 7.342222222222223e-06,
|
424 |
+
"loss": 0.2925,
|
425 |
+
"step": 1700
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"epoch": 0.34,
|
429 |
+
"learning_rate": 7.2866666666666675e-06,
|
430 |
+
"loss": 0.3014,
|
431 |
+
"step": 1725
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"epoch": 0.35,
|
435 |
+
"learning_rate": 7.231111111111112e-06,
|
436 |
+
"loss": 0.3303,
|
437 |
+
"step": 1750
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 0.35,
|
441 |
+
"learning_rate": 7.1755555555555556e-06,
|
442 |
+
"loss": 0.3174,
|
443 |
+
"step": 1775
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.36,
|
447 |
+
"learning_rate": 7.1200000000000004e-06,
|
448 |
+
"loss": 0.3249,
|
449 |
+
"step": 1800
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"epoch": 0.36,
|
453 |
+
"learning_rate": 7.0644444444444445e-06,
|
454 |
+
"loss": 0.2678,
|
455 |
+
"step": 1825
|
456 |
+
},
|
457 |
+
{
|
458 |
+
"epoch": 0.37,
|
459 |
+
"learning_rate": 7.008888888888889e-06,
|
460 |
+
"loss": 0.3088,
|
461 |
+
"step": 1850
|
462 |
+
},
|
463 |
+
{
|
464 |
+
"epoch": 0.38,
|
465 |
+
"learning_rate": 6.953333333333334e-06,
|
466 |
+
"loss": 0.2515,
|
467 |
+
"step": 1875
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"epoch": 0.38,
|
471 |
+
"learning_rate": 6.897777777777779e-06,
|
472 |
+
"loss": 0.2838,
|
473 |
+
"step": 1900
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"epoch": 0.39,
|
477 |
+
"learning_rate": 6.842222222222222e-06,
|
478 |
+
"loss": 0.2494,
|
479 |
+
"step": 1925
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.39,
|
483 |
+
"learning_rate": 6.786666666666667e-06,
|
484 |
+
"loss": 0.205,
|
485 |
+
"step": 1950
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.4,
|
489 |
+
"learning_rate": 6.731111111111111e-06,
|
490 |
+
"loss": 0.2439,
|
491 |
+
"step": 1975
|
492 |
+
},
|
493 |
+
{
|
494 |
+
"epoch": 0.4,
|
495 |
+
"learning_rate": 6.675555555555556e-06,
|
496 |
+
"loss": 0.2547,
|
497 |
+
"step": 2000
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"epoch": 0.4,
|
501 |
+
"eval_loss": 0.31417879462242126,
|
502 |
+
"eval_runtime": 1808.8984,
|
503 |
+
"eval_samples_per_second": 3.644,
|
504 |
+
"eval_steps_per_second": 0.456,
|
505 |
+
"eval_wer": 21.643241929604276,
|
506 |
+
"step": 2000
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.41,
|
510 |
+
"learning_rate": 6.620000000000001e-06,
|
511 |
+
"loss": 0.212,
|
512 |
+
"step": 2025
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 0.41,
|
516 |
+
"learning_rate": 6.564444444444446e-06,
|
517 |
+
"loss": 0.2386,
|
518 |
+
"step": 2050
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 0.41,
|
522 |
+
"learning_rate": 6.508888888888889e-06,
|
523 |
+
"loss": 0.2429,
|
524 |
+
"step": 2075
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 0.42,
|
528 |
+
"learning_rate": 6.453333333333334e-06,
|
529 |
+
"loss": 0.3079,
|
530 |
+
"step": 2100
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 0.42,
|
534 |
+
"learning_rate": 6.397777777777778e-06,
|
535 |
+
"loss": 0.2576,
|
536 |
+
"step": 2125
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 0.43,
|
540 |
+
"learning_rate": 6.342222222222223e-06,
|
541 |
+
"loss": 0.2558,
|
542 |
+
"step": 2150
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.43,
|
546 |
+
"learning_rate": 6.286666666666668e-06,
|
547 |
+
"loss": 0.2904,
|
548 |
+
"step": 2175
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.44,
|
552 |
+
"learning_rate": 6.231111111111111e-06,
|
553 |
+
"loss": 0.2423,
|
554 |
+
"step": 2200
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 0.45,
|
558 |
+
"learning_rate": 6.175555555555556e-06,
|
559 |
+
"loss": 0.255,
|
560 |
+
"step": 2225
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"epoch": 0.45,
|
564 |
+
"learning_rate": 6.120000000000001e-06,
|
565 |
+
"loss": 0.2142,
|
566 |
+
"step": 2250
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"epoch": 0.46,
|
570 |
+
"learning_rate": 6.064444444444445e-06,
|
571 |
+
"loss": 0.2687,
|
572 |
+
"step": 2275
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 0.46,
|
576 |
+
"learning_rate": 6.00888888888889e-06,
|
577 |
+
"loss": 0.2617,
|
578 |
+
"step": 2300
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 0.47,
|
582 |
+
"learning_rate": 5.9533333333333345e-06,
|
583 |
+
"loss": 0.2414,
|
584 |
+
"step": 2325
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.47,
|
588 |
+
"learning_rate": 5.897777777777778e-06,
|
589 |
+
"loss": 0.2048,
|
590 |
+
"step": 2350
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.47,
|
594 |
+
"learning_rate": 5.8422222222222226e-06,
|
595 |
+
"loss": 0.222,
|
596 |
+
"step": 2375
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 0.48,
|
600 |
+
"learning_rate": 5.7866666666666674e-06,
|
601 |
+
"loss": 0.2453,
|
602 |
+
"step": 2400
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"epoch": 0.48,
|
606 |
+
"learning_rate": 5.7311111111111115e-06,
|
607 |
+
"loss": 0.2099,
|
608 |
+
"step": 2425
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 0.49,
|
612 |
+
"learning_rate": 5.675555555555556e-06,
|
613 |
+
"loss": 0.2515,
|
614 |
+
"step": 2450
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 0.49,
|
618 |
+
"learning_rate": 5.620000000000001e-06,
|
619 |
+
"loss": 0.2232,
|
620 |
+
"step": 2475
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 0.5,
|
624 |
+
"learning_rate": 5.5644444444444444e-06,
|
625 |
+
"loss": 0.1946,
|
626 |
+
"step": 2500
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.51,
|
630 |
+
"learning_rate": 5.508888888888889e-06,
|
631 |
+
"loss": 0.2176,
|
632 |
+
"step": 2525
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.51,
|
636 |
+
"learning_rate": 5.453333333333334e-06,
|
637 |
+
"loss": 0.2565,
|
638 |
+
"step": 2550
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"epoch": 0.52,
|
642 |
+
"learning_rate": 5.397777777777778e-06,
|
643 |
+
"loss": 0.2452,
|
644 |
+
"step": 2575
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"epoch": 0.52,
|
648 |
+
"learning_rate": 5.342222222222223e-06,
|
649 |
+
"loss": 0.2851,
|
650 |
+
"step": 2600
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 0.53,
|
654 |
+
"learning_rate": 5.286666666666666e-06,
|
655 |
+
"loss": 0.1891,
|
656 |
+
"step": 2625
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 0.53,
|
660 |
+
"learning_rate": 5.231111111111111e-06,
|
661 |
+
"loss": 0.2404,
|
662 |
+
"step": 2650
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 0.54,
|
666 |
+
"learning_rate": 5.175555555555556e-06,
|
667 |
+
"loss": 0.2037,
|
668 |
+
"step": 2675
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 0.54,
|
672 |
+
"learning_rate": 5.12e-06,
|
673 |
+
"loss": 0.215,
|
674 |
+
"step": 2700
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.55,
|
678 |
+
"learning_rate": 5.064444444444445e-06,
|
679 |
+
"loss": 0.2115,
|
680 |
+
"step": 2725
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"epoch": 0.55,
|
684 |
+
"learning_rate": 5.00888888888889e-06,
|
685 |
+
"loss": 0.2491,
|
686 |
+
"step": 2750
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"epoch": 0.56,
|
690 |
+
"learning_rate": 4.953333333333334e-06,
|
691 |
+
"loss": 0.1979,
|
692 |
+
"step": 2775
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"epoch": 0.56,
|
696 |
+
"learning_rate": 4.897777777777778e-06,
|
697 |
+
"loss": 0.224,
|
698 |
+
"step": 2800
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 0.56,
|
702 |
+
"learning_rate": 4.842222222222223e-06,
|
703 |
+
"loss": 0.2065,
|
704 |
+
"step": 2825
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 0.57,
|
708 |
+
"learning_rate": 4.786666666666667e-06,
|
709 |
+
"loss": 0.2144,
|
710 |
+
"step": 2850
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 0.57,
|
714 |
+
"learning_rate": 4.731111111111112e-06,
|
715 |
+
"loss": 0.2141,
|
716 |
+
"step": 2875
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.58,
|
720 |
+
"learning_rate": 4.675555555555556e-06,
|
721 |
+
"loss": 0.1953,
|
722 |
+
"step": 2900
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"epoch": 0.58,
|
726 |
+
"learning_rate": 4.620000000000001e-06,
|
727 |
+
"loss": 0.1907,
|
728 |
+
"step": 2925
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"epoch": 0.59,
|
732 |
+
"learning_rate": 4.564444444444445e-06,
|
733 |
+
"loss": 0.2292,
|
734 |
+
"step": 2950
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 0.59,
|
738 |
+
"learning_rate": 4.50888888888889e-06,
|
739 |
+
"loss": 0.2164,
|
740 |
+
"step": 2975
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"epoch": 0.6,
|
744 |
+
"learning_rate": 4.453333333333334e-06,
|
745 |
+
"loss": 0.2145,
|
746 |
+
"step": 3000
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 0.6,
|
750 |
+
"eval_loss": 0.260960191488266,
|
751 |
+
"eval_runtime": 1803.5499,
|
752 |
+
"eval_samples_per_second": 3.654,
|
753 |
+
"eval_steps_per_second": 0.457,
|
754 |
+
"eval_wer": 17.515897768236865,
|
755 |
+
"step": 3000
|
756 |
+
}
|
757 |
+
],
|
758 |
+
"max_steps": 5000,
|
759 |
+
"num_train_epochs": 9223372036854775807,
|
760 |
+
"total_flos": 1.224725889024e+19,
|
761 |
+
"trial_name": null,
|
762 |
+
"trial_params": null
|
763 |
+
}
|
checkpoint-3000/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d66007a736788880333f143a38bacc2f66a8cab53d5a9aba13249e3048d3a20
|
3 |
+
size 3643
|
checkpoint-4000/config.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "openai/whisper-medium",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"activation_function": "gelu",
|
5 |
+
"architectures": [
|
6 |
+
"WhisperForConditionalGeneration"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.0,
|
9 |
+
"begin_suppress_tokens": [
|
10 |
+
220,
|
11 |
+
50257
|
12 |
+
],
|
13 |
+
"bos_token_id": 50257,
|
14 |
+
"d_model": 1024,
|
15 |
+
"decoder_attention_heads": 16,
|
16 |
+
"decoder_ffn_dim": 4096,
|
17 |
+
"decoder_layerdrop": 0.0,
|
18 |
+
"decoder_layers": 24,
|
19 |
+
"decoder_start_token_id": 50258,
|
20 |
+
"dropout": 0.0,
|
21 |
+
"encoder_attention_heads": 16,
|
22 |
+
"encoder_ffn_dim": 4096,
|
23 |
+
"encoder_layerdrop": 0.0,
|
24 |
+
"encoder_layers": 24,
|
25 |
+
"eos_token_id": 50257,
|
26 |
+
"forced_decoder_ids": null,
|
27 |
+
"init_std": 0.02,
|
28 |
+
"is_encoder_decoder": true,
|
29 |
+
"max_length": 448,
|
30 |
+
"max_source_positions": 1500,
|
31 |
+
"max_target_positions": 448,
|
32 |
+
"model_type": "whisper",
|
33 |
+
"num_hidden_layers": 24,
|
34 |
+
"num_mel_bins": 80,
|
35 |
+
"pad_token_id": 50257,
|
36 |
+
"scale_embedding": false,
|
37 |
+
"torch_dtype": "float32",
|
38 |
+
"transformers_version": "4.26.0.dev0",
|
39 |
+
"use_cache": false,
|
40 |
+
"vocab_size": 51865
|
41 |
+
}
|
checkpoint-4000/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05be55a2b75dc1ac23ac0261031e53bc92db41c3b5d4ec9d10988b1315b6b704
|
3 |
+
size 6111428695
|
checkpoint-4000/preprocessor_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-4000/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa689b714ac347b37c12f4ece07e30fb3697ed64f25ba1b336527ddb5872294d
|
3 |
+
size 3055754841
|
checkpoint-4000/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:869d2f2d952ea2f36d5e1660eb8957aa4e4c8b45892cb23f7bce8426f8ff63b9
|
3 |
+
size 14575
|
checkpoint-4000/scaler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d9f8594323727948e06ed787e4e51f0be281dfa76ee37117cd27cc8490753dc
|
3 |
+
size 557
|
checkpoint-4000/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:285522fdbcf7692ca0fd2c300f90f1d4ac21d59ac64354db24bfa3599d4d3173
|
3 |
+
size 627
|
checkpoint-4000/trainer_state.json
ADDED
@@ -0,0 +1,1012 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 15.300336182105392,
|
3 |
+
"best_model_checkpoint": "./checkpoint-4000",
|
4 |
+
"epoch": 1.1408,
|
5 |
+
"global_step": 4000,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.01,
|
12 |
+
"learning_rate": 4.6000000000000004e-07,
|
13 |
+
"loss": 1.4182,
|
14 |
+
"step": 25
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.01,
|
18 |
+
"learning_rate": 9.400000000000001e-07,
|
19 |
+
"loss": 1.292,
|
20 |
+
"step": 50
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.01,
|
24 |
+
"learning_rate": 1.44e-06,
|
25 |
+
"loss": 1.0018,
|
26 |
+
"step": 75
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.02,
|
30 |
+
"learning_rate": 1.94e-06,
|
31 |
+
"loss": 0.7765,
|
32 |
+
"step": 100
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.03,
|
36 |
+
"learning_rate": 2.4400000000000004e-06,
|
37 |
+
"loss": 0.7103,
|
38 |
+
"step": 125
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.03,
|
42 |
+
"learning_rate": 2.9400000000000002e-06,
|
43 |
+
"loss": 0.6597,
|
44 |
+
"step": 150
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.04,
|
48 |
+
"learning_rate": 3.44e-06,
|
49 |
+
"loss": 0.6657,
|
50 |
+
"step": 175
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.04,
|
54 |
+
"learning_rate": 3.94e-06,
|
55 |
+
"loss": 0.5853,
|
56 |
+
"step": 200
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.04,
|
60 |
+
"learning_rate": 4.440000000000001e-06,
|
61 |
+
"loss": 0.5273,
|
62 |
+
"step": 225
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.05,
|
66 |
+
"learning_rate": 4.94e-06,
|
67 |
+
"loss": 0.5979,
|
68 |
+
"step": 250
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 0.06,
|
72 |
+
"learning_rate": 5.4400000000000004e-06,
|
73 |
+
"loss": 0.5861,
|
74 |
+
"step": 275
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.06,
|
78 |
+
"learning_rate": 5.94e-06,
|
79 |
+
"loss": 0.5085,
|
80 |
+
"step": 300
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.07,
|
84 |
+
"learning_rate": 6.440000000000001e-06,
|
85 |
+
"loss": 0.4827,
|
86 |
+
"step": 325
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.07,
|
90 |
+
"learning_rate": 6.9400000000000005e-06,
|
91 |
+
"loss": 0.4909,
|
92 |
+
"step": 350
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 0.07,
|
96 |
+
"learning_rate": 7.440000000000001e-06,
|
97 |
+
"loss": 0.4651,
|
98 |
+
"step": 375
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 0.08,
|
102 |
+
"learning_rate": 7.94e-06,
|
103 |
+
"loss": 0.494,
|
104 |
+
"step": 400
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 0.09,
|
108 |
+
"learning_rate": 8.44e-06,
|
109 |
+
"loss": 0.4188,
|
110 |
+
"step": 425
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 0.09,
|
114 |
+
"learning_rate": 8.94e-06,
|
115 |
+
"loss": 0.3849,
|
116 |
+
"step": 450
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.1,
|
120 |
+
"learning_rate": 9.440000000000001e-06,
|
121 |
+
"loss": 0.4577,
|
122 |
+
"step": 475
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.1,
|
126 |
+
"learning_rate": 9.940000000000001e-06,
|
127 |
+
"loss": 0.4415,
|
128 |
+
"step": 500
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.1,
|
132 |
+
"learning_rate": 9.951111111111111e-06,
|
133 |
+
"loss": 0.4615,
|
134 |
+
"step": 525
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 0.11,
|
138 |
+
"learning_rate": 9.895555555555557e-06,
|
139 |
+
"loss": 0.4282,
|
140 |
+
"step": 550
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 0.12,
|
144 |
+
"learning_rate": 9.842222222222223e-06,
|
145 |
+
"loss": 0.4481,
|
146 |
+
"step": 575
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 0.12,
|
150 |
+
"learning_rate": 9.786666666666667e-06,
|
151 |
+
"loss": 0.4441,
|
152 |
+
"step": 600
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 0.12,
|
156 |
+
"learning_rate": 9.731111111111113e-06,
|
157 |
+
"loss": 0.4238,
|
158 |
+
"step": 625
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.13,
|
162 |
+
"learning_rate": 9.675555555555555e-06,
|
163 |
+
"loss": 0.4245,
|
164 |
+
"step": 650
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.14,
|
168 |
+
"learning_rate": 9.620000000000001e-06,
|
169 |
+
"loss": 0.4118,
|
170 |
+
"step": 675
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.14,
|
174 |
+
"learning_rate": 9.564444444444445e-06,
|
175 |
+
"loss": 0.4111,
|
176 |
+
"step": 700
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 0.14,
|
180 |
+
"learning_rate": 9.508888888888889e-06,
|
181 |
+
"loss": 0.3642,
|
182 |
+
"step": 725
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 0.15,
|
186 |
+
"learning_rate": 9.453333333333335e-06,
|
187 |
+
"loss": 0.401,
|
188 |
+
"step": 750
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 0.15,
|
192 |
+
"learning_rate": 9.397777777777779e-06,
|
193 |
+
"loss": 0.3855,
|
194 |
+
"step": 775
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 0.16,
|
198 |
+
"learning_rate": 9.342222222222223e-06,
|
199 |
+
"loss": 0.3668,
|
200 |
+
"step": 800
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.17,
|
204 |
+
"learning_rate": 9.286666666666667e-06,
|
205 |
+
"loss": 0.3794,
|
206 |
+
"step": 825
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.17,
|
210 |
+
"learning_rate": 9.231111111111111e-06,
|
211 |
+
"loss": 0.4296,
|
212 |
+
"step": 850
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.17,
|
216 |
+
"learning_rate": 9.175555555555557e-06,
|
217 |
+
"loss": 0.4003,
|
218 |
+
"step": 875
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 0.18,
|
222 |
+
"learning_rate": 9.12e-06,
|
223 |
+
"loss": 0.374,
|
224 |
+
"step": 900
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 0.18,
|
228 |
+
"learning_rate": 9.064444444444447e-06,
|
229 |
+
"loss": 0.4051,
|
230 |
+
"step": 925
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 0.19,
|
234 |
+
"learning_rate": 9.008888888888889e-06,
|
235 |
+
"loss": 0.3806,
|
236 |
+
"step": 950
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 0.2,
|
240 |
+
"learning_rate": 8.953333333333335e-06,
|
241 |
+
"loss": 0.4161,
|
242 |
+
"step": 975
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 0.2,
|
246 |
+
"learning_rate": 8.897777777777779e-06,
|
247 |
+
"loss": 0.4198,
|
248 |
+
"step": 1000
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.2,
|
252 |
+
"eval_loss": 0.41016528010368347,
|
253 |
+
"eval_runtime": 1788.2777,
|
254 |
+
"eval_samples_per_second": 3.686,
|
255 |
+
"eval_steps_per_second": 0.461,
|
256 |
+
"eval_wer": 28.34865729677184,
|
257 |
+
"step": 1000
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"epoch": 0.2,
|
261 |
+
"learning_rate": 8.842222222222223e-06,
|
262 |
+
"loss": 0.409,
|
263 |
+
"step": 1025
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"epoch": 0.21,
|
267 |
+
"learning_rate": 8.786666666666668e-06,
|
268 |
+
"loss": 0.3674,
|
269 |
+
"step": 1050
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.21,
|
273 |
+
"learning_rate": 8.73111111111111e-06,
|
274 |
+
"loss": 0.3591,
|
275 |
+
"step": 1075
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.22,
|
279 |
+
"learning_rate": 8.675555555555556e-06,
|
280 |
+
"loss": 0.3892,
|
281 |
+
"step": 1100
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"epoch": 0.23,
|
285 |
+
"learning_rate": 8.62e-06,
|
286 |
+
"loss": 0.3843,
|
287 |
+
"step": 1125
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"epoch": 0.23,
|
291 |
+
"learning_rate": 8.564444444444445e-06,
|
292 |
+
"loss": 0.3605,
|
293 |
+
"step": 1150
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"epoch": 0.23,
|
297 |
+
"learning_rate": 8.50888888888889e-06,
|
298 |
+
"loss": 0.326,
|
299 |
+
"step": 1175
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"epoch": 0.24,
|
303 |
+
"learning_rate": 8.453333333333334e-06,
|
304 |
+
"loss": 0.3103,
|
305 |
+
"step": 1200
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"epoch": 0.24,
|
309 |
+
"learning_rate": 8.397777777777778e-06,
|
310 |
+
"loss": 0.2766,
|
311 |
+
"step": 1225
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 0.25,
|
315 |
+
"learning_rate": 8.342222222222222e-06,
|
316 |
+
"loss": 0.3204,
|
317 |
+
"step": 1250
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.26,
|
321 |
+
"learning_rate": 8.286666666666668e-06,
|
322 |
+
"loss": 0.3426,
|
323 |
+
"step": 1275
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"epoch": 0.26,
|
327 |
+
"learning_rate": 8.231111111111112e-06,
|
328 |
+
"loss": 0.3417,
|
329 |
+
"step": 1300
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"epoch": 0.27,
|
333 |
+
"learning_rate": 8.175555555555556e-06,
|
334 |
+
"loss": 0.3179,
|
335 |
+
"step": 1325
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"epoch": 0.27,
|
339 |
+
"learning_rate": 8.120000000000002e-06,
|
340 |
+
"loss": 0.2598,
|
341 |
+
"step": 1350
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"epoch": 0.28,
|
345 |
+
"learning_rate": 8.064444444444444e-06,
|
346 |
+
"loss": 0.3453,
|
347 |
+
"step": 1375
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"epoch": 0.28,
|
351 |
+
"learning_rate": 8.00888888888889e-06,
|
352 |
+
"loss": 0.2752,
|
353 |
+
"step": 1400
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.28,
|
357 |
+
"learning_rate": 7.953333333333334e-06,
|
358 |
+
"loss": 0.2927,
|
359 |
+
"step": 1425
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.29,
|
363 |
+
"learning_rate": 7.897777777777778e-06,
|
364 |
+
"loss": 0.3859,
|
365 |
+
"step": 1450
|
366 |
+
},
|
367 |
+
{
|
368 |
+
"epoch": 0.29,
|
369 |
+
"learning_rate": 7.842222222222224e-06,
|
370 |
+
"loss": 0.3137,
|
371 |
+
"step": 1475
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"epoch": 0.3,
|
375 |
+
"learning_rate": 7.786666666666666e-06,
|
376 |
+
"loss": 0.2678,
|
377 |
+
"step": 1500
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"epoch": 0.3,
|
381 |
+
"learning_rate": 7.731111111111112e-06,
|
382 |
+
"loss": 0.2803,
|
383 |
+
"step": 1525
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"epoch": 0.31,
|
387 |
+
"learning_rate": 7.675555555555556e-06,
|
388 |
+
"loss": 0.2828,
|
389 |
+
"step": 1550
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"epoch": 0.32,
|
393 |
+
"learning_rate": 7.620000000000001e-06,
|
394 |
+
"loss": 0.3655,
|
395 |
+
"step": 1575
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.32,
|
399 |
+
"learning_rate": 7.564444444444446e-06,
|
400 |
+
"loss": 0.3321,
|
401 |
+
"step": 1600
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.33,
|
405 |
+
"learning_rate": 7.50888888888889e-06,
|
406 |
+
"loss": 0.3649,
|
407 |
+
"step": 1625
|
408 |
+
},
|
409 |
+
{
|
410 |
+
"epoch": 0.33,
|
411 |
+
"learning_rate": 7.453333333333334e-06,
|
412 |
+
"loss": 0.3229,
|
413 |
+
"step": 1650
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"epoch": 0.34,
|
417 |
+
"learning_rate": 7.3977777777777786e-06,
|
418 |
+
"loss": 0.3115,
|
419 |
+
"step": 1675
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"epoch": 0.34,
|
423 |
+
"learning_rate": 7.342222222222223e-06,
|
424 |
+
"loss": 0.2925,
|
425 |
+
"step": 1700
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"epoch": 0.34,
|
429 |
+
"learning_rate": 7.2866666666666675e-06,
|
430 |
+
"loss": 0.3014,
|
431 |
+
"step": 1725
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"epoch": 0.35,
|
435 |
+
"learning_rate": 7.231111111111112e-06,
|
436 |
+
"loss": 0.3303,
|
437 |
+
"step": 1750
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 0.35,
|
441 |
+
"learning_rate": 7.1755555555555556e-06,
|
442 |
+
"loss": 0.3174,
|
443 |
+
"step": 1775
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.36,
|
447 |
+
"learning_rate": 7.1200000000000004e-06,
|
448 |
+
"loss": 0.3249,
|
449 |
+
"step": 1800
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"epoch": 0.36,
|
453 |
+
"learning_rate": 7.0644444444444445e-06,
|
454 |
+
"loss": 0.2678,
|
455 |
+
"step": 1825
|
456 |
+
},
|
457 |
+
{
|
458 |
+
"epoch": 0.37,
|
459 |
+
"learning_rate": 7.008888888888889e-06,
|
460 |
+
"loss": 0.3088,
|
461 |
+
"step": 1850
|
462 |
+
},
|
463 |
+
{
|
464 |
+
"epoch": 0.38,
|
465 |
+
"learning_rate": 6.953333333333334e-06,
|
466 |
+
"loss": 0.2515,
|
467 |
+
"step": 1875
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"epoch": 0.38,
|
471 |
+
"learning_rate": 6.897777777777779e-06,
|
472 |
+
"loss": 0.2838,
|
473 |
+
"step": 1900
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"epoch": 0.39,
|
477 |
+
"learning_rate": 6.842222222222222e-06,
|
478 |
+
"loss": 0.2494,
|
479 |
+
"step": 1925
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.39,
|
483 |
+
"learning_rate": 6.786666666666667e-06,
|
484 |
+
"loss": 0.205,
|
485 |
+
"step": 1950
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.4,
|
489 |
+
"learning_rate": 6.731111111111111e-06,
|
490 |
+
"loss": 0.2439,
|
491 |
+
"step": 1975
|
492 |
+
},
|
493 |
+
{
|
494 |
+
"epoch": 0.4,
|
495 |
+
"learning_rate": 6.675555555555556e-06,
|
496 |
+
"loss": 0.2547,
|
497 |
+
"step": 2000
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"epoch": 0.4,
|
501 |
+
"eval_loss": 0.31417879462242126,
|
502 |
+
"eval_runtime": 1808.8984,
|
503 |
+
"eval_samples_per_second": 3.644,
|
504 |
+
"eval_steps_per_second": 0.456,
|
505 |
+
"eval_wer": 21.643241929604276,
|
506 |
+
"step": 2000
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.41,
|
510 |
+
"learning_rate": 6.620000000000001e-06,
|
511 |
+
"loss": 0.212,
|
512 |
+
"step": 2025
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 0.41,
|
516 |
+
"learning_rate": 6.564444444444446e-06,
|
517 |
+
"loss": 0.2386,
|
518 |
+
"step": 2050
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 0.41,
|
522 |
+
"learning_rate": 6.508888888888889e-06,
|
523 |
+
"loss": 0.2429,
|
524 |
+
"step": 2075
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 0.42,
|
528 |
+
"learning_rate": 6.453333333333334e-06,
|
529 |
+
"loss": 0.3079,
|
530 |
+
"step": 2100
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 0.42,
|
534 |
+
"learning_rate": 6.397777777777778e-06,
|
535 |
+
"loss": 0.2576,
|
536 |
+
"step": 2125
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 0.43,
|
540 |
+
"learning_rate": 6.342222222222223e-06,
|
541 |
+
"loss": 0.2558,
|
542 |
+
"step": 2150
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.43,
|
546 |
+
"learning_rate": 6.286666666666668e-06,
|
547 |
+
"loss": 0.2904,
|
548 |
+
"step": 2175
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.44,
|
552 |
+
"learning_rate": 6.231111111111111e-06,
|
553 |
+
"loss": 0.2423,
|
554 |
+
"step": 2200
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 0.45,
|
558 |
+
"learning_rate": 6.175555555555556e-06,
|
559 |
+
"loss": 0.255,
|
560 |
+
"step": 2225
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"epoch": 0.45,
|
564 |
+
"learning_rate": 6.120000000000001e-06,
|
565 |
+
"loss": 0.2142,
|
566 |
+
"step": 2250
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"epoch": 0.46,
|
570 |
+
"learning_rate": 6.064444444444445e-06,
|
571 |
+
"loss": 0.2687,
|
572 |
+
"step": 2275
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 0.46,
|
576 |
+
"learning_rate": 6.00888888888889e-06,
|
577 |
+
"loss": 0.2617,
|
578 |
+
"step": 2300
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 0.47,
|
582 |
+
"learning_rate": 5.9533333333333345e-06,
|
583 |
+
"loss": 0.2414,
|
584 |
+
"step": 2325
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.47,
|
588 |
+
"learning_rate": 5.897777777777778e-06,
|
589 |
+
"loss": 0.2048,
|
590 |
+
"step": 2350
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.47,
|
594 |
+
"learning_rate": 5.8422222222222226e-06,
|
595 |
+
"loss": 0.222,
|
596 |
+
"step": 2375
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 0.48,
|
600 |
+
"learning_rate": 5.7866666666666674e-06,
|
601 |
+
"loss": 0.2453,
|
602 |
+
"step": 2400
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"epoch": 0.48,
|
606 |
+
"learning_rate": 5.7311111111111115e-06,
|
607 |
+
"loss": 0.2099,
|
608 |
+
"step": 2425
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 0.49,
|
612 |
+
"learning_rate": 5.675555555555556e-06,
|
613 |
+
"loss": 0.2515,
|
614 |
+
"step": 2450
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 0.49,
|
618 |
+
"learning_rate": 5.620000000000001e-06,
|
619 |
+
"loss": 0.2232,
|
620 |
+
"step": 2475
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 0.5,
|
624 |
+
"learning_rate": 5.5644444444444444e-06,
|
625 |
+
"loss": 0.1946,
|
626 |
+
"step": 2500
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.51,
|
630 |
+
"learning_rate": 5.508888888888889e-06,
|
631 |
+
"loss": 0.2176,
|
632 |
+
"step": 2525
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.51,
|
636 |
+
"learning_rate": 5.453333333333334e-06,
|
637 |
+
"loss": 0.2565,
|
638 |
+
"step": 2550
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"epoch": 0.52,
|
642 |
+
"learning_rate": 5.397777777777778e-06,
|
643 |
+
"loss": 0.2452,
|
644 |
+
"step": 2575
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"epoch": 0.52,
|
648 |
+
"learning_rate": 5.342222222222223e-06,
|
649 |
+
"loss": 0.2851,
|
650 |
+
"step": 2600
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 0.53,
|
654 |
+
"learning_rate": 5.286666666666666e-06,
|
655 |
+
"loss": 0.1891,
|
656 |
+
"step": 2625
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 0.53,
|
660 |
+
"learning_rate": 5.231111111111111e-06,
|
661 |
+
"loss": 0.2404,
|
662 |
+
"step": 2650
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 0.54,
|
666 |
+
"learning_rate": 5.175555555555556e-06,
|
667 |
+
"loss": 0.2037,
|
668 |
+
"step": 2675
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 0.54,
|
672 |
+
"learning_rate": 5.12e-06,
|
673 |
+
"loss": 0.215,
|
674 |
+
"step": 2700
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.55,
|
678 |
+
"learning_rate": 5.064444444444445e-06,
|
679 |
+
"loss": 0.2115,
|
680 |
+
"step": 2725
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"epoch": 0.55,
|
684 |
+
"learning_rate": 5.00888888888889e-06,
|
685 |
+
"loss": 0.2491,
|
686 |
+
"step": 2750
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"epoch": 0.56,
|
690 |
+
"learning_rate": 4.953333333333334e-06,
|
691 |
+
"loss": 0.1979,
|
692 |
+
"step": 2775
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"epoch": 0.56,
|
696 |
+
"learning_rate": 4.897777777777778e-06,
|
697 |
+
"loss": 0.224,
|
698 |
+
"step": 2800
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 0.56,
|
702 |
+
"learning_rate": 4.842222222222223e-06,
|
703 |
+
"loss": 0.2065,
|
704 |
+
"step": 2825
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 0.57,
|
708 |
+
"learning_rate": 4.786666666666667e-06,
|
709 |
+
"loss": 0.2144,
|
710 |
+
"step": 2850
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 0.57,
|
714 |
+
"learning_rate": 4.731111111111112e-06,
|
715 |
+
"loss": 0.2141,
|
716 |
+
"step": 2875
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.58,
|
720 |
+
"learning_rate": 4.675555555555556e-06,
|
721 |
+
"loss": 0.1953,
|
722 |
+
"step": 2900
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"epoch": 0.58,
|
726 |
+
"learning_rate": 4.620000000000001e-06,
|
727 |
+
"loss": 0.1907,
|
728 |
+
"step": 2925
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"epoch": 0.59,
|
732 |
+
"learning_rate": 4.564444444444445e-06,
|
733 |
+
"loss": 0.2292,
|
734 |
+
"step": 2950
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 0.59,
|
738 |
+
"learning_rate": 4.50888888888889e-06,
|
739 |
+
"loss": 0.2164,
|
740 |
+
"step": 2975
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"epoch": 0.6,
|
744 |
+
"learning_rate": 4.453333333333334e-06,
|
745 |
+
"loss": 0.2145,
|
746 |
+
"step": 3000
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 0.6,
|
750 |
+
"eval_loss": 0.260960191488266,
|
751 |
+
"eval_runtime": 1803.5499,
|
752 |
+
"eval_samples_per_second": 3.654,
|
753 |
+
"eval_steps_per_second": 0.457,
|
754 |
+
"eval_wer": 17.515897768236865,
|
755 |
+
"step": 3000
|
756 |
+
},
|
757 |
+
{
|
758 |
+
"epoch": 0.6,
|
759 |
+
"learning_rate": 4.397777777777778e-06,
|
760 |
+
"loss": 0.1934,
|
761 |
+
"step": 3025
|
762 |
+
},
|
763 |
+
{
|
764 |
+
"epoch": 0.61,
|
765 |
+
"learning_rate": 4.3422222222222225e-06,
|
766 |
+
"loss": 0.1973,
|
767 |
+
"step": 3050
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"epoch": 0.61,
|
771 |
+
"learning_rate": 4.2866666666666666e-06,
|
772 |
+
"loss": 0.1767,
|
773 |
+
"step": 3075
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"epoch": 0.62,
|
777 |
+
"learning_rate": 4.2311111111111114e-06,
|
778 |
+
"loss": 0.1918,
|
779 |
+
"step": 3100
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.62,
|
783 |
+
"learning_rate": 4.175555555555556e-06,
|
784 |
+
"loss": 0.1946,
|
785 |
+
"step": 3125
|
786 |
+
},
|
787 |
+
{
|
788 |
+
"epoch": 0.63,
|
789 |
+
"learning_rate": 4.12e-06,
|
790 |
+
"loss": 0.1897,
|
791 |
+
"step": 3150
|
792 |
+
},
|
793 |
+
{
|
794 |
+
"epoch": 0.64,
|
795 |
+
"learning_rate": 4.064444444444444e-06,
|
796 |
+
"loss": 0.2185,
|
797 |
+
"step": 3175
|
798 |
+
},
|
799 |
+
{
|
800 |
+
"epoch": 0.64,
|
801 |
+
"learning_rate": 4.008888888888889e-06,
|
802 |
+
"loss": 0.1954,
|
803 |
+
"step": 3200
|
804 |
+
},
|
805 |
+
{
|
806 |
+
"epoch": 0.65,
|
807 |
+
"learning_rate": 3.953333333333333e-06,
|
808 |
+
"loss": 0.2318,
|
809 |
+
"step": 3225
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"epoch": 0.65,
|
813 |
+
"learning_rate": 3.897777777777778e-06,
|
814 |
+
"loss": 0.2615,
|
815 |
+
"step": 3250
|
816 |
+
},
|
817 |
+
{
|
818 |
+
"epoch": 0.66,
|
819 |
+
"learning_rate": 3.842222222222223e-06,
|
820 |
+
"loss": 0.1846,
|
821 |
+
"step": 3275
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 1.0,
|
825 |
+
"learning_rate": 3.7866666666666667e-06,
|
826 |
+
"loss": 0.222,
|
827 |
+
"step": 3300
|
828 |
+
},
|
829 |
+
{
|
830 |
+
"epoch": 1.01,
|
831 |
+
"learning_rate": 3.7311111111111116e-06,
|
832 |
+
"loss": 0.2224,
|
833 |
+
"step": 3325
|
834 |
+
},
|
835 |
+
{
|
836 |
+
"epoch": 1.01,
|
837 |
+
"learning_rate": 3.675555555555556e-06,
|
838 |
+
"loss": 0.2128,
|
839 |
+
"step": 3350
|
840 |
+
},
|
841 |
+
{
|
842 |
+
"epoch": 1.02,
|
843 |
+
"learning_rate": 3.62e-06,
|
844 |
+
"loss": 0.2002,
|
845 |
+
"step": 3375
|
846 |
+
},
|
847 |
+
{
|
848 |
+
"epoch": 1.02,
|
849 |
+
"learning_rate": 3.564444444444445e-06,
|
850 |
+
"loss": 0.1861,
|
851 |
+
"step": 3400
|
852 |
+
},
|
853 |
+
{
|
854 |
+
"epoch": 1.03,
|
855 |
+
"learning_rate": 3.508888888888889e-06,
|
856 |
+
"loss": 0.176,
|
857 |
+
"step": 3425
|
858 |
+
},
|
859 |
+
{
|
860 |
+
"epoch": 1.03,
|
861 |
+
"learning_rate": 3.4533333333333334e-06,
|
862 |
+
"loss": 0.1659,
|
863 |
+
"step": 3450
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 1.04,
|
867 |
+
"learning_rate": 3.3977777777777783e-06,
|
868 |
+
"loss": 0.1545,
|
869 |
+
"step": 3475
|
870 |
+
},
|
871 |
+
{
|
872 |
+
"epoch": 1.04,
|
873 |
+
"learning_rate": 3.3422222222222224e-06,
|
874 |
+
"loss": 0.1314,
|
875 |
+
"step": 3500
|
876 |
+
},
|
877 |
+
{
|
878 |
+
"epoch": 1.05,
|
879 |
+
"learning_rate": 3.286666666666667e-06,
|
880 |
+
"loss": 0.1573,
|
881 |
+
"step": 3525
|
882 |
+
},
|
883 |
+
{
|
884 |
+
"epoch": 1.05,
|
885 |
+
"learning_rate": 3.2311111111111117e-06,
|
886 |
+
"loss": 0.1696,
|
887 |
+
"step": 3550
|
888 |
+
},
|
889 |
+
{
|
890 |
+
"epoch": 1.06,
|
891 |
+
"learning_rate": 3.1755555555555557e-06,
|
892 |
+
"loss": 0.1348,
|
893 |
+
"step": 3575
|
894 |
+
},
|
895 |
+
{
|
896 |
+
"epoch": 1.06,
|
897 |
+
"learning_rate": 3.12e-06,
|
898 |
+
"loss": 0.1477,
|
899 |
+
"step": 3600
|
900 |
+
},
|
901 |
+
{
|
902 |
+
"epoch": 1.07,
|
903 |
+
"learning_rate": 3.064444444444445e-06,
|
904 |
+
"loss": 0.1464,
|
905 |
+
"step": 3625
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 1.07,
|
909 |
+
"learning_rate": 3.008888888888889e-06,
|
910 |
+
"loss": 0.1027,
|
911 |
+
"step": 3650
|
912 |
+
},
|
913 |
+
{
|
914 |
+
"epoch": 1.08,
|
915 |
+
"learning_rate": 2.9533333333333336e-06,
|
916 |
+
"loss": 0.1032,
|
917 |
+
"step": 3675
|
918 |
+
},
|
919 |
+
{
|
920 |
+
"epoch": 1.08,
|
921 |
+
"learning_rate": 2.8977777777777785e-06,
|
922 |
+
"loss": 0.0937,
|
923 |
+
"step": 3700
|
924 |
+
},
|
925 |
+
{
|
926 |
+
"epoch": 1.09,
|
927 |
+
"learning_rate": 2.8422222222222225e-06,
|
928 |
+
"loss": 0.0975,
|
929 |
+
"step": 3725
|
930 |
+
},
|
931 |
+
{
|
932 |
+
"epoch": 1.09,
|
933 |
+
"learning_rate": 2.786666666666667e-06,
|
934 |
+
"loss": 0.0922,
|
935 |
+
"step": 3750
|
936 |
+
},
|
937 |
+
{
|
938 |
+
"epoch": 1.1,
|
939 |
+
"learning_rate": 2.7311111111111114e-06,
|
940 |
+
"loss": 0.1045,
|
941 |
+
"step": 3775
|
942 |
+
},
|
943 |
+
{
|
944 |
+
"epoch": 1.1,
|
945 |
+
"learning_rate": 2.675555555555556e-06,
|
946 |
+
"loss": 0.0816,
|
947 |
+
"step": 3800
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 1.11,
|
951 |
+
"learning_rate": 2.6200000000000003e-06,
|
952 |
+
"loss": 0.1011,
|
953 |
+
"step": 3825
|
954 |
+
},
|
955 |
+
{
|
956 |
+
"epoch": 1.11,
|
957 |
+
"learning_rate": 2.5644444444444444e-06,
|
958 |
+
"loss": 0.0883,
|
959 |
+
"step": 3850
|
960 |
+
},
|
961 |
+
{
|
962 |
+
"epoch": 1.12,
|
963 |
+
"learning_rate": 2.5088888888888892e-06,
|
964 |
+
"loss": 0.0872,
|
965 |
+
"step": 3875
|
966 |
+
},
|
967 |
+
{
|
968 |
+
"epoch": 1.12,
|
969 |
+
"learning_rate": 2.4533333333333333e-06,
|
970 |
+
"loss": 0.1131,
|
971 |
+
"step": 3900
|
972 |
+
},
|
973 |
+
{
|
974 |
+
"epoch": 1.13,
|
975 |
+
"learning_rate": 2.397777777777778e-06,
|
976 |
+
"loss": 0.1031,
|
977 |
+
"step": 3925
|
978 |
+
},
|
979 |
+
{
|
980 |
+
"epoch": 1.13,
|
981 |
+
"learning_rate": 2.342222222222222e-06,
|
982 |
+
"loss": 0.0985,
|
983 |
+
"step": 3950
|
984 |
+
},
|
985 |
+
{
|
986 |
+
"epoch": 1.14,
|
987 |
+
"learning_rate": 2.2866666666666667e-06,
|
988 |
+
"loss": 0.1057,
|
989 |
+
"step": 3975
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 1.14,
|
993 |
+
"learning_rate": 2.2311111111111115e-06,
|
994 |
+
"loss": 0.0828,
|
995 |
+
"step": 4000
|
996 |
+
},
|
997 |
+
{
|
998 |
+
"epoch": 1.14,
|
999 |
+
"eval_loss": 0.23880085349082947,
|
1000 |
+
"eval_runtime": 1813.5298,
|
1001 |
+
"eval_samples_per_second": 3.634,
|
1002 |
+
"eval_steps_per_second": 0.454,
|
1003 |
+
"eval_wer": 15.300336182105392,
|
1004 |
+
"step": 4000
|
1005 |
+
}
|
1006 |
+
],
|
1007 |
+
"max_steps": 5000,
|
1008 |
+
"num_train_epochs": 9223372036854775807,
|
1009 |
+
"total_flos": 1.632763731050496e+19,
|
1010 |
+
"trial_name": null,
|
1011 |
+
"trial_params": null
|
1012 |
+
}
|
checkpoint-4000/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d66007a736788880333f143a38bacc2f66a8cab53d5a9aba13249e3048d3a20
|
3 |
+
size 3643
|
checkpoint-5000/config.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "openai/whisper-medium",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"activation_function": "gelu",
|
5 |
+
"architectures": [
|
6 |
+
"WhisperForConditionalGeneration"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.0,
|
9 |
+
"begin_suppress_tokens": [
|
10 |
+
220,
|
11 |
+
50257
|
12 |
+
],
|
13 |
+
"bos_token_id": 50257,
|
14 |
+
"d_model": 1024,
|
15 |
+
"decoder_attention_heads": 16,
|
16 |
+
"decoder_ffn_dim": 4096,
|
17 |
+
"decoder_layerdrop": 0.0,
|
18 |
+
"decoder_layers": 24,
|
19 |
+
"decoder_start_token_id": 50258,
|
20 |
+
"dropout": 0.0,
|
21 |
+
"encoder_attention_heads": 16,
|
22 |
+
"encoder_ffn_dim": 4096,
|
23 |
+
"encoder_layerdrop": 0.0,
|
24 |
+
"encoder_layers": 24,
|
25 |
+
"eos_token_id": 50257,
|
26 |
+
"forced_decoder_ids": null,
|
27 |
+
"init_std": 0.02,
|
28 |
+
"is_encoder_decoder": true,
|
29 |
+
"max_length": 448,
|
30 |
+
"max_source_positions": 1500,
|
31 |
+
"max_target_positions": 448,
|
32 |
+
"model_type": "whisper",
|
33 |
+
"num_hidden_layers": 24,
|
34 |
+
"num_mel_bins": 80,
|
35 |
+
"pad_token_id": 50257,
|
36 |
+
"scale_embedding": false,
|
37 |
+
"torch_dtype": "float32",
|
38 |
+
"transformers_version": "4.26.0.dev0",
|
39 |
+
"use_cache": false,
|
40 |
+
"vocab_size": 51865
|
41 |
+
}
|
checkpoint-5000/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:138dde14571c87a0be76461c59a1742a957d6d7652f96038b1740b6467ef7a87
|
3 |
+
size 6111428695
|
checkpoint-5000/preprocessor_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-5000/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b7dc0a0327257c9da0cde7a0b6d43f71479af9744f2a9ed0cc123594c0ef9a0
|
3 |
+
size 3055754841
|
checkpoint-5000/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eb47f64476f63d831ad1fce9c1b49ef741647e19d64661e8a313a248be24c6b2
|
3 |
+
size 14575
|
checkpoint-5000/scaler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19e4a8dc975c9c0a9c4d1ab192b290b422c37ba9304efb1a02e28a5a3c20d20b
|
3 |
+
size 557
|
checkpoint-5000/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a3cec5ec84fec7cef7ee38ef6273b1f5107ef84969b9aa4786aa92ac2e1831ef
|
3 |
+
size 627
|
checkpoint-5000/trainer_state.json
ADDED
@@ -0,0 +1,1261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 13.996111628660538,
|
3 |
+
"best_model_checkpoint": "./checkpoint-5000",
|
4 |
+
"epoch": 1.3408,
|
5 |
+
"global_step": 5000,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.01,
|
12 |
+
"learning_rate": 4.6000000000000004e-07,
|
13 |
+
"loss": 1.4182,
|
14 |
+
"step": 25
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.01,
|
18 |
+
"learning_rate": 9.400000000000001e-07,
|
19 |
+
"loss": 1.292,
|
20 |
+
"step": 50
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.01,
|
24 |
+
"learning_rate": 1.44e-06,
|
25 |
+
"loss": 1.0018,
|
26 |
+
"step": 75
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.02,
|
30 |
+
"learning_rate": 1.94e-06,
|
31 |
+
"loss": 0.7765,
|
32 |
+
"step": 100
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.03,
|
36 |
+
"learning_rate": 2.4400000000000004e-06,
|
37 |
+
"loss": 0.7103,
|
38 |
+
"step": 125
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.03,
|
42 |
+
"learning_rate": 2.9400000000000002e-06,
|
43 |
+
"loss": 0.6597,
|
44 |
+
"step": 150
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.04,
|
48 |
+
"learning_rate": 3.44e-06,
|
49 |
+
"loss": 0.6657,
|
50 |
+
"step": 175
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.04,
|
54 |
+
"learning_rate": 3.94e-06,
|
55 |
+
"loss": 0.5853,
|
56 |
+
"step": 200
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.04,
|
60 |
+
"learning_rate": 4.440000000000001e-06,
|
61 |
+
"loss": 0.5273,
|
62 |
+
"step": 225
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.05,
|
66 |
+
"learning_rate": 4.94e-06,
|
67 |
+
"loss": 0.5979,
|
68 |
+
"step": 250
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 0.06,
|
72 |
+
"learning_rate": 5.4400000000000004e-06,
|
73 |
+
"loss": 0.5861,
|
74 |
+
"step": 275
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.06,
|
78 |
+
"learning_rate": 5.94e-06,
|
79 |
+
"loss": 0.5085,
|
80 |
+
"step": 300
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.07,
|
84 |
+
"learning_rate": 6.440000000000001e-06,
|
85 |
+
"loss": 0.4827,
|
86 |
+
"step": 325
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.07,
|
90 |
+
"learning_rate": 6.9400000000000005e-06,
|
91 |
+
"loss": 0.4909,
|
92 |
+
"step": 350
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 0.07,
|
96 |
+
"learning_rate": 7.440000000000001e-06,
|
97 |
+
"loss": 0.4651,
|
98 |
+
"step": 375
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 0.08,
|
102 |
+
"learning_rate": 7.94e-06,
|
103 |
+
"loss": 0.494,
|
104 |
+
"step": 400
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 0.09,
|
108 |
+
"learning_rate": 8.44e-06,
|
109 |
+
"loss": 0.4188,
|
110 |
+
"step": 425
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 0.09,
|
114 |
+
"learning_rate": 8.94e-06,
|
115 |
+
"loss": 0.3849,
|
116 |
+
"step": 450
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.1,
|
120 |
+
"learning_rate": 9.440000000000001e-06,
|
121 |
+
"loss": 0.4577,
|
122 |
+
"step": 475
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.1,
|
126 |
+
"learning_rate": 9.940000000000001e-06,
|
127 |
+
"loss": 0.4415,
|
128 |
+
"step": 500
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.1,
|
132 |
+
"learning_rate": 9.951111111111111e-06,
|
133 |
+
"loss": 0.4615,
|
134 |
+
"step": 525
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 0.11,
|
138 |
+
"learning_rate": 9.895555555555557e-06,
|
139 |
+
"loss": 0.4282,
|
140 |
+
"step": 550
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 0.12,
|
144 |
+
"learning_rate": 9.842222222222223e-06,
|
145 |
+
"loss": 0.4481,
|
146 |
+
"step": 575
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 0.12,
|
150 |
+
"learning_rate": 9.786666666666667e-06,
|
151 |
+
"loss": 0.4441,
|
152 |
+
"step": 600
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 0.12,
|
156 |
+
"learning_rate": 9.731111111111113e-06,
|
157 |
+
"loss": 0.4238,
|
158 |
+
"step": 625
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.13,
|
162 |
+
"learning_rate": 9.675555555555555e-06,
|
163 |
+
"loss": 0.4245,
|
164 |
+
"step": 650
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.14,
|
168 |
+
"learning_rate": 9.620000000000001e-06,
|
169 |
+
"loss": 0.4118,
|
170 |
+
"step": 675
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.14,
|
174 |
+
"learning_rate": 9.564444444444445e-06,
|
175 |
+
"loss": 0.4111,
|
176 |
+
"step": 700
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 0.14,
|
180 |
+
"learning_rate": 9.508888888888889e-06,
|
181 |
+
"loss": 0.3642,
|
182 |
+
"step": 725
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 0.15,
|
186 |
+
"learning_rate": 9.453333333333335e-06,
|
187 |
+
"loss": 0.401,
|
188 |
+
"step": 750
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 0.15,
|
192 |
+
"learning_rate": 9.397777777777779e-06,
|
193 |
+
"loss": 0.3855,
|
194 |
+
"step": 775
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 0.16,
|
198 |
+
"learning_rate": 9.342222222222223e-06,
|
199 |
+
"loss": 0.3668,
|
200 |
+
"step": 800
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.17,
|
204 |
+
"learning_rate": 9.286666666666667e-06,
|
205 |
+
"loss": 0.3794,
|
206 |
+
"step": 825
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.17,
|
210 |
+
"learning_rate": 9.231111111111111e-06,
|
211 |
+
"loss": 0.4296,
|
212 |
+
"step": 850
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.17,
|
216 |
+
"learning_rate": 9.175555555555557e-06,
|
217 |
+
"loss": 0.4003,
|
218 |
+
"step": 875
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 0.18,
|
222 |
+
"learning_rate": 9.12e-06,
|
223 |
+
"loss": 0.374,
|
224 |
+
"step": 900
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 0.18,
|
228 |
+
"learning_rate": 9.064444444444447e-06,
|
229 |
+
"loss": 0.4051,
|
230 |
+
"step": 925
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 0.19,
|
234 |
+
"learning_rate": 9.008888888888889e-06,
|
235 |
+
"loss": 0.3806,
|
236 |
+
"step": 950
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 0.2,
|
240 |
+
"learning_rate": 8.953333333333335e-06,
|
241 |
+
"loss": 0.4161,
|
242 |
+
"step": 975
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 0.2,
|
246 |
+
"learning_rate": 8.897777777777779e-06,
|
247 |
+
"loss": 0.4198,
|
248 |
+
"step": 1000
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.2,
|
252 |
+
"eval_loss": 0.41016528010368347,
|
253 |
+
"eval_runtime": 1788.2777,
|
254 |
+
"eval_samples_per_second": 3.686,
|
255 |
+
"eval_steps_per_second": 0.461,
|
256 |
+
"eval_wer": 28.34865729677184,
|
257 |
+
"step": 1000
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"epoch": 0.2,
|
261 |
+
"learning_rate": 8.842222222222223e-06,
|
262 |
+
"loss": 0.409,
|
263 |
+
"step": 1025
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"epoch": 0.21,
|
267 |
+
"learning_rate": 8.786666666666668e-06,
|
268 |
+
"loss": 0.3674,
|
269 |
+
"step": 1050
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.21,
|
273 |
+
"learning_rate": 8.73111111111111e-06,
|
274 |
+
"loss": 0.3591,
|
275 |
+
"step": 1075
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.22,
|
279 |
+
"learning_rate": 8.675555555555556e-06,
|
280 |
+
"loss": 0.3892,
|
281 |
+
"step": 1100
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"epoch": 0.23,
|
285 |
+
"learning_rate": 8.62e-06,
|
286 |
+
"loss": 0.3843,
|
287 |
+
"step": 1125
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"epoch": 0.23,
|
291 |
+
"learning_rate": 8.564444444444445e-06,
|
292 |
+
"loss": 0.3605,
|
293 |
+
"step": 1150
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"epoch": 0.23,
|
297 |
+
"learning_rate": 8.50888888888889e-06,
|
298 |
+
"loss": 0.326,
|
299 |
+
"step": 1175
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"epoch": 0.24,
|
303 |
+
"learning_rate": 8.453333333333334e-06,
|
304 |
+
"loss": 0.3103,
|
305 |
+
"step": 1200
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"epoch": 0.24,
|
309 |
+
"learning_rate": 8.397777777777778e-06,
|
310 |
+
"loss": 0.2766,
|
311 |
+
"step": 1225
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 0.25,
|
315 |
+
"learning_rate": 8.342222222222222e-06,
|
316 |
+
"loss": 0.3204,
|
317 |
+
"step": 1250
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.26,
|
321 |
+
"learning_rate": 8.286666666666668e-06,
|
322 |
+
"loss": 0.3426,
|
323 |
+
"step": 1275
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"epoch": 0.26,
|
327 |
+
"learning_rate": 8.231111111111112e-06,
|
328 |
+
"loss": 0.3417,
|
329 |
+
"step": 1300
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"epoch": 0.27,
|
333 |
+
"learning_rate": 8.175555555555556e-06,
|
334 |
+
"loss": 0.3179,
|
335 |
+
"step": 1325
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"epoch": 0.27,
|
339 |
+
"learning_rate": 8.120000000000002e-06,
|
340 |
+
"loss": 0.2598,
|
341 |
+
"step": 1350
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"epoch": 0.28,
|
345 |
+
"learning_rate": 8.064444444444444e-06,
|
346 |
+
"loss": 0.3453,
|
347 |
+
"step": 1375
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"epoch": 0.28,
|
351 |
+
"learning_rate": 8.00888888888889e-06,
|
352 |
+
"loss": 0.2752,
|
353 |
+
"step": 1400
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.28,
|
357 |
+
"learning_rate": 7.953333333333334e-06,
|
358 |
+
"loss": 0.2927,
|
359 |
+
"step": 1425
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.29,
|
363 |
+
"learning_rate": 7.897777777777778e-06,
|
364 |
+
"loss": 0.3859,
|
365 |
+
"step": 1450
|
366 |
+
},
|
367 |
+
{
|
368 |
+
"epoch": 0.29,
|
369 |
+
"learning_rate": 7.842222222222224e-06,
|
370 |
+
"loss": 0.3137,
|
371 |
+
"step": 1475
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"epoch": 0.3,
|
375 |
+
"learning_rate": 7.786666666666666e-06,
|
376 |
+
"loss": 0.2678,
|
377 |
+
"step": 1500
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"epoch": 0.3,
|
381 |
+
"learning_rate": 7.731111111111112e-06,
|
382 |
+
"loss": 0.2803,
|
383 |
+
"step": 1525
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"epoch": 0.31,
|
387 |
+
"learning_rate": 7.675555555555556e-06,
|
388 |
+
"loss": 0.2828,
|
389 |
+
"step": 1550
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"epoch": 0.32,
|
393 |
+
"learning_rate": 7.620000000000001e-06,
|
394 |
+
"loss": 0.3655,
|
395 |
+
"step": 1575
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.32,
|
399 |
+
"learning_rate": 7.564444444444446e-06,
|
400 |
+
"loss": 0.3321,
|
401 |
+
"step": 1600
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.33,
|
405 |
+
"learning_rate": 7.50888888888889e-06,
|
406 |
+
"loss": 0.3649,
|
407 |
+
"step": 1625
|
408 |
+
},
|
409 |
+
{
|
410 |
+
"epoch": 0.33,
|
411 |
+
"learning_rate": 7.453333333333334e-06,
|
412 |
+
"loss": 0.3229,
|
413 |
+
"step": 1650
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"epoch": 0.34,
|
417 |
+
"learning_rate": 7.3977777777777786e-06,
|
418 |
+
"loss": 0.3115,
|
419 |
+
"step": 1675
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"epoch": 0.34,
|
423 |
+
"learning_rate": 7.342222222222223e-06,
|
424 |
+
"loss": 0.2925,
|
425 |
+
"step": 1700
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"epoch": 0.34,
|
429 |
+
"learning_rate": 7.2866666666666675e-06,
|
430 |
+
"loss": 0.3014,
|
431 |
+
"step": 1725
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"epoch": 0.35,
|
435 |
+
"learning_rate": 7.231111111111112e-06,
|
436 |
+
"loss": 0.3303,
|
437 |
+
"step": 1750
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 0.35,
|
441 |
+
"learning_rate": 7.1755555555555556e-06,
|
442 |
+
"loss": 0.3174,
|
443 |
+
"step": 1775
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.36,
|
447 |
+
"learning_rate": 7.1200000000000004e-06,
|
448 |
+
"loss": 0.3249,
|
449 |
+
"step": 1800
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"epoch": 0.36,
|
453 |
+
"learning_rate": 7.0644444444444445e-06,
|
454 |
+
"loss": 0.2678,
|
455 |
+
"step": 1825
|
456 |
+
},
|
457 |
+
{
|
458 |
+
"epoch": 0.37,
|
459 |
+
"learning_rate": 7.008888888888889e-06,
|
460 |
+
"loss": 0.3088,
|
461 |
+
"step": 1850
|
462 |
+
},
|
463 |
+
{
|
464 |
+
"epoch": 0.38,
|
465 |
+
"learning_rate": 6.953333333333334e-06,
|
466 |
+
"loss": 0.2515,
|
467 |
+
"step": 1875
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"epoch": 0.38,
|
471 |
+
"learning_rate": 6.897777777777779e-06,
|
472 |
+
"loss": 0.2838,
|
473 |
+
"step": 1900
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"epoch": 0.39,
|
477 |
+
"learning_rate": 6.842222222222222e-06,
|
478 |
+
"loss": 0.2494,
|
479 |
+
"step": 1925
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.39,
|
483 |
+
"learning_rate": 6.786666666666667e-06,
|
484 |
+
"loss": 0.205,
|
485 |
+
"step": 1950
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.4,
|
489 |
+
"learning_rate": 6.731111111111111e-06,
|
490 |
+
"loss": 0.2439,
|
491 |
+
"step": 1975
|
492 |
+
},
|
493 |
+
{
|
494 |
+
"epoch": 0.4,
|
495 |
+
"learning_rate": 6.675555555555556e-06,
|
496 |
+
"loss": 0.2547,
|
497 |
+
"step": 2000
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"epoch": 0.4,
|
501 |
+
"eval_loss": 0.31417879462242126,
|
502 |
+
"eval_runtime": 1808.8984,
|
503 |
+
"eval_samples_per_second": 3.644,
|
504 |
+
"eval_steps_per_second": 0.456,
|
505 |
+
"eval_wer": 21.643241929604276,
|
506 |
+
"step": 2000
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.41,
|
510 |
+
"learning_rate": 6.620000000000001e-06,
|
511 |
+
"loss": 0.212,
|
512 |
+
"step": 2025
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 0.41,
|
516 |
+
"learning_rate": 6.564444444444446e-06,
|
517 |
+
"loss": 0.2386,
|
518 |
+
"step": 2050
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 0.41,
|
522 |
+
"learning_rate": 6.508888888888889e-06,
|
523 |
+
"loss": 0.2429,
|
524 |
+
"step": 2075
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 0.42,
|
528 |
+
"learning_rate": 6.453333333333334e-06,
|
529 |
+
"loss": 0.3079,
|
530 |
+
"step": 2100
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 0.42,
|
534 |
+
"learning_rate": 6.397777777777778e-06,
|
535 |
+
"loss": 0.2576,
|
536 |
+
"step": 2125
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 0.43,
|
540 |
+
"learning_rate": 6.342222222222223e-06,
|
541 |
+
"loss": 0.2558,
|
542 |
+
"step": 2150
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.43,
|
546 |
+
"learning_rate": 6.286666666666668e-06,
|
547 |
+
"loss": 0.2904,
|
548 |
+
"step": 2175
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.44,
|
552 |
+
"learning_rate": 6.231111111111111e-06,
|
553 |
+
"loss": 0.2423,
|
554 |
+
"step": 2200
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 0.45,
|
558 |
+
"learning_rate": 6.175555555555556e-06,
|
559 |
+
"loss": 0.255,
|
560 |
+
"step": 2225
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"epoch": 0.45,
|
564 |
+
"learning_rate": 6.120000000000001e-06,
|
565 |
+
"loss": 0.2142,
|
566 |
+
"step": 2250
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"epoch": 0.46,
|
570 |
+
"learning_rate": 6.064444444444445e-06,
|
571 |
+
"loss": 0.2687,
|
572 |
+
"step": 2275
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 0.46,
|
576 |
+
"learning_rate": 6.00888888888889e-06,
|
577 |
+
"loss": 0.2617,
|
578 |
+
"step": 2300
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 0.47,
|
582 |
+
"learning_rate": 5.9533333333333345e-06,
|
583 |
+
"loss": 0.2414,
|
584 |
+
"step": 2325
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.47,
|
588 |
+
"learning_rate": 5.897777777777778e-06,
|
589 |
+
"loss": 0.2048,
|
590 |
+
"step": 2350
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.47,
|
594 |
+
"learning_rate": 5.8422222222222226e-06,
|
595 |
+
"loss": 0.222,
|
596 |
+
"step": 2375
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 0.48,
|
600 |
+
"learning_rate": 5.7866666666666674e-06,
|
601 |
+
"loss": 0.2453,
|
602 |
+
"step": 2400
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"epoch": 0.48,
|
606 |
+
"learning_rate": 5.7311111111111115e-06,
|
607 |
+
"loss": 0.2099,
|
608 |
+
"step": 2425
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 0.49,
|
612 |
+
"learning_rate": 5.675555555555556e-06,
|
613 |
+
"loss": 0.2515,
|
614 |
+
"step": 2450
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 0.49,
|
618 |
+
"learning_rate": 5.620000000000001e-06,
|
619 |
+
"loss": 0.2232,
|
620 |
+
"step": 2475
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 0.5,
|
624 |
+
"learning_rate": 5.5644444444444444e-06,
|
625 |
+
"loss": 0.1946,
|
626 |
+
"step": 2500
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.51,
|
630 |
+
"learning_rate": 5.508888888888889e-06,
|
631 |
+
"loss": 0.2176,
|
632 |
+
"step": 2525
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.51,
|
636 |
+
"learning_rate": 5.453333333333334e-06,
|
637 |
+
"loss": 0.2565,
|
638 |
+
"step": 2550
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"epoch": 0.52,
|
642 |
+
"learning_rate": 5.397777777777778e-06,
|
643 |
+
"loss": 0.2452,
|
644 |
+
"step": 2575
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"epoch": 0.52,
|
648 |
+
"learning_rate": 5.342222222222223e-06,
|
649 |
+
"loss": 0.2851,
|
650 |
+
"step": 2600
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 0.53,
|
654 |
+
"learning_rate": 5.286666666666666e-06,
|
655 |
+
"loss": 0.1891,
|
656 |
+
"step": 2625
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 0.53,
|
660 |
+
"learning_rate": 5.231111111111111e-06,
|
661 |
+
"loss": 0.2404,
|
662 |
+
"step": 2650
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 0.54,
|
666 |
+
"learning_rate": 5.175555555555556e-06,
|
667 |
+
"loss": 0.2037,
|
668 |
+
"step": 2675
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 0.54,
|
672 |
+
"learning_rate": 5.12e-06,
|
673 |
+
"loss": 0.215,
|
674 |
+
"step": 2700
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.55,
|
678 |
+
"learning_rate": 5.064444444444445e-06,
|
679 |
+
"loss": 0.2115,
|
680 |
+
"step": 2725
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"epoch": 0.55,
|
684 |
+
"learning_rate": 5.00888888888889e-06,
|
685 |
+
"loss": 0.2491,
|
686 |
+
"step": 2750
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"epoch": 0.56,
|
690 |
+
"learning_rate": 4.953333333333334e-06,
|
691 |
+
"loss": 0.1979,
|
692 |
+
"step": 2775
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"epoch": 0.56,
|
696 |
+
"learning_rate": 4.897777777777778e-06,
|
697 |
+
"loss": 0.224,
|
698 |
+
"step": 2800
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 0.56,
|
702 |
+
"learning_rate": 4.842222222222223e-06,
|
703 |
+
"loss": 0.2065,
|
704 |
+
"step": 2825
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 0.57,
|
708 |
+
"learning_rate": 4.786666666666667e-06,
|
709 |
+
"loss": 0.2144,
|
710 |
+
"step": 2850
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 0.57,
|
714 |
+
"learning_rate": 4.731111111111112e-06,
|
715 |
+
"loss": 0.2141,
|
716 |
+
"step": 2875
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.58,
|
720 |
+
"learning_rate": 4.675555555555556e-06,
|
721 |
+
"loss": 0.1953,
|
722 |
+
"step": 2900
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"epoch": 0.58,
|
726 |
+
"learning_rate": 4.620000000000001e-06,
|
727 |
+
"loss": 0.1907,
|
728 |
+
"step": 2925
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"epoch": 0.59,
|
732 |
+
"learning_rate": 4.564444444444445e-06,
|
733 |
+
"loss": 0.2292,
|
734 |
+
"step": 2950
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 0.59,
|
738 |
+
"learning_rate": 4.50888888888889e-06,
|
739 |
+
"loss": 0.2164,
|
740 |
+
"step": 2975
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"epoch": 0.6,
|
744 |
+
"learning_rate": 4.453333333333334e-06,
|
745 |
+
"loss": 0.2145,
|
746 |
+
"step": 3000
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 0.6,
|
750 |
+
"eval_loss": 0.260960191488266,
|
751 |
+
"eval_runtime": 1803.5499,
|
752 |
+
"eval_samples_per_second": 3.654,
|
753 |
+
"eval_steps_per_second": 0.457,
|
754 |
+
"eval_wer": 17.515897768236865,
|
755 |
+
"step": 3000
|
756 |
+
},
|
757 |
+
{
|
758 |
+
"epoch": 0.6,
|
759 |
+
"learning_rate": 4.397777777777778e-06,
|
760 |
+
"loss": 0.1934,
|
761 |
+
"step": 3025
|
762 |
+
},
|
763 |
+
{
|
764 |
+
"epoch": 0.61,
|
765 |
+
"learning_rate": 4.3422222222222225e-06,
|
766 |
+
"loss": 0.1973,
|
767 |
+
"step": 3050
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"epoch": 0.61,
|
771 |
+
"learning_rate": 4.2866666666666666e-06,
|
772 |
+
"loss": 0.1767,
|
773 |
+
"step": 3075
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"epoch": 0.62,
|
777 |
+
"learning_rate": 4.2311111111111114e-06,
|
778 |
+
"loss": 0.1918,
|
779 |
+
"step": 3100
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.62,
|
783 |
+
"learning_rate": 4.175555555555556e-06,
|
784 |
+
"loss": 0.1946,
|
785 |
+
"step": 3125
|
786 |
+
},
|
787 |
+
{
|
788 |
+
"epoch": 0.63,
|
789 |
+
"learning_rate": 4.12e-06,
|
790 |
+
"loss": 0.1897,
|
791 |
+
"step": 3150
|
792 |
+
},
|
793 |
+
{
|
794 |
+
"epoch": 0.64,
|
795 |
+
"learning_rate": 4.064444444444444e-06,
|
796 |
+
"loss": 0.2185,
|
797 |
+
"step": 3175
|
798 |
+
},
|
799 |
+
{
|
800 |
+
"epoch": 0.64,
|
801 |
+
"learning_rate": 4.008888888888889e-06,
|
802 |
+
"loss": 0.1954,
|
803 |
+
"step": 3200
|
804 |
+
},
|
805 |
+
{
|
806 |
+
"epoch": 0.65,
|
807 |
+
"learning_rate": 3.953333333333333e-06,
|
808 |
+
"loss": 0.2318,
|
809 |
+
"step": 3225
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"epoch": 0.65,
|
813 |
+
"learning_rate": 3.897777777777778e-06,
|
814 |
+
"loss": 0.2615,
|
815 |
+
"step": 3250
|
816 |
+
},
|
817 |
+
{
|
818 |
+
"epoch": 0.66,
|
819 |
+
"learning_rate": 3.842222222222223e-06,
|
820 |
+
"loss": 0.1846,
|
821 |
+
"step": 3275
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 1.0,
|
825 |
+
"learning_rate": 3.7866666666666667e-06,
|
826 |
+
"loss": 0.222,
|
827 |
+
"step": 3300
|
828 |
+
},
|
829 |
+
{
|
830 |
+
"epoch": 1.01,
|
831 |
+
"learning_rate": 3.7311111111111116e-06,
|
832 |
+
"loss": 0.2224,
|
833 |
+
"step": 3325
|
834 |
+
},
|
835 |
+
{
|
836 |
+
"epoch": 1.01,
|
837 |
+
"learning_rate": 3.675555555555556e-06,
|
838 |
+
"loss": 0.2128,
|
839 |
+
"step": 3350
|
840 |
+
},
|
841 |
+
{
|
842 |
+
"epoch": 1.02,
|
843 |
+
"learning_rate": 3.62e-06,
|
844 |
+
"loss": 0.2002,
|
845 |
+
"step": 3375
|
846 |
+
},
|
847 |
+
{
|
848 |
+
"epoch": 1.02,
|
849 |
+
"learning_rate": 3.564444444444445e-06,
|
850 |
+
"loss": 0.1861,
|
851 |
+
"step": 3400
|
852 |
+
},
|
853 |
+
{
|
854 |
+
"epoch": 1.03,
|
855 |
+
"learning_rate": 3.508888888888889e-06,
|
856 |
+
"loss": 0.176,
|
857 |
+
"step": 3425
|
858 |
+
},
|
859 |
+
{
|
860 |
+
"epoch": 1.03,
|
861 |
+
"learning_rate": 3.4533333333333334e-06,
|
862 |
+
"loss": 0.1659,
|
863 |
+
"step": 3450
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 1.04,
|
867 |
+
"learning_rate": 3.3977777777777783e-06,
|
868 |
+
"loss": 0.1545,
|
869 |
+
"step": 3475
|
870 |
+
},
|
871 |
+
{
|
872 |
+
"epoch": 1.04,
|
873 |
+
"learning_rate": 3.3422222222222224e-06,
|
874 |
+
"loss": 0.1314,
|
875 |
+
"step": 3500
|
876 |
+
},
|
877 |
+
{
|
878 |
+
"epoch": 1.05,
|
879 |
+
"learning_rate": 3.286666666666667e-06,
|
880 |
+
"loss": 0.1573,
|
881 |
+
"step": 3525
|
882 |
+
},
|
883 |
+
{
|
884 |
+
"epoch": 1.05,
|
885 |
+
"learning_rate": 3.2311111111111117e-06,
|
886 |
+
"loss": 0.1696,
|
887 |
+
"step": 3550
|
888 |
+
},
|
889 |
+
{
|
890 |
+
"epoch": 1.06,
|
891 |
+
"learning_rate": 3.1755555555555557e-06,
|
892 |
+
"loss": 0.1348,
|
893 |
+
"step": 3575
|
894 |
+
},
|
895 |
+
{
|
896 |
+
"epoch": 1.06,
|
897 |
+
"learning_rate": 3.12e-06,
|
898 |
+
"loss": 0.1477,
|
899 |
+
"step": 3600
|
900 |
+
},
|
901 |
+
{
|
902 |
+
"epoch": 1.07,
|
903 |
+
"learning_rate": 3.064444444444445e-06,
|
904 |
+
"loss": 0.1464,
|
905 |
+
"step": 3625
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 1.07,
|
909 |
+
"learning_rate": 3.008888888888889e-06,
|
910 |
+
"loss": 0.1027,
|
911 |
+
"step": 3650
|
912 |
+
},
|
913 |
+
{
|
914 |
+
"epoch": 1.08,
|
915 |
+
"learning_rate": 2.9533333333333336e-06,
|
916 |
+
"loss": 0.1032,
|
917 |
+
"step": 3675
|
918 |
+
},
|
919 |
+
{
|
920 |
+
"epoch": 1.08,
|
921 |
+
"learning_rate": 2.8977777777777785e-06,
|
922 |
+
"loss": 0.0937,
|
923 |
+
"step": 3700
|
924 |
+
},
|
925 |
+
{
|
926 |
+
"epoch": 1.09,
|
927 |
+
"learning_rate": 2.8422222222222225e-06,
|
928 |
+
"loss": 0.0975,
|
929 |
+
"step": 3725
|
930 |
+
},
|
931 |
+
{
|
932 |
+
"epoch": 1.09,
|
933 |
+
"learning_rate": 2.786666666666667e-06,
|
934 |
+
"loss": 0.0922,
|
935 |
+
"step": 3750
|
936 |
+
},
|
937 |
+
{
|
938 |
+
"epoch": 1.1,
|
939 |
+
"learning_rate": 2.7311111111111114e-06,
|
940 |
+
"loss": 0.1045,
|
941 |
+
"step": 3775
|
942 |
+
},
|
943 |
+
{
|
944 |
+
"epoch": 1.1,
|
945 |
+
"learning_rate": 2.675555555555556e-06,
|
946 |
+
"loss": 0.0816,
|
947 |
+
"step": 3800
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 1.11,
|
951 |
+
"learning_rate": 2.6200000000000003e-06,
|
952 |
+
"loss": 0.1011,
|
953 |
+
"step": 3825
|
954 |
+
},
|
955 |
+
{
|
956 |
+
"epoch": 1.11,
|
957 |
+
"learning_rate": 2.5644444444444444e-06,
|
958 |
+
"loss": 0.0883,
|
959 |
+
"step": 3850
|
960 |
+
},
|
961 |
+
{
|
962 |
+
"epoch": 1.12,
|
963 |
+
"learning_rate": 2.5088888888888892e-06,
|
964 |
+
"loss": 0.0872,
|
965 |
+
"step": 3875
|
966 |
+
},
|
967 |
+
{
|
968 |
+
"epoch": 1.12,
|
969 |
+
"learning_rate": 2.4533333333333333e-06,
|
970 |
+
"loss": 0.1131,
|
971 |
+
"step": 3900
|
972 |
+
},
|
973 |
+
{
|
974 |
+
"epoch": 1.13,
|
975 |
+
"learning_rate": 2.397777777777778e-06,
|
976 |
+
"loss": 0.1031,
|
977 |
+
"step": 3925
|
978 |
+
},
|
979 |
+
{
|
980 |
+
"epoch": 1.13,
|
981 |
+
"learning_rate": 2.342222222222222e-06,
|
982 |
+
"loss": 0.0985,
|
983 |
+
"step": 3950
|
984 |
+
},
|
985 |
+
{
|
986 |
+
"epoch": 1.14,
|
987 |
+
"learning_rate": 2.2866666666666667e-06,
|
988 |
+
"loss": 0.1057,
|
989 |
+
"step": 3975
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 1.14,
|
993 |
+
"learning_rate": 2.2311111111111115e-06,
|
994 |
+
"loss": 0.0828,
|
995 |
+
"step": 4000
|
996 |
+
},
|
997 |
+
{
|
998 |
+
"epoch": 1.14,
|
999 |
+
"eval_loss": 0.23880085349082947,
|
1000 |
+
"eval_runtime": 1813.5298,
|
1001 |
+
"eval_samples_per_second": 3.634,
|
1002 |
+
"eval_steps_per_second": 0.454,
|
1003 |
+
"eval_wer": 15.300336182105392,
|
1004 |
+
"step": 4000
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 1.15,
|
1008 |
+
"learning_rate": 2.1755555555555556e-06,
|
1009 |
+
"loss": 0.0873,
|
1010 |
+
"step": 4025
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 1.15,
|
1014 |
+
"learning_rate": 2.12e-06,
|
1015 |
+
"loss": 0.0848,
|
1016 |
+
"step": 4050
|
1017 |
+
},
|
1018 |
+
{
|
1019 |
+
"epoch": 1.16,
|
1020 |
+
"learning_rate": 2.064444444444445e-06,
|
1021 |
+
"loss": 0.0936,
|
1022 |
+
"step": 4075
|
1023 |
+
},
|
1024 |
+
{
|
1025 |
+
"epoch": 1.16,
|
1026 |
+
"learning_rate": 2.008888888888889e-06,
|
1027 |
+
"loss": 0.0965,
|
1028 |
+
"step": 4100
|
1029 |
+
},
|
1030 |
+
{
|
1031 |
+
"epoch": 1.17,
|
1032 |
+
"learning_rate": 1.9533333333333334e-06,
|
1033 |
+
"loss": 0.0923,
|
1034 |
+
"step": 4125
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"epoch": 1.17,
|
1038 |
+
"learning_rate": 1.8977777777777779e-06,
|
1039 |
+
"loss": 0.0793,
|
1040 |
+
"step": 4150
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 1.18,
|
1044 |
+
"learning_rate": 1.8422222222222225e-06,
|
1045 |
+
"loss": 0.0848,
|
1046 |
+
"step": 4175
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"epoch": 1.18,
|
1050 |
+
"learning_rate": 1.7866666666666668e-06,
|
1051 |
+
"loss": 0.0956,
|
1052 |
+
"step": 4200
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 1.19,
|
1056 |
+
"learning_rate": 1.7311111111111112e-06,
|
1057 |
+
"loss": 0.0814,
|
1058 |
+
"step": 4225
|
1059 |
+
},
|
1060 |
+
{
|
1061 |
+
"epoch": 1.19,
|
1062 |
+
"learning_rate": 1.675555555555556e-06,
|
1063 |
+
"loss": 0.1086,
|
1064 |
+
"step": 4250
|
1065 |
+
},
|
1066 |
+
{
|
1067 |
+
"epoch": 1.2,
|
1068 |
+
"learning_rate": 1.6200000000000002e-06,
|
1069 |
+
"loss": 0.1057,
|
1070 |
+
"step": 4275
|
1071 |
+
},
|
1072 |
+
{
|
1073 |
+
"epoch": 1.2,
|
1074 |
+
"learning_rate": 1.5644444444444446e-06,
|
1075 |
+
"loss": 0.091,
|
1076 |
+
"step": 4300
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"epoch": 1.21,
|
1080 |
+
"learning_rate": 1.5088888888888889e-06,
|
1081 |
+
"loss": 0.0857,
|
1082 |
+
"step": 4325
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 1.21,
|
1086 |
+
"learning_rate": 1.4533333333333335e-06,
|
1087 |
+
"loss": 0.0904,
|
1088 |
+
"step": 4350
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 1.22,
|
1092 |
+
"learning_rate": 1.397777777777778e-06,
|
1093 |
+
"loss": 0.0714,
|
1094 |
+
"step": 4375
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 1.22,
|
1098 |
+
"learning_rate": 1.3422222222222222e-06,
|
1099 |
+
"loss": 0.071,
|
1100 |
+
"step": 4400
|
1101 |
+
},
|
1102 |
+
{
|
1103 |
+
"epoch": 1.23,
|
1104 |
+
"learning_rate": 1.286666666666667e-06,
|
1105 |
+
"loss": 0.0689,
|
1106 |
+
"step": 4425
|
1107 |
+
},
|
1108 |
+
{
|
1109 |
+
"epoch": 1.23,
|
1110 |
+
"learning_rate": 1.2311111111111112e-06,
|
1111 |
+
"loss": 0.0597,
|
1112 |
+
"step": 4450
|
1113 |
+
},
|
1114 |
+
{
|
1115 |
+
"epoch": 1.24,
|
1116 |
+
"learning_rate": 1.1755555555555556e-06,
|
1117 |
+
"loss": 0.0737,
|
1118 |
+
"step": 4475
|
1119 |
+
},
|
1120 |
+
{
|
1121 |
+
"epoch": 1.24,
|
1122 |
+
"learning_rate": 1.12e-06,
|
1123 |
+
"loss": 0.0712,
|
1124 |
+
"step": 4500
|
1125 |
+
},
|
1126 |
+
{
|
1127 |
+
"epoch": 1.25,
|
1128 |
+
"learning_rate": 1.0644444444444445e-06,
|
1129 |
+
"loss": 0.0641,
|
1130 |
+
"step": 4525
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 1.25,
|
1134 |
+
"learning_rate": 1.008888888888889e-06,
|
1135 |
+
"loss": 0.0605,
|
1136 |
+
"step": 4550
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 1.26,
|
1140 |
+
"learning_rate": 9.533333333333335e-07,
|
1141 |
+
"loss": 0.0981,
|
1142 |
+
"step": 4575
|
1143 |
+
},
|
1144 |
+
{
|
1145 |
+
"epoch": 1.26,
|
1146 |
+
"learning_rate": 8.977777777777778e-07,
|
1147 |
+
"loss": 0.0751,
|
1148 |
+
"step": 4600
|
1149 |
+
},
|
1150 |
+
{
|
1151 |
+
"epoch": 1.27,
|
1152 |
+
"learning_rate": 8.422222222222224e-07,
|
1153 |
+
"loss": 0.0645,
|
1154 |
+
"step": 4625
|
1155 |
+
},
|
1156 |
+
{
|
1157 |
+
"epoch": 1.27,
|
1158 |
+
"learning_rate": 7.866666666666667e-07,
|
1159 |
+
"loss": 0.0573,
|
1160 |
+
"step": 4650
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"epoch": 1.28,
|
1164 |
+
"learning_rate": 7.311111111111112e-07,
|
1165 |
+
"loss": 0.0672,
|
1166 |
+
"step": 4675
|
1167 |
+
},
|
1168 |
+
{
|
1169 |
+
"epoch": 1.28,
|
1170 |
+
"learning_rate": 6.755555555555555e-07,
|
1171 |
+
"loss": 0.0891,
|
1172 |
+
"step": 4700
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 1.29,
|
1176 |
+
"learning_rate": 6.200000000000001e-07,
|
1177 |
+
"loss": 0.0605,
|
1178 |
+
"step": 4725
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 1.29,
|
1182 |
+
"learning_rate": 5.644444444444445e-07,
|
1183 |
+
"loss": 0.0686,
|
1184 |
+
"step": 4750
|
1185 |
+
},
|
1186 |
+
{
|
1187 |
+
"epoch": 1.3,
|
1188 |
+
"learning_rate": 5.088888888888889e-07,
|
1189 |
+
"loss": 0.0708,
|
1190 |
+
"step": 4775
|
1191 |
+
},
|
1192 |
+
{
|
1193 |
+
"epoch": 1.3,
|
1194 |
+
"learning_rate": 4.533333333333334e-07,
|
1195 |
+
"loss": 0.0594,
|
1196 |
+
"step": 4800
|
1197 |
+
},
|
1198 |
+
{
|
1199 |
+
"epoch": 1.31,
|
1200 |
+
"learning_rate": 3.9777777777777783e-07,
|
1201 |
+
"loss": 0.0615,
|
1202 |
+
"step": 4825
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 1.31,
|
1206 |
+
"learning_rate": 3.422222222222223e-07,
|
1207 |
+
"loss": 0.0574,
|
1208 |
+
"step": 4850
|
1209 |
+
},
|
1210 |
+
{
|
1211 |
+
"epoch": 1.32,
|
1212 |
+
"learning_rate": 2.866666666666667e-07,
|
1213 |
+
"loss": 0.0772,
|
1214 |
+
"step": 4875
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 1.32,
|
1218 |
+
"learning_rate": 2.3111111111111112e-07,
|
1219 |
+
"loss": 0.0713,
|
1220 |
+
"step": 4900
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 1.33,
|
1224 |
+
"learning_rate": 1.7555555555555558e-07,
|
1225 |
+
"loss": 0.0634,
|
1226 |
+
"step": 4925
|
1227 |
+
},
|
1228 |
+
{
|
1229 |
+
"epoch": 1.33,
|
1230 |
+
"learning_rate": 1.2000000000000002e-07,
|
1231 |
+
"loss": 0.078,
|
1232 |
+
"step": 4950
|
1233 |
+
},
|
1234 |
+
{
|
1235 |
+
"epoch": 1.34,
|
1236 |
+
"learning_rate": 6.444444444444445e-08,
|
1237 |
+
"loss": 0.0827,
|
1238 |
+
"step": 4975
|
1239 |
+
},
|
1240 |
+
{
|
1241 |
+
"epoch": 1.34,
|
1242 |
+
"learning_rate": 8.88888888888889e-09,
|
1243 |
+
"loss": 0.0729,
|
1244 |
+
"step": 5000
|
1245 |
+
},
|
1246 |
+
{
|
1247 |
+
"epoch": 1.34,
|
1248 |
+
"eval_loss": 0.2256375402212143,
|
1249 |
+
"eval_runtime": 1809.9109,
|
1250 |
+
"eval_samples_per_second": 3.642,
|
1251 |
+
"eval_steps_per_second": 0.455,
|
1252 |
+
"eval_wer": 13.996111628660538,
|
1253 |
+
"step": 5000
|
1254 |
+
}
|
1255 |
+
],
|
1256 |
+
"max_steps": 5000,
|
1257 |
+
"num_train_epochs": 9223372036854775807,
|
1258 |
+
"total_flos": 2.041005694058496e+19,
|
1259 |
+
"trial_name": null,
|
1260 |
+
"trial_params": null
|
1261 |
+
}
|
checkpoint-5000/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d66007a736788880333f143a38bacc2f66a8cab53d5a9aba13249e3048d3a20
|
3 |
+
size 3643
|
config.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "openai/whisper-medium",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"activation_function": "gelu",
|
5 |
+
"architectures": [
|
6 |
+
"WhisperForConditionalGeneration"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.0,
|
9 |
+
"begin_suppress_tokens": [
|
10 |
+
220,
|
11 |
+
50257
|
12 |
+
],
|
13 |
+
"bos_token_id": 50257,
|
14 |
+
"d_model": 1024,
|
15 |
+
"decoder_attention_heads": 16,
|
16 |
+
"decoder_ffn_dim": 4096,
|
17 |
+
"decoder_layerdrop": 0.0,
|
18 |
+
"decoder_layers": 24,
|
19 |
+
"decoder_start_token_id": 50258,
|
20 |
+
"dropout": 0.0,
|
21 |
+
"encoder_attention_heads": 16,
|
22 |
+
"encoder_ffn_dim": 4096,
|
23 |
+
"encoder_layerdrop": 0.0,
|
24 |
+
"encoder_layers": 24,
|
25 |
+
"eos_token_id": 50257,
|
26 |
+
"forced_decoder_ids": null,
|
27 |
+
"init_std": 0.02,
|
28 |
+
"is_encoder_decoder": true,
|
29 |
+
"max_length": 448,
|
30 |
+
"max_source_positions": 1500,
|
31 |
+
"max_target_positions": 448,
|
32 |
+
"model_type": "whisper",
|
33 |
+
"num_hidden_layers": 24,
|
34 |
+
"num_mel_bins": 80,
|
35 |
+
"pad_token_id": 50257,
|
36 |
+
"scale_embedding": false,
|
37 |
+
"torch_dtype": "float32",
|
38 |
+
"transformers_version": "4.26.0.dev0",
|
39 |
+
"use_cache": false,
|
40 |
+
"vocab_size": 51865
|
41 |
+
}
|