--- language: - eu license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer base_model: openai/whisper-medium model-index: - name: Whisper Small Basque results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: mozilla-foundation/common_voice_13_0 eu type: mozilla-foundation/common_voice_13_0 config: eu split: test args: eu metrics: - type: wer value: 12.839726193851513 name: Wer --- # Whisper Small Basque This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_13_0 eu dataset. It achieves the following results on the evaluation set: - Loss: 0.2287 - Wer: 12.8397 If you need to use this model with [whisper.cpp](https://github.com/ggerganov/whisper.cpp), you can download the ggml file: [ggml-medium-eu.bin](https://huggingface.co/xezpeleta/whisper-medium-eu/blob/main/ggml-medium.eu.bin) ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.4415 | 0.06 | 500 | 0.5092 | 36.9699 | | 0.4206 | 0.12 | 1000 | 0.4144 | 28.3365 | | 0.272 | 0.19 | 1500 | 0.3554 | 24.7438 | | 0.2681 | 0.25 | 2000 | 0.3271 | 22.1414 | | 0.2099 | 0.31 | 2500 | 0.2973 | 19.5350 | | 0.2283 | 0.38 | 3000 | 0.2760 | 18.5042 | | 0.1477 | 1.03 | 3500 | 0.2637 | 17.1493 | | 0.1008 | 1.09 | 4000 | 0.2592 | 16.3939 | | 0.0866 | 1.15 | 4500 | 0.2561 | 15.8066 | | 0.0915 | 1.21 | 5000 | 0.2411 | 15.0310 | | 0.0803 | 1.28 | 5500 | 0.2330 | 14.7616 | | 0.0674 | 1.34 | 6000 | 0.2325 | 13.8462 | | 0.0679 | 1.4 | 6500 | 0.2299 | 13.5809 | | 0.027 | 2.05 | 7000 | 0.2304 | 13.3805 | | 0.0231 | 2.11 | 7500 | 0.2287 | 12.8397 | | 0.0285 | 2.18 | 8000 | 0.2304 | 12.8883 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2