bborisv commited on
Commit
fe03f24
·
verified ·
1 Parent(s): c1273d5

Upload folder using huggingface_hub

Browse files
Files changed (31) hide show
  1. .gitattributes +1 -0
  2. original_model/config.json +4 -2
  3. original_model/generation_config.json +10 -0
  4. original_model/model-00001-of-00017.safetensors +3 -0
  5. original_model/model-00002-of-00017.safetensors +3 -0
  6. original_model/model-00003-of-00017.safetensors +3 -0
  7. original_model/model-00004-of-00017.safetensors +3 -0
  8. original_model/model-00005-of-00017.safetensors +3 -0
  9. original_model/model-00006-of-00017.safetensors +3 -0
  10. original_model/model-00007-of-00017.safetensors +3 -0
  11. original_model/model-00008-of-00017.safetensors +3 -0
  12. original_model/model-00009-of-00017.safetensors +3 -0
  13. original_model/model-00010-of-00017.safetensors +3 -0
  14. original_model/model-00011-of-00017.safetensors +3 -0
  15. original_model/model-00012-of-00017.safetensors +3 -0
  16. original_model/model-00013-of-00017.safetensors +3 -0
  17. original_model/model-00014-of-00017.safetensors +3 -0
  18. original_model/model-00015-of-00017.safetensors +3 -0
  19. original_model/model-00016-of-00017.safetensors +3 -0
  20. original_model/model-00017-of-00017.safetensors +3 -0
  21. original_model/model.safetensors.index.json +0 -0
  22. original_model/optimizer.pt +3 -0
  23. original_model/results_['boolq', 'lambada_openai', 'logiqa', 'mmlu', 'openbookqa', 'hellaswag'].json +345 -0
  24. original_model/results_['boolq', 'lambada_openai', 'logiqa', 'mmlu', 'openbookqa', 'hellaswag']_raw.json +3 -0
  25. original_model/rng_state.pth +3 -0
  26. original_model/scheduler.pt +3 -0
  27. original_model/special_tokens_map.json +7 -1
  28. original_model/tokenizer.json +2 -2
  29. original_model/tokenizer_config.json +4 -0
  30. original_model/trainer_state.json +2049 -0
  31. original_model/training_args.bin +3 -0
.gitattributes CHANGED
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  original_model/tokenizer.json filter=lfs diff=lfs merge=lfs -text
 
 
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  original_model/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ original_model/results_\['boolq',[[:space:]]'lambada_openai',[[:space:]]'logiqa',[[:space:]]'mmlu',[[:space:]]'openbookqa',[[:space:]]'hellaswag'\]_raw.json filter=lfs diff=lfs merge=lfs -text
original_model/config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "meta-llama/Llama-3.1-8B-Instruct",
3
  "architectures": [
4
  "LlamaForCausalLM"
5
  ],
@@ -24,6 +24,7 @@
24
  "num_experts": 7,
25
  "num_hidden_layers": 32,
26
  "num_key_value_heads": 8,
 
27
  "pretraining_tp": 1,
28
  "rms_norm_eps": 1e-05,
29
  "rope_scaling": {
@@ -34,8 +35,9 @@
34
  "rope_type": "llama3"
35
  },
36
  "rope_theta": 500000.0,
 
37
  "tie_word_embeddings": false,
38
- "torch_dtype": "float16",
39
  "transformers_version": "4.46.2",
40
  "use_cache": true,
41
  "vocab_size": 128256
 
1
  {
2
+ "_name_or_path": "/mnt/scratch/bborisov/models/perf_models/experts-7/original_model",
3
  "architectures": [
4
  "LlamaForCausalLM"
5
  ],
 
24
  "num_experts": 7,
25
  "num_hidden_layers": 32,
26
  "num_key_value_heads": 8,
27
+ "output_router_logits": false,
28
  "pretraining_tp": 1,
29
  "rms_norm_eps": 1e-05,
30
  "rope_scaling": {
 
35
  "rope_type": "llama3"
36
  },
37
  "rope_theta": 500000.0,
38
+ "router_loss_coef": 0,
39
  "tie_word_embeddings": false,
40
+ "torch_dtype": "bfloat16",
41
  "transformers_version": "4.46.2",
42
  "use_cache": true,
43
  "vocab_size": 128256
original_model/generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 128000,
4
+ "eos_token_id": [
5
+ 128001,
6
+ 128008,
7
+ 128009
8
+ ],
9
+ "transformers_version": "4.46.2"
10
+ }
original_model/model-00001-of-00017.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3a736a91621a8a672fd3d180650bf386210f6c2cd5444b363a9238f2614cd6d
3
+ size 4976620688
original_model/model-00002-of-00017.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92cc6ac0de9b025124bcb4faaa0015b907199e8967bd62ea83f5f65807d46d48
3
+ size 4982987152
original_model/model-00003-of-00017.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6cfa9f85bb0e0d5210770ae5f51947ec0f7ab7b5c10da0b0223bdfe39086148b
3
+ size 4982987144
original_model/model-00004-of-00017.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98e0240d98a8d771959690ad7f1052e856c91264767fc599f52f9c2917142fca
3
+ size 4982987144
original_model/model-00005-of-00017.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:404d2066a124df3bdfdd23554ee8c20aa45daade69ddd5317f501a3b321c790e
3
+ size 4982987152
original_model/model-00006-of-00017.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe12e43e339a2a0750f5438c6e8b4da10ff9b8d8ddaca0ec92dce9e5d7ad66d7
3
+ size 4982987184
original_model/model-00007-of-00017.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5be1c969a112cb3eb2db4d2e758a2eeef218a7cec5078d9fff7ea7358e2aede3
3
+ size 4982987200
original_model/model-00008-of-00017.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea2d161302078826527b56669e267e048b3260f26d8d5ac8609cd3ad962cb32b
3
+ size 4982987208
original_model/model-00009-of-00017.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ffd954c81db8266c6c707885ec03365257d34b7e0c1fc31da057e59309889a5
3
+ size 4982987200
original_model/model-00010-of-00017.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e85afb61a7a2c466308f0818445593980adce5c31702a9cd0ae9adb58bd23946
3
+ size 4982987200
original_model/model-00011-of-00017.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b1503d26ab96bb7da46503353ac29da829139480681c060751fabdff7a86e73
3
+ size 4982987208
original_model/model-00012-of-00017.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1d5ae05e5438be6389dae777cc738a5ec0e663366d5770ae1ee4580fc0d9ad8
3
+ size 4982987200
original_model/model-00013-of-00017.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:743d4bb9c77b5b0a203bd1b97cb4914ceff826c314a5332c00725b1377eed120
3
+ size 4899026584
original_model/model-00014-of-00017.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:483024037dba23b0cf68d67377670a9d37c9a9165a86605b0696eb5161b1d846
3
+ size 4982987200
original_model/model-00015-of-00017.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6a631ddb1105438bdaad205e07ea027231d603b93f9c91a3120c84426b8f82d
3
+ size 4982987200
original_model/model-00016-of-00017.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ec058cf41c4f236bb4a0c92cab81fef06d843d5ced5aa3180679ae63f877f73
3
+ size 4982987200
original_model/model-00017-of-00017.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3fc9d0c2429655545c7eeb64838464f57886fc7a520de639e35bdf9d0ca9946
3
+ size 4070732088
original_model/model.safetensors.index.json CHANGED
The diff for this file is too large to render. See raw diff
 
original_model/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ddbf549a445b5f621d4eda765cb0d086c6837ea46c9043cb85e50b4d9e2c00ea
3
+ size 3697406
original_model/results_['boolq', 'lambada_openai', 'logiqa', 'mmlu', 'openbookqa', 'hellaswag'].json ADDED
@@ -0,0 +1,345 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "boolq": {
3
+ "alias": "boolq",
4
+ "acc,none": 0.8428134556574923,
5
+ "acc_stderr,none": 0.006365990015975688
6
+ },
7
+ "hellaswag": {
8
+ "alias": "hellaswag",
9
+ "acc,none": 0.58424616610237,
10
+ "acc_stderr,none": 0.004918442328872138,
11
+ "acc_norm,none": 0.7112129057956582,
12
+ "acc_norm_stderr,none": 0.004522725412557139
13
+ },
14
+ "lambada_openai": {
15
+ "alias": "lambada_openai",
16
+ "perplexity,none": 20800.93696726465,
17
+ "perplexity_stderr,none": 1263.5031629528712,
18
+ "acc,none": 0.00038812342324859306,
19
+ "acc_stderr,none": 0.0002744180684505009
20
+ },
21
+ "logiqa": {
22
+ "alias": "logiqa",
23
+ "acc,none": 0.3210445468509985,
24
+ "acc_stderr,none": 0.018312456701476167,
25
+ "acc_norm,none": 0.3225806451612903,
26
+ "acc_norm_stderr,none": 0.01833543742125178
27
+ },
28
+ "mmlu": {
29
+ "acc,none": 0.6545363908275175,
30
+ "acc_stderr,none": 0.0038217824226365127,
31
+ "alias": "mmlu"
32
+ },
33
+ "mmlu_humanities": {
34
+ "acc,none": 0.614240170031881,
35
+ "acc_stderr,none": 0.006837872482469845,
36
+ "alias": " - humanities"
37
+ },
38
+ "mmlu_formal_logic": {
39
+ "alias": " - formal_logic",
40
+ "acc,none": 0.5317460317460317,
41
+ "acc_stderr,none": 0.04463112720677173
42
+ },
43
+ "mmlu_high_school_european_history": {
44
+ "alias": " - high_school_european_history",
45
+ "acc,none": 0.7272727272727273,
46
+ "acc_stderr,none": 0.03477691162163663
47
+ },
48
+ "mmlu_high_school_us_history": {
49
+ "alias": " - high_school_us_history",
50
+ "acc,none": 0.8137254901960784,
51
+ "acc_stderr,none": 0.027325470966716357
52
+ },
53
+ "mmlu_high_school_world_history": {
54
+ "alias": " - high_school_world_history",
55
+ "acc,none": 0.8607594936708861,
56
+ "acc_stderr,none": 0.022535526352692684
57
+ },
58
+ "mmlu_international_law": {
59
+ "alias": " - international_law",
60
+ "acc,none": 0.7768595041322314,
61
+ "acc_stderr,none": 0.038007544752287334
62
+ },
63
+ "mmlu_jurisprudence": {
64
+ "alias": " - jurisprudence",
65
+ "acc,none": 0.75,
66
+ "acc_stderr,none": 0.04186091791394607
67
+ },
68
+ "mmlu_logical_fallacies": {
69
+ "alias": " - logical_fallacies",
70
+ "acc,none": 0.7730061349693251,
71
+ "acc_stderr,none": 0.03291099578615763
72
+ },
73
+ "mmlu_moral_disputes": {
74
+ "alias": " - moral_disputes",
75
+ "acc,none": 0.6676300578034682,
76
+ "acc_stderr,none": 0.025361168749688214
77
+ },
78
+ "mmlu_moral_scenarios": {
79
+ "alias": " - moral_scenarios",
80
+ "acc,none": 0.4972067039106145,
81
+ "acc_stderr,none": 0.016722240595491652
82
+ },
83
+ "mmlu_philosophy": {
84
+ "alias": " - philosophy",
85
+ "acc,none": 0.7009646302250804,
86
+ "acc_stderr,none": 0.026003301117885184
87
+ },
88
+ "mmlu_prehistory": {
89
+ "alias": " - prehistory",
90
+ "acc,none": 0.7222222222222222,
91
+ "acc_stderr,none": 0.02492200116888636
92
+ },
93
+ "mmlu_professional_law": {
94
+ "alias": " - professional_law",
95
+ "acc,none": 0.4973924380704042,
96
+ "acc_stderr,none": 0.012770062445433187
97
+ },
98
+ "mmlu_world_religions": {
99
+ "alias": " - world_religions",
100
+ "acc,none": 0.8245614035087719,
101
+ "acc_stderr,none": 0.0291708855007277
102
+ },
103
+ "mmlu_other": {
104
+ "acc,none": 0.7261023495333119,
105
+ "acc_stderr,none": 0.007739552801425664,
106
+ "alias": " - other"
107
+ },
108
+ "mmlu_business_ethics": {
109
+ "alias": " - business_ethics",
110
+ "acc,none": 0.65,
111
+ "acc_stderr,none": 0.04793724854411023
112
+ },
113
+ "mmlu_clinical_knowledge": {
114
+ "alias": " - clinical_knowledge",
115
+ "acc,none": 0.7433962264150943,
116
+ "acc_stderr,none": 0.02688064788905203
117
+ },
118
+ "mmlu_college_medicine": {
119
+ "alias": " - college_medicine",
120
+ "acc,none": 0.6473988439306358,
121
+ "acc_stderr,none": 0.03643037168958545
122
+ },
123
+ "mmlu_global_facts": {
124
+ "alias": " - global_facts",
125
+ "acc,none": 0.44,
126
+ "acc_stderr,none": 0.049888765156985884
127
+ },
128
+ "mmlu_human_aging": {
129
+ "alias": " - human_aging",
130
+ "acc,none": 0.672645739910314,
131
+ "acc_stderr,none": 0.0314938467099413
132
+ },
133
+ "mmlu_management": {
134
+ "alias": " - management",
135
+ "acc,none": 0.8058252427184466,
136
+ "acc_stderr,none": 0.03916667762822582
137
+ },
138
+ "mmlu_marketing": {
139
+ "alias": " - marketing",
140
+ "acc,none": 0.8418803418803419,
141
+ "acc_stderr,none": 0.02390232554956044
142
+ },
143
+ "mmlu_medical_genetics": {
144
+ "alias": " - medical_genetics",
145
+ "acc,none": 0.75,
146
+ "acc_stderr,none": 0.04351941398892446
147
+ },
148
+ "mmlu_miscellaneous": {
149
+ "alias": " - miscellaneous",
150
+ "acc,none": 0.8173690932311622,
151
+ "acc_stderr,none": 0.013816335389973074
152
+ },
153
+ "mmlu_nutrition": {
154
+ "alias": " - nutrition",
155
+ "acc,none": 0.7679738562091504,
156
+ "acc_stderr,none": 0.024170840879340925
157
+ },
158
+ "mmlu_professional_accounting": {
159
+ "alias": " - professional_accounting",
160
+ "acc,none": 0.5177304964539007,
161
+ "acc_stderr,none": 0.02980873964223769
162
+ },
163
+ "mmlu_professional_medicine": {
164
+ "alias": " - professional_medicine",
165
+ "acc,none": 0.8198529411764706,
166
+ "acc_stderr,none": 0.0233451636165449
167
+ },
168
+ "mmlu_virology": {
169
+ "alias": " - virology",
170
+ "acc,none": 0.536144578313253,
171
+ "acc_stderr,none": 0.038823108508905954
172
+ },
173
+ "mmlu_social_sciences": {
174
+ "acc,none": 0.7517062073448164,
175
+ "acc_stderr,none": 0.007628013171255809,
176
+ "alias": " - social sciences"
177
+ },
178
+ "mmlu_econometrics": {
179
+ "alias": " - econometrics",
180
+ "acc,none": 0.5263157894736842,
181
+ "acc_stderr,none": 0.04697085136647865
182
+ },
183
+ "mmlu_high_school_geography": {
184
+ "alias": " - high_school_geography",
185
+ "acc,none": 0.7727272727272727,
186
+ "acc_stderr,none": 0.029857515673386438
187
+ },
188
+ "mmlu_high_school_government_and_politics": {
189
+ "alias": " - high_school_government_and_politics",
190
+ "acc,none": 0.8497409326424871,
191
+ "acc_stderr,none": 0.025787723180723855
192
+ },
193
+ "mmlu_high_school_macroeconomics": {
194
+ "alias": " - high_school_macroeconomics",
195
+ "acc,none": 0.6666666666666666,
196
+ "acc_stderr,none": 0.023901157979402492
197
+ },
198
+ "mmlu_high_school_microeconomics": {
199
+ "alias": " - high_school_microeconomics",
200
+ "acc,none": 0.7478991596638656,
201
+ "acc_stderr,none": 0.02820554503327774
202
+ },
203
+ "mmlu_high_school_psychology": {
204
+ "alias": " - high_school_psychology",
205
+ "acc,none": 0.8752293577981651,
206
+ "acc_stderr,none": 0.014168298359156423
207
+ },
208
+ "mmlu_human_sexuality": {
209
+ "alias": " - human_sexuality",
210
+ "acc,none": 0.7633587786259542,
211
+ "acc_stderr,none": 0.03727673575596918
212
+ },
213
+ "mmlu_professional_psychology": {
214
+ "alias": " - professional_psychology",
215
+ "acc,none": 0.684640522875817,
216
+ "acc_stderr,none": 0.01879808628488684
217
+ },
218
+ "mmlu_public_relations": {
219
+ "alias": " - public_relations",
220
+ "acc,none": 0.6454545454545455,
221
+ "acc_stderr,none": 0.04582004841505413
222
+ },
223
+ "mmlu_security_studies": {
224
+ "alias": " - security_studies",
225
+ "acc,none": 0.726530612244898,
226
+ "acc_stderr,none": 0.028535560337128486
227
+ },
228
+ "mmlu_sociology": {
229
+ "alias": " - sociology",
230
+ "acc,none": 0.8258706467661692,
231
+ "acc_stderr,none": 0.026814951200421624
232
+ },
233
+ "mmlu_us_foreign_policy": {
234
+ "alias": " - us_foreign_policy",
235
+ "acc,none": 0.87,
236
+ "acc_stderr,none": 0.033799766898963114
237
+ },
238
+ "mmlu_stem": {
239
+ "acc,none": 0.5493181097367587,
240
+ "acc_stderr,none": 0.008485562908428945,
241
+ "alias": " - stem"
242
+ },
243
+ "mmlu_abstract_algebra": {
244
+ "alias": " - abstract_algebra",
245
+ "acc,none": 0.35,
246
+ "acc_stderr,none": 0.04793724854411023
247
+ },
248
+ "mmlu_anatomy": {
249
+ "alias": " - anatomy",
250
+ "acc,none": 0.674074074074074,
251
+ "acc_stderr,none": 0.040491220417025006
252
+ },
253
+ "mmlu_astronomy": {
254
+ "alias": " - astronomy",
255
+ "acc,none": 0.7302631578947368,
256
+ "acc_stderr,none": 0.036117805602848975
257
+ },
258
+ "mmlu_college_biology": {
259
+ "alias": " - college_biology",
260
+ "acc,none": 0.7916666666666666,
261
+ "acc_stderr,none": 0.03396116205845331
262
+ },
263
+ "mmlu_college_chemistry": {
264
+ "alias": " - college_chemistry",
265
+ "acc,none": 0.46,
266
+ "acc_stderr,none": 0.05009082659620332
267
+ },
268
+ "mmlu_college_computer_science": {
269
+ "alias": " - college_computer_science",
270
+ "acc,none": 0.43,
271
+ "acc_stderr,none": 0.049756985195624305
272
+ },
273
+ "mmlu_college_mathematics": {
274
+ "alias": " - college_mathematics",
275
+ "acc,none": 0.38,
276
+ "acc_stderr,none": 0.04878317312145634
277
+ },
278
+ "mmlu_college_physics": {
279
+ "alias": " - college_physics",
280
+ "acc,none": 0.4117647058823529,
281
+ "acc_stderr,none": 0.048971049527263624
282
+ },
283
+ "mmlu_computer_security": {
284
+ "alias": " - computer_security",
285
+ "acc,none": 0.74,
286
+ "acc_stderr,none": 0.0440844002276808
287
+ },
288
+ "mmlu_conceptual_physics": {
289
+ "alias": " - conceptual_physics",
290
+ "acc,none": 0.5914893617021276,
291
+ "acc_stderr,none": 0.03213418026701576
292
+ },
293
+ "mmlu_electrical_engineering": {
294
+ "alias": " - electrical_engineering",
295
+ "acc,none": 0.6068965517241379,
296
+ "acc_stderr,none": 0.04070329013707074
297
+ },
298
+ "mmlu_elementary_mathematics": {
299
+ "alias": " - elementary_mathematics",
300
+ "acc,none": 0.46296296296296297,
301
+ "acc_stderr,none": 0.025680564640056906
302
+ },
303
+ "mmlu_high_school_biology": {
304
+ "alias": " - high_school_biology",
305
+ "acc,none": 0.7870967741935484,
306
+ "acc_stderr,none": 0.023287665127268594
307
+ },
308
+ "mmlu_high_school_chemistry": {
309
+ "alias": " - high_school_chemistry",
310
+ "acc,none": 0.5615763546798029,
311
+ "acc_stderr,none": 0.034912078574865175
312
+ },
313
+ "mmlu_high_school_computer_science": {
314
+ "alias": " - high_school_computer_science",
315
+ "acc,none": 0.64,
316
+ "acc_stderr,none": 0.048241815132442176
317
+ },
318
+ "mmlu_high_school_mathematics": {
319
+ "alias": " - high_school_mathematics",
320
+ "acc,none": 0.34444444444444444,
321
+ "acc_stderr,none": 0.02897264888484431
322
+ },
323
+ "mmlu_high_school_physics": {
324
+ "alias": " - high_school_physics",
325
+ "acc,none": 0.37748344370860926,
326
+ "acc_stderr,none": 0.03958027231121572
327
+ },
328
+ "mmlu_high_school_statistics": {
329
+ "alias": " - high_school_statistics",
330
+ "acc,none": 0.5185185185185185,
331
+ "acc_stderr,none": 0.034076320938540516
332
+ },
333
+ "mmlu_machine_learning": {
334
+ "alias": " - machine_learning",
335
+ "acc,none": 0.4642857142857143,
336
+ "acc_stderr,none": 0.04733667890053756
337
+ },
338
+ "openbookqa": {
339
+ "alias": "openbookqa",
340
+ "acc,none": 0.378,
341
+ "acc_stderr,none": 0.02170655082451827,
342
+ "acc_norm,none": 0.462,
343
+ "acc_norm_stderr,none": 0.022318338119870523
344
+ }
345
+ }
original_model/results_['boolq', 'lambada_openai', 'logiqa', 'mmlu', 'openbookqa', 'hellaswag']_raw.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b274b94381616c2afd378f275dbc26d14ed2e102090b2dabde8dddf1987c94bb
3
+ size 131969634
original_model/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:386fcc8cc1089aade9450d86fb239ea3483f455fd2d78d8378645feecfec9d69
3
+ size 14244
original_model/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c408953b91b7cdca662a1e3770cf93417d3529bf71a509c82bd616f97514b48
3
+ size 1064
original_model/special_tokens_map.json CHANGED
@@ -13,5 +13,11 @@
13
  "rstrip": false,
14
  "single_word": false
15
  },
16
- "pad_token": "<|begin_of_text|>"
 
 
 
 
 
 
17
  }
 
13
  "rstrip": false,
14
  "single_word": false
15
  },
16
+ "pad_token": {
17
+ "content": "<|begin_of_text|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
  }
original_model/tokenizer.json CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:71c1736d713a012aa4720d05a6c32c6992e9d278ea88cedd36008f14fd616116
3
- size 17210091
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52716f60c3ad328509fa37cdded9a2f1196ecae463f5480f5d38c66a25e7a7dc
3
+ size 17210019
original_model/tokenizer_config.json CHANGED
@@ -2053,11 +2053,15 @@
2053
  "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
2054
  "clean_up_tokenization_spaces": true,
2055
  "eos_token": "<|eot_id|>",
 
2056
  "model_input_names": [
2057
  "input_ids",
2058
  "attention_mask"
2059
  ],
2060
  "model_max_length": 131072,
 
2061
  "pad_token": "<|begin_of_text|>",
 
 
2062
  "tokenizer_class": "PreTrainedTokenizerFast"
2063
  }
 
2053
  "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
2054
  "clean_up_tokenization_spaces": true,
2055
  "eos_token": "<|eot_id|>",
2056
+ "max_length": null,
2057
  "model_input_names": [
2058
  "input_ids",
2059
  "attention_mask"
2060
  ],
2061
  "model_max_length": 131072,
2062
+ "pad_to_multiple_of": null,
2063
  "pad_token": "<|begin_of_text|>",
2064
+ "pad_token_type_id": 0,
2065
+ "padding_side": "left",
2066
  "tokenizer_class": "PreTrainedTokenizerFast"
2067
  }
original_model/trainer_state.json ADDED
@@ -0,0 +1,2049 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 200,
6
+ "global_step": 7189,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.00013910140492418973,
13
+ "grad_norm": 0.1806640625,
14
+ "learning_rate": 9.998608985950758e-06,
15
+ "loss": 0.8981,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0034775351231047433,
20
+ "grad_norm": 0.1708984375,
21
+ "learning_rate": 9.965224648768953e-06,
22
+ "loss": 0.9497,
23
+ "step": 25
24
+ },
25
+ {
26
+ "epoch": 0.006955070246209487,
27
+ "grad_norm": 0.1845703125,
28
+ "learning_rate": 9.930449297537907e-06,
29
+ "loss": 1.0367,
30
+ "step": 50
31
+ },
32
+ {
33
+ "epoch": 0.01043260536931423,
34
+ "grad_norm": 0.134765625,
35
+ "learning_rate": 9.895673946306859e-06,
36
+ "loss": 0.9144,
37
+ "step": 75
38
+ },
39
+ {
40
+ "epoch": 0.013910140492418973,
41
+ "grad_norm": 0.384765625,
42
+ "learning_rate": 9.860898595075811e-06,
43
+ "loss": 0.9554,
44
+ "step": 100
45
+ },
46
+ {
47
+ "epoch": 0.017387675615523717,
48
+ "grad_norm": 0.1337890625,
49
+ "learning_rate": 9.826123243844763e-06,
50
+ "loss": 0.9696,
51
+ "step": 125
52
+ },
53
+ {
54
+ "epoch": 0.02086521073862846,
55
+ "grad_norm": 0.408203125,
56
+ "learning_rate": 9.791347892613715e-06,
57
+ "loss": 0.9559,
58
+ "step": 150
59
+ },
60
+ {
61
+ "epoch": 0.024342745861733205,
62
+ "grad_norm": 0.78515625,
63
+ "learning_rate": 9.756572541382668e-06,
64
+ "loss": 0.9829,
65
+ "step": 175
66
+ },
67
+ {
68
+ "epoch": 0.027820280984837947,
69
+ "grad_norm": 0.1455078125,
70
+ "learning_rate": 9.721797190151621e-06,
71
+ "loss": 0.9825,
72
+ "step": 200
73
+ },
74
+ {
75
+ "epoch": 0.03129781610794269,
76
+ "grad_norm": 0.21484375,
77
+ "learning_rate": 9.687021838920574e-06,
78
+ "loss": 0.9892,
79
+ "step": 225
80
+ },
81
+ {
82
+ "epoch": 0.034775351231047434,
83
+ "grad_norm": 0.25390625,
84
+ "learning_rate": 9.652246487689526e-06,
85
+ "loss": 0.9598,
86
+ "step": 250
87
+ },
88
+ {
89
+ "epoch": 0.03825288635415218,
90
+ "grad_norm": 0.140625,
91
+ "learning_rate": 9.61747113645848e-06,
92
+ "loss": 0.925,
93
+ "step": 275
94
+ },
95
+ {
96
+ "epoch": 0.04173042147725692,
97
+ "grad_norm": 0.255859375,
98
+ "learning_rate": 9.582695785227432e-06,
99
+ "loss": 1.0342,
100
+ "step": 300
101
+ },
102
+ {
103
+ "epoch": 0.045207956600361664,
104
+ "grad_norm": 0.71875,
105
+ "learning_rate": 9.547920433996384e-06,
106
+ "loss": 0.9389,
107
+ "step": 325
108
+ },
109
+ {
110
+ "epoch": 0.04868549172346641,
111
+ "grad_norm": 0.376953125,
112
+ "learning_rate": 9.513145082765338e-06,
113
+ "loss": 0.9429,
114
+ "step": 350
115
+ },
116
+ {
117
+ "epoch": 0.05216302684657115,
118
+ "grad_norm": 0.2470703125,
119
+ "learning_rate": 9.47836973153429e-06,
120
+ "loss": 0.9882,
121
+ "step": 375
122
+ },
123
+ {
124
+ "epoch": 0.05564056196967589,
125
+ "grad_norm": 0.25,
126
+ "learning_rate": 9.443594380303242e-06,
127
+ "loss": 0.9416,
128
+ "step": 400
129
+ },
130
+ {
131
+ "epoch": 0.05911809709278064,
132
+ "grad_norm": 0.140625,
133
+ "learning_rate": 9.408819029072194e-06,
134
+ "loss": 0.8821,
135
+ "step": 425
136
+ },
137
+ {
138
+ "epoch": 0.06259563221588538,
139
+ "grad_norm": 0.203125,
140
+ "learning_rate": 9.374043677841146e-06,
141
+ "loss": 0.9094,
142
+ "step": 450
143
+ },
144
+ {
145
+ "epoch": 0.06607316733899013,
146
+ "grad_norm": 0.1123046875,
147
+ "learning_rate": 9.339268326610099e-06,
148
+ "loss": 0.9274,
149
+ "step": 475
150
+ },
151
+ {
152
+ "epoch": 0.06955070246209487,
153
+ "grad_norm": 0.2890625,
154
+ "learning_rate": 9.304492975379052e-06,
155
+ "loss": 1.1017,
156
+ "step": 500
157
+ },
158
+ {
159
+ "epoch": 0.0730282375851996,
160
+ "grad_norm": 0.296875,
161
+ "learning_rate": 9.269717624148005e-06,
162
+ "loss": 0.9424,
163
+ "step": 525
164
+ },
165
+ {
166
+ "epoch": 0.07650577270830436,
167
+ "grad_norm": 0.166015625,
168
+ "learning_rate": 9.234942272916957e-06,
169
+ "loss": 0.9973,
170
+ "step": 550
171
+ },
172
+ {
173
+ "epoch": 0.0799833078314091,
174
+ "grad_norm": 0.140625,
175
+ "learning_rate": 9.20016692168591e-06,
176
+ "loss": 0.9476,
177
+ "step": 575
178
+ },
179
+ {
180
+ "epoch": 0.08346084295451384,
181
+ "grad_norm": 0.2080078125,
182
+ "learning_rate": 9.165391570454863e-06,
183
+ "loss": 0.9932,
184
+ "step": 600
185
+ },
186
+ {
187
+ "epoch": 0.08693837807761859,
188
+ "grad_norm": 0.1728515625,
189
+ "learning_rate": 9.130616219223815e-06,
190
+ "loss": 0.9203,
191
+ "step": 625
192
+ },
193
+ {
194
+ "epoch": 0.09041591320072333,
195
+ "grad_norm": 0.158203125,
196
+ "learning_rate": 9.095840867992769e-06,
197
+ "loss": 0.9127,
198
+ "step": 650
199
+ },
200
+ {
201
+ "epoch": 0.09389344832382807,
202
+ "grad_norm": 0.14453125,
203
+ "learning_rate": 9.061065516761721e-06,
204
+ "loss": 0.8923,
205
+ "step": 675
206
+ },
207
+ {
208
+ "epoch": 0.09737098344693282,
209
+ "grad_norm": 1.28125,
210
+ "learning_rate": 9.026290165530673e-06,
211
+ "loss": 0.9191,
212
+ "step": 700
213
+ },
214
+ {
215
+ "epoch": 0.10084851857003756,
216
+ "grad_norm": 0.298828125,
217
+ "learning_rate": 8.991514814299625e-06,
218
+ "loss": 0.9355,
219
+ "step": 725
220
+ },
221
+ {
222
+ "epoch": 0.1043260536931423,
223
+ "grad_norm": 0.134765625,
224
+ "learning_rate": 8.956739463068577e-06,
225
+ "loss": 0.9215,
226
+ "step": 750
227
+ },
228
+ {
229
+ "epoch": 0.10780358881624705,
230
+ "grad_norm": 0.22265625,
231
+ "learning_rate": 8.92196411183753e-06,
232
+ "loss": 0.9784,
233
+ "step": 775
234
+ },
235
+ {
236
+ "epoch": 0.11128112393935179,
237
+ "grad_norm": 0.1943359375,
238
+ "learning_rate": 8.887188760606483e-06,
239
+ "loss": 0.9981,
240
+ "step": 800
241
+ },
242
+ {
243
+ "epoch": 0.11475865906245653,
244
+ "grad_norm": 0.203125,
245
+ "learning_rate": 8.852413409375435e-06,
246
+ "loss": 1.0032,
247
+ "step": 825
248
+ },
249
+ {
250
+ "epoch": 0.11823619418556128,
251
+ "grad_norm": 0.1455078125,
252
+ "learning_rate": 8.817638058144388e-06,
253
+ "loss": 0.964,
254
+ "step": 850
255
+ },
256
+ {
257
+ "epoch": 0.12171372930866602,
258
+ "grad_norm": 0.1650390625,
259
+ "learning_rate": 8.782862706913341e-06,
260
+ "loss": 0.9522,
261
+ "step": 875
262
+ },
263
+ {
264
+ "epoch": 0.12519126443177075,
265
+ "grad_norm": 0.1337890625,
266
+ "learning_rate": 8.748087355682294e-06,
267
+ "loss": 1.0285,
268
+ "step": 900
269
+ },
270
+ {
271
+ "epoch": 0.1286687995548755,
272
+ "grad_norm": 0.2470703125,
273
+ "learning_rate": 8.713312004451246e-06,
274
+ "loss": 1.077,
275
+ "step": 925
276
+ },
277
+ {
278
+ "epoch": 0.13214633467798026,
279
+ "grad_norm": 0.1376953125,
280
+ "learning_rate": 8.678536653220198e-06,
281
+ "loss": 0.9334,
282
+ "step": 950
283
+ },
284
+ {
285
+ "epoch": 0.13562386980108498,
286
+ "grad_norm": 0.189453125,
287
+ "learning_rate": 8.64376130198915e-06,
288
+ "loss": 0.915,
289
+ "step": 975
290
+ },
291
+ {
292
+ "epoch": 0.13910140492418974,
293
+ "grad_norm": 0.1796875,
294
+ "learning_rate": 8.608985950758102e-06,
295
+ "loss": 0.9779,
296
+ "step": 1000
297
+ },
298
+ {
299
+ "epoch": 0.1425789400472945,
300
+ "grad_norm": 0.2041015625,
301
+ "learning_rate": 8.574210599527056e-06,
302
+ "loss": 0.93,
303
+ "step": 1025
304
+ },
305
+ {
306
+ "epoch": 0.1460564751703992,
307
+ "grad_norm": 0.375,
308
+ "learning_rate": 8.539435248296008e-06,
309
+ "loss": 1.0351,
310
+ "step": 1050
311
+ },
312
+ {
313
+ "epoch": 0.14953401029350397,
314
+ "grad_norm": 0.21484375,
315
+ "learning_rate": 8.50465989706496e-06,
316
+ "loss": 0.9132,
317
+ "step": 1075
318
+ },
319
+ {
320
+ "epoch": 0.15301154541660872,
321
+ "grad_norm": 0.275390625,
322
+ "learning_rate": 8.469884545833914e-06,
323
+ "loss": 0.9116,
324
+ "step": 1100
325
+ },
326
+ {
327
+ "epoch": 0.15648908053971344,
328
+ "grad_norm": 0.244140625,
329
+ "learning_rate": 8.435109194602866e-06,
330
+ "loss": 0.9694,
331
+ "step": 1125
332
+ },
333
+ {
334
+ "epoch": 0.1599666156628182,
335
+ "grad_norm": 0.119140625,
336
+ "learning_rate": 8.400333843371819e-06,
337
+ "loss": 0.9026,
338
+ "step": 1150
339
+ },
340
+ {
341
+ "epoch": 0.16344415078592295,
342
+ "grad_norm": 0.38671875,
343
+ "learning_rate": 8.365558492140772e-06,
344
+ "loss": 1.1708,
345
+ "step": 1175
346
+ },
347
+ {
348
+ "epoch": 0.16692168590902767,
349
+ "grad_norm": 0.458984375,
350
+ "learning_rate": 8.330783140909725e-06,
351
+ "loss": 0.9734,
352
+ "step": 1200
353
+ },
354
+ {
355
+ "epoch": 0.17039922103213243,
356
+ "grad_norm": 0.1611328125,
357
+ "learning_rate": 8.296007789678677e-06,
358
+ "loss": 1.0151,
359
+ "step": 1225
360
+ },
361
+ {
362
+ "epoch": 0.17387675615523718,
363
+ "grad_norm": 0.337890625,
364
+ "learning_rate": 8.261232438447629e-06,
365
+ "loss": 0.9712,
366
+ "step": 1250
367
+ },
368
+ {
369
+ "epoch": 0.1773542912783419,
370
+ "grad_norm": 0.1982421875,
371
+ "learning_rate": 8.226457087216581e-06,
372
+ "loss": 0.9553,
373
+ "step": 1275
374
+ },
375
+ {
376
+ "epoch": 0.18083182640144665,
377
+ "grad_norm": 0.1357421875,
378
+ "learning_rate": 8.191681735985533e-06,
379
+ "loss": 0.9089,
380
+ "step": 1300
381
+ },
382
+ {
383
+ "epoch": 0.1843093615245514,
384
+ "grad_norm": 0.1904296875,
385
+ "learning_rate": 8.156906384754487e-06,
386
+ "loss": 0.9928,
387
+ "step": 1325
388
+ },
389
+ {
390
+ "epoch": 0.18778689664765613,
391
+ "grad_norm": 0.1787109375,
392
+ "learning_rate": 8.12213103352344e-06,
393
+ "loss": 0.9562,
394
+ "step": 1350
395
+ },
396
+ {
397
+ "epoch": 0.19126443177076088,
398
+ "grad_norm": 0.259765625,
399
+ "learning_rate": 8.087355682292391e-06,
400
+ "loss": 0.963,
401
+ "step": 1375
402
+ },
403
+ {
404
+ "epoch": 0.19474196689386564,
405
+ "grad_norm": 0.2890625,
406
+ "learning_rate": 8.052580331061345e-06,
407
+ "loss": 1.0053,
408
+ "step": 1400
409
+ },
410
+ {
411
+ "epoch": 0.19821950201697036,
412
+ "grad_norm": 0.1640625,
413
+ "learning_rate": 8.017804979830297e-06,
414
+ "loss": 0.9583,
415
+ "step": 1425
416
+ },
417
+ {
418
+ "epoch": 0.2016970371400751,
419
+ "grad_norm": 0.2734375,
420
+ "learning_rate": 7.98302962859925e-06,
421
+ "loss": 0.9633,
422
+ "step": 1450
423
+ },
424
+ {
425
+ "epoch": 0.20517457226317987,
426
+ "grad_norm": 0.185546875,
427
+ "learning_rate": 7.948254277368203e-06,
428
+ "loss": 0.9325,
429
+ "step": 1475
430
+ },
431
+ {
432
+ "epoch": 0.2086521073862846,
433
+ "grad_norm": 0.154296875,
434
+ "learning_rate": 7.913478926137156e-06,
435
+ "loss": 0.9567,
436
+ "step": 1500
437
+ },
438
+ {
439
+ "epoch": 0.21212964250938934,
440
+ "grad_norm": 0.26171875,
441
+ "learning_rate": 7.878703574906108e-06,
442
+ "loss": 0.9544,
443
+ "step": 1525
444
+ },
445
+ {
446
+ "epoch": 0.2156071776324941,
447
+ "grad_norm": 0.2138671875,
448
+ "learning_rate": 7.84392822367506e-06,
449
+ "loss": 0.8735,
450
+ "step": 1550
451
+ },
452
+ {
453
+ "epoch": 0.21908471275559882,
454
+ "grad_norm": 0.26171875,
455
+ "learning_rate": 7.809152872444012e-06,
456
+ "loss": 0.9212,
457
+ "step": 1575
458
+ },
459
+ {
460
+ "epoch": 0.22256224787870357,
461
+ "grad_norm": 0.1845703125,
462
+ "learning_rate": 7.774377521212964e-06,
463
+ "loss": 0.9532,
464
+ "step": 1600
465
+ },
466
+ {
467
+ "epoch": 0.22603978300180833,
468
+ "grad_norm": 0.2333984375,
469
+ "learning_rate": 7.739602169981918e-06,
470
+ "loss": 0.9295,
471
+ "step": 1625
472
+ },
473
+ {
474
+ "epoch": 0.22951731812491305,
475
+ "grad_norm": 0.2734375,
476
+ "learning_rate": 7.70482681875087e-06,
477
+ "loss": 1.028,
478
+ "step": 1650
479
+ },
480
+ {
481
+ "epoch": 0.2329948532480178,
482
+ "grad_norm": 0.1201171875,
483
+ "learning_rate": 7.670051467519822e-06,
484
+ "loss": 0.8971,
485
+ "step": 1675
486
+ },
487
+ {
488
+ "epoch": 0.23647238837112255,
489
+ "grad_norm": 0.1376953125,
490
+ "learning_rate": 7.635276116288776e-06,
491
+ "loss": 0.9231,
492
+ "step": 1700
493
+ },
494
+ {
495
+ "epoch": 0.23994992349422728,
496
+ "grad_norm": 0.15234375,
497
+ "learning_rate": 7.6005007650577274e-06,
498
+ "loss": 0.9017,
499
+ "step": 1725
500
+ },
501
+ {
502
+ "epoch": 0.24342745861733203,
503
+ "grad_norm": 0.193359375,
504
+ "learning_rate": 7.56572541382668e-06,
505
+ "loss": 0.9792,
506
+ "step": 1750
507
+ },
508
+ {
509
+ "epoch": 0.24690499374043678,
510
+ "grad_norm": 0.2451171875,
511
+ "learning_rate": 7.5309500625956334e-06,
512
+ "loss": 0.9671,
513
+ "step": 1775
514
+ },
515
+ {
516
+ "epoch": 0.2503825288635415,
517
+ "grad_norm": 0.177734375,
518
+ "learning_rate": 7.496174711364586e-06,
519
+ "loss": 0.8667,
520
+ "step": 1800
521
+ },
522
+ {
523
+ "epoch": 0.2538600639866463,
524
+ "grad_norm": 0.181640625,
525
+ "learning_rate": 7.461399360133538e-06,
526
+ "loss": 0.9687,
527
+ "step": 1825
528
+ },
529
+ {
530
+ "epoch": 0.257337599109751,
531
+ "grad_norm": 0.1865234375,
532
+ "learning_rate": 7.426624008902491e-06,
533
+ "loss": 0.875,
534
+ "step": 1850
535
+ },
536
+ {
537
+ "epoch": 0.26081513423285574,
538
+ "grad_norm": 0.224609375,
539
+ "learning_rate": 7.391848657671443e-06,
540
+ "loss": 0.8993,
541
+ "step": 1875
542
+ },
543
+ {
544
+ "epoch": 0.2642926693559605,
545
+ "grad_norm": 0.25,
546
+ "learning_rate": 7.357073306440395e-06,
547
+ "loss": 0.8771,
548
+ "step": 1900
549
+ },
550
+ {
551
+ "epoch": 0.26777020447906524,
552
+ "grad_norm": 0.1748046875,
553
+ "learning_rate": 7.322297955209349e-06,
554
+ "loss": 0.9736,
555
+ "step": 1925
556
+ },
557
+ {
558
+ "epoch": 0.27124773960216997,
559
+ "grad_norm": 0.1904296875,
560
+ "learning_rate": 7.287522603978301e-06,
561
+ "loss": 0.9709,
562
+ "step": 1950
563
+ },
564
+ {
565
+ "epoch": 0.27472527472527475,
566
+ "grad_norm": 0.2197265625,
567
+ "learning_rate": 7.252747252747253e-06,
568
+ "loss": 0.9675,
569
+ "step": 1975
570
+ },
571
+ {
572
+ "epoch": 0.2782028098483795,
573
+ "grad_norm": 0.21875,
574
+ "learning_rate": 7.217971901516206e-06,
575
+ "loss": 0.9274,
576
+ "step": 2000
577
+ },
578
+ {
579
+ "epoch": 0.2816803449714842,
580
+ "grad_norm": 0.83203125,
581
+ "learning_rate": 7.183196550285158e-06,
582
+ "loss": 1.0012,
583
+ "step": 2025
584
+ },
585
+ {
586
+ "epoch": 0.285157880094589,
587
+ "grad_norm": 0.240234375,
588
+ "learning_rate": 7.1484211990541105e-06,
589
+ "loss": 0.9154,
590
+ "step": 2050
591
+ },
592
+ {
593
+ "epoch": 0.2886354152176937,
594
+ "grad_norm": 0.3046875,
595
+ "learning_rate": 7.113645847823064e-06,
596
+ "loss": 0.9657,
597
+ "step": 2075
598
+ },
599
+ {
600
+ "epoch": 0.2921129503407984,
601
+ "grad_norm": 0.2109375,
602
+ "learning_rate": 7.0788704965920165e-06,
603
+ "loss": 0.9909,
604
+ "step": 2100
605
+ },
606
+ {
607
+ "epoch": 0.2955904854639032,
608
+ "grad_norm": 0.1767578125,
609
+ "learning_rate": 7.044095145360969e-06,
610
+ "loss": 0.9059,
611
+ "step": 2125
612
+ },
613
+ {
614
+ "epoch": 0.29906802058700793,
615
+ "grad_norm": 0.2099609375,
616
+ "learning_rate": 7.009319794129922e-06,
617
+ "loss": 0.9988,
618
+ "step": 2150
619
+ },
620
+ {
621
+ "epoch": 0.30254555571011266,
622
+ "grad_norm": 0.33203125,
623
+ "learning_rate": 6.974544442898874e-06,
624
+ "loss": 0.9623,
625
+ "step": 2175
626
+ },
627
+ {
628
+ "epoch": 0.30602309083321744,
629
+ "grad_norm": 0.1884765625,
630
+ "learning_rate": 6.939769091667826e-06,
631
+ "loss": 0.9208,
632
+ "step": 2200
633
+ },
634
+ {
635
+ "epoch": 0.30950062595632216,
636
+ "grad_norm": 0.318359375,
637
+ "learning_rate": 6.90499374043678e-06,
638
+ "loss": 0.9536,
639
+ "step": 2225
640
+ },
641
+ {
642
+ "epoch": 0.3129781610794269,
643
+ "grad_norm": 0.10888671875,
644
+ "learning_rate": 6.870218389205732e-06,
645
+ "loss": 1.0221,
646
+ "step": 2250
647
+ },
648
+ {
649
+ "epoch": 0.31645569620253167,
650
+ "grad_norm": 0.166015625,
651
+ "learning_rate": 6.835443037974684e-06,
652
+ "loss": 1.0849,
653
+ "step": 2275
654
+ },
655
+ {
656
+ "epoch": 0.3199332313256364,
657
+ "grad_norm": 0.259765625,
658
+ "learning_rate": 6.800667686743637e-06,
659
+ "loss": 0.9612,
660
+ "step": 2300
661
+ },
662
+ {
663
+ "epoch": 0.3234107664487411,
664
+ "grad_norm": 0.10546875,
665
+ "learning_rate": 6.765892335512589e-06,
666
+ "loss": 0.977,
667
+ "step": 2325
668
+ },
669
+ {
670
+ "epoch": 0.3268883015718459,
671
+ "grad_norm": 0.51171875,
672
+ "learning_rate": 6.7311169842815415e-06,
673
+ "loss": 0.9291,
674
+ "step": 2350
675
+ },
676
+ {
677
+ "epoch": 0.3303658366949506,
678
+ "grad_norm": 0.1748046875,
679
+ "learning_rate": 6.6963416330504945e-06,
680
+ "loss": 0.9471,
681
+ "step": 2375
682
+ },
683
+ {
684
+ "epoch": 0.33384337181805535,
685
+ "grad_norm": 0.609375,
686
+ "learning_rate": 6.6615662818194475e-06,
687
+ "loss": 0.8984,
688
+ "step": 2400
689
+ },
690
+ {
691
+ "epoch": 0.3373209069411601,
692
+ "grad_norm": 0.19921875,
693
+ "learning_rate": 6.6267909305884e-06,
694
+ "loss": 1.0189,
695
+ "step": 2425
696
+ },
697
+ {
698
+ "epoch": 0.34079844206426485,
699
+ "grad_norm": 0.1708984375,
700
+ "learning_rate": 6.592015579357353e-06,
701
+ "loss": 0.915,
702
+ "step": 2450
703
+ },
704
+ {
705
+ "epoch": 0.3442759771873696,
706
+ "grad_norm": 0.32421875,
707
+ "learning_rate": 6.557240228126305e-06,
708
+ "loss": 0.9904,
709
+ "step": 2475
710
+ },
711
+ {
712
+ "epoch": 0.34775351231047436,
713
+ "grad_norm": 0.35546875,
714
+ "learning_rate": 6.522464876895257e-06,
715
+ "loss": 1.0573,
716
+ "step": 2500
717
+ },
718
+ {
719
+ "epoch": 0.3512310474335791,
720
+ "grad_norm": 0.3671875,
721
+ "learning_rate": 6.48768952566421e-06,
722
+ "loss": 1.009,
723
+ "step": 2525
724
+ },
725
+ {
726
+ "epoch": 0.3547085825566838,
727
+ "grad_norm": 0.337890625,
728
+ "learning_rate": 6.452914174433162e-06,
729
+ "loss": 0.9061,
730
+ "step": 2550
731
+ },
732
+ {
733
+ "epoch": 0.3581861176797886,
734
+ "grad_norm": 0.19921875,
735
+ "learning_rate": 6.418138823202114e-06,
736
+ "loss": 0.8657,
737
+ "step": 2575
738
+ },
739
+ {
740
+ "epoch": 0.3616636528028933,
741
+ "grad_norm": 0.201171875,
742
+ "learning_rate": 6.383363471971068e-06,
743
+ "loss": 0.9302,
744
+ "step": 2600
745
+ },
746
+ {
747
+ "epoch": 0.36514118792599803,
748
+ "grad_norm": 0.2421875,
749
+ "learning_rate": 6.34858812074002e-06,
750
+ "loss": 0.9776,
751
+ "step": 2625
752
+ },
753
+ {
754
+ "epoch": 0.3686187230491028,
755
+ "grad_norm": 0.2177734375,
756
+ "learning_rate": 6.313812769508972e-06,
757
+ "loss": 0.9165,
758
+ "step": 2650
759
+ },
760
+ {
761
+ "epoch": 0.37209625817220754,
762
+ "grad_norm": 0.162109375,
763
+ "learning_rate": 6.2790374182779246e-06,
764
+ "loss": 0.9424,
765
+ "step": 2675
766
+ },
767
+ {
768
+ "epoch": 0.37557379329531226,
769
+ "grad_norm": 0.171875,
770
+ "learning_rate": 6.2442620670468776e-06,
771
+ "loss": 0.9479,
772
+ "step": 2700
773
+ },
774
+ {
775
+ "epoch": 0.37905132841841704,
776
+ "grad_norm": 0.1640625,
777
+ "learning_rate": 6.20948671581583e-06,
778
+ "loss": 1.0845,
779
+ "step": 2725
780
+ },
781
+ {
782
+ "epoch": 0.38252886354152177,
783
+ "grad_norm": 0.1953125,
784
+ "learning_rate": 6.174711364584782e-06,
785
+ "loss": 0.9801,
786
+ "step": 2750
787
+ },
788
+ {
789
+ "epoch": 0.3860063986646265,
790
+ "grad_norm": 0.1640625,
791
+ "learning_rate": 6.139936013353736e-06,
792
+ "loss": 0.8536,
793
+ "step": 2775
794
+ },
795
+ {
796
+ "epoch": 0.3894839337877313,
797
+ "grad_norm": 0.400390625,
798
+ "learning_rate": 6.105160662122688e-06,
799
+ "loss": 0.9453,
800
+ "step": 2800
801
+ },
802
+ {
803
+ "epoch": 0.392961468910836,
804
+ "grad_norm": 1.6796875,
805
+ "learning_rate": 6.07038531089164e-06,
806
+ "loss": 1.0559,
807
+ "step": 2825
808
+ },
809
+ {
810
+ "epoch": 0.3964390040339407,
811
+ "grad_norm": 0.236328125,
812
+ "learning_rate": 6.035609959660593e-06,
813
+ "loss": 0.9228,
814
+ "step": 2850
815
+ },
816
+ {
817
+ "epoch": 0.3999165391570455,
818
+ "grad_norm": 0.447265625,
819
+ "learning_rate": 6.000834608429545e-06,
820
+ "loss": 0.8822,
821
+ "step": 2875
822
+ },
823
+ {
824
+ "epoch": 0.4033940742801502,
825
+ "grad_norm": 0.3046875,
826
+ "learning_rate": 5.966059257198497e-06,
827
+ "loss": 0.9643,
828
+ "step": 2900
829
+ },
830
+ {
831
+ "epoch": 0.40687160940325495,
832
+ "grad_norm": 0.1962890625,
833
+ "learning_rate": 5.931283905967451e-06,
834
+ "loss": 0.9333,
835
+ "step": 2925
836
+ },
837
+ {
838
+ "epoch": 0.41034914452635973,
839
+ "grad_norm": 0.197265625,
840
+ "learning_rate": 5.896508554736403e-06,
841
+ "loss": 0.8989,
842
+ "step": 2950
843
+ },
844
+ {
845
+ "epoch": 0.41382667964946446,
846
+ "grad_norm": 0.2470703125,
847
+ "learning_rate": 5.8617332035053555e-06,
848
+ "loss": 0.9434,
849
+ "step": 2975
850
+ },
851
+ {
852
+ "epoch": 0.4173042147725692,
853
+ "grad_norm": 0.380859375,
854
+ "learning_rate": 5.8269578522743085e-06,
855
+ "loss": 0.8988,
856
+ "step": 3000
857
+ },
858
+ {
859
+ "epoch": 0.42078174989567396,
860
+ "grad_norm": 0.205078125,
861
+ "learning_rate": 5.792182501043261e-06,
862
+ "loss": 0.973,
863
+ "step": 3025
864
+ },
865
+ {
866
+ "epoch": 0.4242592850187787,
867
+ "grad_norm": 0.294921875,
868
+ "learning_rate": 5.757407149812213e-06,
869
+ "loss": 0.96,
870
+ "step": 3050
871
+ },
872
+ {
873
+ "epoch": 0.4277368201418834,
874
+ "grad_norm": 0.494140625,
875
+ "learning_rate": 5.722631798581167e-06,
876
+ "loss": 0.9964,
877
+ "step": 3075
878
+ },
879
+ {
880
+ "epoch": 0.4312143552649882,
881
+ "grad_norm": 0.11279296875,
882
+ "learning_rate": 5.687856447350119e-06,
883
+ "loss": 0.9466,
884
+ "step": 3100
885
+ },
886
+ {
887
+ "epoch": 0.4346918903880929,
888
+ "grad_norm": 0.1943359375,
889
+ "learning_rate": 5.653081096119071e-06,
890
+ "loss": 0.9676,
891
+ "step": 3125
892
+ },
893
+ {
894
+ "epoch": 0.43816942551119764,
895
+ "grad_norm": 0.2470703125,
896
+ "learning_rate": 5.618305744888024e-06,
897
+ "loss": 0.9048,
898
+ "step": 3150
899
+ },
900
+ {
901
+ "epoch": 0.4416469606343024,
902
+ "grad_norm": 0.1884765625,
903
+ "learning_rate": 5.583530393656976e-06,
904
+ "loss": 0.9142,
905
+ "step": 3175
906
+ },
907
+ {
908
+ "epoch": 0.44512449575740715,
909
+ "grad_norm": 0.2255859375,
910
+ "learning_rate": 5.548755042425928e-06,
911
+ "loss": 0.9951,
912
+ "step": 3200
913
+ },
914
+ {
915
+ "epoch": 0.44860203088051187,
916
+ "grad_norm": 0.1416015625,
917
+ "learning_rate": 5.513979691194882e-06,
918
+ "loss": 1.1234,
919
+ "step": 3225
920
+ },
921
+ {
922
+ "epoch": 0.45207956600361665,
923
+ "grad_norm": 0.404296875,
924
+ "learning_rate": 5.479204339963834e-06,
925
+ "loss": 0.9482,
926
+ "step": 3250
927
+ },
928
+ {
929
+ "epoch": 0.4555571011267214,
930
+ "grad_norm": 0.302734375,
931
+ "learning_rate": 5.4444289887327865e-06,
932
+ "loss": 1.1495,
933
+ "step": 3275
934
+ },
935
+ {
936
+ "epoch": 0.4590346362498261,
937
+ "grad_norm": 0.2099609375,
938
+ "learning_rate": 5.4096536375017395e-06,
939
+ "loss": 0.9134,
940
+ "step": 3300
941
+ },
942
+ {
943
+ "epoch": 0.4625121713729309,
944
+ "grad_norm": 0.193359375,
945
+ "learning_rate": 5.374878286270692e-06,
946
+ "loss": 0.9914,
947
+ "step": 3325
948
+ },
949
+ {
950
+ "epoch": 0.4659897064960356,
951
+ "grad_norm": 0.1640625,
952
+ "learning_rate": 5.340102935039644e-06,
953
+ "loss": 0.933,
954
+ "step": 3350
955
+ },
956
+ {
957
+ "epoch": 0.46946724161914033,
958
+ "grad_norm": 0.498046875,
959
+ "learning_rate": 5.305327583808597e-06,
960
+ "loss": 1.0268,
961
+ "step": 3375
962
+ },
963
+ {
964
+ "epoch": 0.4729447767422451,
965
+ "grad_norm": 0.2353515625,
966
+ "learning_rate": 5.270552232577549e-06,
967
+ "loss": 0.9866,
968
+ "step": 3400
969
+ },
970
+ {
971
+ "epoch": 0.47642231186534983,
972
+ "grad_norm": 0.294921875,
973
+ "learning_rate": 5.235776881346502e-06,
974
+ "loss": 0.9109,
975
+ "step": 3425
976
+ },
977
+ {
978
+ "epoch": 0.47989984698845456,
979
+ "grad_norm": 0.11474609375,
980
+ "learning_rate": 5.201001530115455e-06,
981
+ "loss": 0.911,
982
+ "step": 3450
983
+ },
984
+ {
985
+ "epoch": 0.48337738211155934,
986
+ "grad_norm": 0.30859375,
987
+ "learning_rate": 5.166226178884407e-06,
988
+ "loss": 1.2343,
989
+ "step": 3475
990
+ },
991
+ {
992
+ "epoch": 0.48685491723466406,
993
+ "grad_norm": 0.15234375,
994
+ "learning_rate": 5.131450827653359e-06,
995
+ "loss": 1.028,
996
+ "step": 3500
997
+ },
998
+ {
999
+ "epoch": 0.4903324523577688,
1000
+ "grad_norm": 0.1533203125,
1001
+ "learning_rate": 5.096675476422312e-06,
1002
+ "loss": 0.9523,
1003
+ "step": 3525
1004
+ },
1005
+ {
1006
+ "epoch": 0.49380998748087357,
1007
+ "grad_norm": 0.1865234375,
1008
+ "learning_rate": 5.061900125191264e-06,
1009
+ "loss": 0.9315,
1010
+ "step": 3550
1011
+ },
1012
+ {
1013
+ "epoch": 0.4972875226039783,
1014
+ "grad_norm": 0.220703125,
1015
+ "learning_rate": 5.0271247739602165e-06,
1016
+ "loss": 0.9098,
1017
+ "step": 3575
1018
+ },
1019
+ {
1020
+ "epoch": 0.500765057727083,
1021
+ "grad_norm": 0.1513671875,
1022
+ "learning_rate": 4.99234942272917e-06,
1023
+ "loss": 0.9854,
1024
+ "step": 3600
1025
+ },
1026
+ {
1027
+ "epoch": 0.5042425928501878,
1028
+ "grad_norm": 0.1484375,
1029
+ "learning_rate": 4.9575740714981225e-06,
1030
+ "loss": 0.9635,
1031
+ "step": 3625
1032
+ },
1033
+ {
1034
+ "epoch": 0.5077201279732926,
1035
+ "grad_norm": 0.1923828125,
1036
+ "learning_rate": 4.9227987202670755e-06,
1037
+ "loss": 0.9722,
1038
+ "step": 3650
1039
+ },
1040
+ {
1041
+ "epoch": 0.5111976630963972,
1042
+ "grad_norm": 0.1787109375,
1043
+ "learning_rate": 4.888023369036028e-06,
1044
+ "loss": 0.9458,
1045
+ "step": 3675
1046
+ },
1047
+ {
1048
+ "epoch": 0.514675198219502,
1049
+ "grad_norm": 0.216796875,
1050
+ "learning_rate": 4.85324801780498e-06,
1051
+ "loss": 0.949,
1052
+ "step": 3700
1053
+ },
1054
+ {
1055
+ "epoch": 0.5181527333426068,
1056
+ "grad_norm": 0.1748046875,
1057
+ "learning_rate": 4.818472666573933e-06,
1058
+ "loss": 0.9858,
1059
+ "step": 3725
1060
+ },
1061
+ {
1062
+ "epoch": 0.5216302684657115,
1063
+ "grad_norm": 0.1513671875,
1064
+ "learning_rate": 4.783697315342886e-06,
1065
+ "loss": 0.9366,
1066
+ "step": 3750
1067
+ },
1068
+ {
1069
+ "epoch": 0.5251078035888163,
1070
+ "grad_norm": 0.2041015625,
1071
+ "learning_rate": 4.748921964111838e-06,
1072
+ "loss": 0.9136,
1073
+ "step": 3775
1074
+ },
1075
+ {
1076
+ "epoch": 0.528585338711921,
1077
+ "grad_norm": 0.255859375,
1078
+ "learning_rate": 4.71414661288079e-06,
1079
+ "loss": 0.8959,
1080
+ "step": 3800
1081
+ },
1082
+ {
1083
+ "epoch": 0.5320628738350257,
1084
+ "grad_norm": 0.2890625,
1085
+ "learning_rate": 4.679371261649743e-06,
1086
+ "loss": 1.0477,
1087
+ "step": 3825
1088
+ },
1089
+ {
1090
+ "epoch": 0.5355404089581305,
1091
+ "grad_norm": 1.203125,
1092
+ "learning_rate": 4.644595910418695e-06,
1093
+ "loss": 0.9659,
1094
+ "step": 3850
1095
+ },
1096
+ {
1097
+ "epoch": 0.5390179440812353,
1098
+ "grad_norm": 0.546875,
1099
+ "learning_rate": 4.609820559187648e-06,
1100
+ "loss": 0.9351,
1101
+ "step": 3875
1102
+ },
1103
+ {
1104
+ "epoch": 0.5424954792043399,
1105
+ "grad_norm": 0.466796875,
1106
+ "learning_rate": 4.575045207956601e-06,
1107
+ "loss": 0.9646,
1108
+ "step": 3900
1109
+ },
1110
+ {
1111
+ "epoch": 0.5459730143274447,
1112
+ "grad_norm": 0.173828125,
1113
+ "learning_rate": 4.5402698567255535e-06,
1114
+ "loss": 1.0591,
1115
+ "step": 3925
1116
+ },
1117
+ {
1118
+ "epoch": 0.5494505494505495,
1119
+ "grad_norm": 0.2353515625,
1120
+ "learning_rate": 4.505494505494506e-06,
1121
+ "loss": 0.9134,
1122
+ "step": 3950
1123
+ },
1124
+ {
1125
+ "epoch": 0.5529280845736542,
1126
+ "grad_norm": 0.181640625,
1127
+ "learning_rate": 4.470719154263458e-06,
1128
+ "loss": 0.9683,
1129
+ "step": 3975
1130
+ },
1131
+ {
1132
+ "epoch": 0.556405619696759,
1133
+ "grad_norm": 0.33203125,
1134
+ "learning_rate": 4.435943803032411e-06,
1135
+ "loss": 0.9613,
1136
+ "step": 4000
1137
+ },
1138
+ {
1139
+ "epoch": 0.5598831548198637,
1140
+ "grad_norm": 0.1611328125,
1141
+ "learning_rate": 4.401168451801364e-06,
1142
+ "loss": 0.9213,
1143
+ "step": 4025
1144
+ },
1145
+ {
1146
+ "epoch": 0.5633606899429684,
1147
+ "grad_norm": 2.296875,
1148
+ "learning_rate": 4.366393100570316e-06,
1149
+ "loss": 0.8767,
1150
+ "step": 4050
1151
+ },
1152
+ {
1153
+ "epoch": 0.5668382250660732,
1154
+ "grad_norm": 0.1650390625,
1155
+ "learning_rate": 4.331617749339269e-06,
1156
+ "loss": 0.9816,
1157
+ "step": 4075
1158
+ },
1159
+ {
1160
+ "epoch": 0.570315760189178,
1161
+ "grad_norm": 0.185546875,
1162
+ "learning_rate": 4.296842398108221e-06,
1163
+ "loss": 0.9544,
1164
+ "step": 4100
1165
+ },
1166
+ {
1167
+ "epoch": 0.5737932953122826,
1168
+ "grad_norm": 0.3203125,
1169
+ "learning_rate": 4.262067046877173e-06,
1170
+ "loss": 0.9496,
1171
+ "step": 4125
1172
+ },
1173
+ {
1174
+ "epoch": 0.5772708304353874,
1175
+ "grad_norm": 0.296875,
1176
+ "learning_rate": 4.227291695646126e-06,
1177
+ "loss": 0.9774,
1178
+ "step": 4150
1179
+ },
1180
+ {
1181
+ "epoch": 0.5807483655584922,
1182
+ "grad_norm": 0.1982421875,
1183
+ "learning_rate": 4.192516344415079e-06,
1184
+ "loss": 0.9412,
1185
+ "step": 4175
1186
+ },
1187
+ {
1188
+ "epoch": 0.5842259006815969,
1189
+ "grad_norm": 0.1552734375,
1190
+ "learning_rate": 4.157740993184031e-06,
1191
+ "loss": 0.9162,
1192
+ "step": 4200
1193
+ },
1194
+ {
1195
+ "epoch": 0.5877034358047016,
1196
+ "grad_norm": 0.296875,
1197
+ "learning_rate": 4.122965641952984e-06,
1198
+ "loss": 0.9275,
1199
+ "step": 4225
1200
+ },
1201
+ {
1202
+ "epoch": 0.5911809709278064,
1203
+ "grad_norm": 0.20703125,
1204
+ "learning_rate": 4.088190290721937e-06,
1205
+ "loss": 0.9903,
1206
+ "step": 4250
1207
+ },
1208
+ {
1209
+ "epoch": 0.5946585060509111,
1210
+ "grad_norm": 0.333984375,
1211
+ "learning_rate": 4.053414939490889e-06,
1212
+ "loss": 0.9672,
1213
+ "step": 4275
1214
+ },
1215
+ {
1216
+ "epoch": 0.5981360411740159,
1217
+ "grad_norm": 0.162109375,
1218
+ "learning_rate": 4.018639588259842e-06,
1219
+ "loss": 0.9424,
1220
+ "step": 4300
1221
+ },
1222
+ {
1223
+ "epoch": 0.6016135762971206,
1224
+ "grad_norm": 0.185546875,
1225
+ "learning_rate": 3.983864237028795e-06,
1226
+ "loss": 0.9942,
1227
+ "step": 4325
1228
+ },
1229
+ {
1230
+ "epoch": 0.6050911114202253,
1231
+ "grad_norm": 0.21484375,
1232
+ "learning_rate": 3.949088885797747e-06,
1233
+ "loss": 1.0713,
1234
+ "step": 4350
1235
+ },
1236
+ {
1237
+ "epoch": 0.6085686465433301,
1238
+ "grad_norm": 0.2099609375,
1239
+ "learning_rate": 3.914313534566699e-06,
1240
+ "loss": 0.9087,
1241
+ "step": 4375
1242
+ },
1243
+ {
1244
+ "epoch": 0.6120461816664349,
1245
+ "grad_norm": 0.11962890625,
1246
+ "learning_rate": 3.879538183335652e-06,
1247
+ "loss": 0.9249,
1248
+ "step": 4400
1249
+ },
1250
+ {
1251
+ "epoch": 0.6155237167895395,
1252
+ "grad_norm": 0.9453125,
1253
+ "learning_rate": 3.844762832104604e-06,
1254
+ "loss": 0.9453,
1255
+ "step": 4425
1256
+ },
1257
+ {
1258
+ "epoch": 0.6190012519126443,
1259
+ "grad_norm": 0.1865234375,
1260
+ "learning_rate": 3.809987480873557e-06,
1261
+ "loss": 0.9612,
1262
+ "step": 4450
1263
+ },
1264
+ {
1265
+ "epoch": 0.6224787870357491,
1266
+ "grad_norm": 0.25,
1267
+ "learning_rate": 3.7752121296425098e-06,
1268
+ "loss": 0.9749,
1269
+ "step": 4475
1270
+ },
1271
+ {
1272
+ "epoch": 0.6259563221588538,
1273
+ "grad_norm": 0.162109375,
1274
+ "learning_rate": 3.740436778411462e-06,
1275
+ "loss": 0.9151,
1276
+ "step": 4500
1277
+ },
1278
+ {
1279
+ "epoch": 0.6294338572819586,
1280
+ "grad_norm": 0.1435546875,
1281
+ "learning_rate": 3.705661427180415e-06,
1282
+ "loss": 0.9617,
1283
+ "step": 4525
1284
+ },
1285
+ {
1286
+ "epoch": 0.6329113924050633,
1287
+ "grad_norm": 0.2294921875,
1288
+ "learning_rate": 3.6708860759493675e-06,
1289
+ "loss": 1.1337,
1290
+ "step": 4550
1291
+ },
1292
+ {
1293
+ "epoch": 0.636388927528168,
1294
+ "grad_norm": 0.2275390625,
1295
+ "learning_rate": 3.6361107247183197e-06,
1296
+ "loss": 1.0141,
1297
+ "step": 4575
1298
+ },
1299
+ {
1300
+ "epoch": 0.6398664626512728,
1301
+ "grad_norm": 0.1376953125,
1302
+ "learning_rate": 3.6013353734872727e-06,
1303
+ "loss": 0.8826,
1304
+ "step": 4600
1305
+ },
1306
+ {
1307
+ "epoch": 0.6433439977743776,
1308
+ "grad_norm": 0.2021484375,
1309
+ "learning_rate": 3.5665600222562253e-06,
1310
+ "loss": 0.9162,
1311
+ "step": 4625
1312
+ },
1313
+ {
1314
+ "epoch": 0.6468215328974822,
1315
+ "grad_norm": 0.416015625,
1316
+ "learning_rate": 3.5317846710251774e-06,
1317
+ "loss": 1.1372,
1318
+ "step": 4650
1319
+ },
1320
+ {
1321
+ "epoch": 0.650299068020587,
1322
+ "grad_norm": 0.96875,
1323
+ "learning_rate": 3.49700931979413e-06,
1324
+ "loss": 0.952,
1325
+ "step": 4675
1326
+ },
1327
+ {
1328
+ "epoch": 0.6537766031436918,
1329
+ "grad_norm": 0.296875,
1330
+ "learning_rate": 3.462233968563083e-06,
1331
+ "loss": 0.9671,
1332
+ "step": 4700
1333
+ },
1334
+ {
1335
+ "epoch": 0.6572541382667965,
1336
+ "grad_norm": 0.92578125,
1337
+ "learning_rate": 3.427458617332035e-06,
1338
+ "loss": 1.055,
1339
+ "step": 4725
1340
+ },
1341
+ {
1342
+ "epoch": 0.6607316733899012,
1343
+ "grad_norm": 3.8125,
1344
+ "learning_rate": 3.3926832661009877e-06,
1345
+ "loss": 0.8707,
1346
+ "step": 4750
1347
+ },
1348
+ {
1349
+ "epoch": 0.664209208513006,
1350
+ "grad_norm": 0.341796875,
1351
+ "learning_rate": 3.3579079148699407e-06,
1352
+ "loss": 0.9243,
1353
+ "step": 4775
1354
+ },
1355
+ {
1356
+ "epoch": 0.6676867436361107,
1357
+ "grad_norm": 0.232421875,
1358
+ "learning_rate": 3.323132563638893e-06,
1359
+ "loss": 1.0359,
1360
+ "step": 4800
1361
+ },
1362
+ {
1363
+ "epoch": 0.6711642787592155,
1364
+ "grad_norm": 0.15234375,
1365
+ "learning_rate": 3.2883572124078455e-06,
1366
+ "loss": 0.9355,
1367
+ "step": 4825
1368
+ },
1369
+ {
1370
+ "epoch": 0.6746418138823203,
1371
+ "grad_norm": 0.318359375,
1372
+ "learning_rate": 3.2535818611767985e-06,
1373
+ "loss": 0.9119,
1374
+ "step": 4850
1375
+ },
1376
+ {
1377
+ "epoch": 0.6781193490054249,
1378
+ "grad_norm": 0.1845703125,
1379
+ "learning_rate": 3.2188065099457506e-06,
1380
+ "loss": 0.9348,
1381
+ "step": 4875
1382
+ },
1383
+ {
1384
+ "epoch": 0.6815968841285297,
1385
+ "grad_norm": 0.349609375,
1386
+ "learning_rate": 3.184031158714703e-06,
1387
+ "loss": 1.1575,
1388
+ "step": 4900
1389
+ },
1390
+ {
1391
+ "epoch": 0.6850744192516345,
1392
+ "grad_norm": 0.296875,
1393
+ "learning_rate": 3.149255807483656e-06,
1394
+ "loss": 1.0243,
1395
+ "step": 4925
1396
+ },
1397
+ {
1398
+ "epoch": 0.6885519543747392,
1399
+ "grad_norm": 0.322265625,
1400
+ "learning_rate": 3.1144804562526083e-06,
1401
+ "loss": 0.8819,
1402
+ "step": 4950
1403
+ },
1404
+ {
1405
+ "epoch": 0.6920294894978439,
1406
+ "grad_norm": 0.1767578125,
1407
+ "learning_rate": 3.079705105021561e-06,
1408
+ "loss": 0.931,
1409
+ "step": 4975
1410
+ },
1411
+ {
1412
+ "epoch": 0.6955070246209487,
1413
+ "grad_norm": 0.2451171875,
1414
+ "learning_rate": 3.0449297537905135e-06,
1415
+ "loss": 1.1218,
1416
+ "step": 5000
1417
+ },
1418
+ {
1419
+ "epoch": 0.6989845597440534,
1420
+ "grad_norm": 0.1865234375,
1421
+ "learning_rate": 3.010154402559466e-06,
1422
+ "loss": 0.9186,
1423
+ "step": 5025
1424
+ },
1425
+ {
1426
+ "epoch": 0.7024620948671582,
1427
+ "grad_norm": 0.40625,
1428
+ "learning_rate": 2.9753790513284187e-06,
1429
+ "loss": 1.0308,
1430
+ "step": 5050
1431
+ },
1432
+ {
1433
+ "epoch": 0.7059396299902629,
1434
+ "grad_norm": 2.265625,
1435
+ "learning_rate": 2.9406037000973712e-06,
1436
+ "loss": 1.0625,
1437
+ "step": 5075
1438
+ },
1439
+ {
1440
+ "epoch": 0.7094171651133676,
1441
+ "grad_norm": 0.2412109375,
1442
+ "learning_rate": 2.9058283488663234e-06,
1443
+ "loss": 0.916,
1444
+ "step": 5100
1445
+ },
1446
+ {
1447
+ "epoch": 0.7128947002364724,
1448
+ "grad_norm": 0.1796875,
1449
+ "learning_rate": 2.8710529976352764e-06,
1450
+ "loss": 1.076,
1451
+ "step": 5125
1452
+ },
1453
+ {
1454
+ "epoch": 0.7163722353595772,
1455
+ "grad_norm": 0.23828125,
1456
+ "learning_rate": 2.836277646404229e-06,
1457
+ "loss": 0.9293,
1458
+ "step": 5150
1459
+ },
1460
+ {
1461
+ "epoch": 0.7198497704826818,
1462
+ "grad_norm": 0.2060546875,
1463
+ "learning_rate": 2.801502295173181e-06,
1464
+ "loss": 0.9192,
1465
+ "step": 5175
1466
+ },
1467
+ {
1468
+ "epoch": 0.7233273056057866,
1469
+ "grad_norm": 5.21875,
1470
+ "learning_rate": 2.766726943942134e-06,
1471
+ "loss": 1.1218,
1472
+ "step": 5200
1473
+ },
1474
+ {
1475
+ "epoch": 0.7268048407288914,
1476
+ "grad_norm": 0.1806640625,
1477
+ "learning_rate": 2.7319515927110867e-06,
1478
+ "loss": 0.9646,
1479
+ "step": 5225
1480
+ },
1481
+ {
1482
+ "epoch": 0.7302823758519961,
1483
+ "grad_norm": 0.134765625,
1484
+ "learning_rate": 2.697176241480039e-06,
1485
+ "loss": 1.0199,
1486
+ "step": 5250
1487
+ },
1488
+ {
1489
+ "epoch": 0.7337599109751008,
1490
+ "grad_norm": 0.2578125,
1491
+ "learning_rate": 2.662400890248992e-06,
1492
+ "loss": 0.9171,
1493
+ "step": 5275
1494
+ },
1495
+ {
1496
+ "epoch": 0.7372374460982056,
1497
+ "grad_norm": 0.13671875,
1498
+ "learning_rate": 2.6276255390179444e-06,
1499
+ "loss": 0.9844,
1500
+ "step": 5300
1501
+ },
1502
+ {
1503
+ "epoch": 0.7407149812213103,
1504
+ "grad_norm": 0.203125,
1505
+ "learning_rate": 2.5928501877868966e-06,
1506
+ "loss": 0.9536,
1507
+ "step": 5325
1508
+ },
1509
+ {
1510
+ "epoch": 0.7441925163444151,
1511
+ "grad_norm": 0.26953125,
1512
+ "learning_rate": 2.5580748365558496e-06,
1513
+ "loss": 0.9099,
1514
+ "step": 5350
1515
+ },
1516
+ {
1517
+ "epoch": 0.7476700514675199,
1518
+ "grad_norm": 0.37890625,
1519
+ "learning_rate": 2.523299485324802e-06,
1520
+ "loss": 1.0949,
1521
+ "step": 5375
1522
+ },
1523
+ {
1524
+ "epoch": 0.7511475865906245,
1525
+ "grad_norm": 0.279296875,
1526
+ "learning_rate": 2.4885241340937548e-06,
1527
+ "loss": 0.9524,
1528
+ "step": 5400
1529
+ },
1530
+ {
1531
+ "epoch": 0.7546251217137293,
1532
+ "grad_norm": 0.2060546875,
1533
+ "learning_rate": 2.4537487828627073e-06,
1534
+ "loss": 1.0137,
1535
+ "step": 5425
1536
+ },
1537
+ {
1538
+ "epoch": 0.7581026568368341,
1539
+ "grad_norm": 0.498046875,
1540
+ "learning_rate": 2.4189734316316595e-06,
1541
+ "loss": 1.1407,
1542
+ "step": 5450
1543
+ },
1544
+ {
1545
+ "epoch": 0.7615801919599388,
1546
+ "grad_norm": 0.20703125,
1547
+ "learning_rate": 2.3841980804006125e-06,
1548
+ "loss": 0.9067,
1549
+ "step": 5475
1550
+ },
1551
+ {
1552
+ "epoch": 0.7650577270830435,
1553
+ "grad_norm": 0.26171875,
1554
+ "learning_rate": 2.3494227291695646e-06,
1555
+ "loss": 0.9254,
1556
+ "step": 5500
1557
+ },
1558
+ {
1559
+ "epoch": 0.7685352622061483,
1560
+ "grad_norm": 0.2158203125,
1561
+ "learning_rate": 2.3146473779385172e-06,
1562
+ "loss": 0.9871,
1563
+ "step": 5525
1564
+ },
1565
+ {
1566
+ "epoch": 0.772012797329253,
1567
+ "grad_norm": 0.32421875,
1568
+ "learning_rate": 2.2798720267074702e-06,
1569
+ "loss": 0.9586,
1570
+ "step": 5550
1571
+ },
1572
+ {
1573
+ "epoch": 0.7754903324523578,
1574
+ "grad_norm": 0.341796875,
1575
+ "learning_rate": 2.2450966754764224e-06,
1576
+ "loss": 0.9724,
1577
+ "step": 5575
1578
+ },
1579
+ {
1580
+ "epoch": 0.7789678675754625,
1581
+ "grad_norm": 0.28515625,
1582
+ "learning_rate": 2.210321324245375e-06,
1583
+ "loss": 0.9269,
1584
+ "step": 5600
1585
+ },
1586
+ {
1587
+ "epoch": 0.7824454026985672,
1588
+ "grad_norm": 0.150390625,
1589
+ "learning_rate": 2.1755459730143275e-06,
1590
+ "loss": 0.9433,
1591
+ "step": 5625
1592
+ },
1593
+ {
1594
+ "epoch": 0.785922937821672,
1595
+ "grad_norm": 0.345703125,
1596
+ "learning_rate": 2.14077062178328e-06,
1597
+ "loss": 0.867,
1598
+ "step": 5650
1599
+ },
1600
+ {
1601
+ "epoch": 0.7894004729447768,
1602
+ "grad_norm": 0.1591796875,
1603
+ "learning_rate": 2.1059952705522327e-06,
1604
+ "loss": 0.8577,
1605
+ "step": 5675
1606
+ },
1607
+ {
1608
+ "epoch": 0.7928780080678814,
1609
+ "grad_norm": 0.28125,
1610
+ "learning_rate": 2.0712199193211853e-06,
1611
+ "loss": 1.0268,
1612
+ "step": 5700
1613
+ },
1614
+ {
1615
+ "epoch": 0.7963555431909862,
1616
+ "grad_norm": 0.1494140625,
1617
+ "learning_rate": 2.036444568090138e-06,
1618
+ "loss": 1.0669,
1619
+ "step": 5725
1620
+ },
1621
+ {
1622
+ "epoch": 0.799833078314091,
1623
+ "grad_norm": 0.21484375,
1624
+ "learning_rate": 2.0016692168590904e-06,
1625
+ "loss": 0.9864,
1626
+ "step": 5750
1627
+ },
1628
+ {
1629
+ "epoch": 0.8033106134371957,
1630
+ "grad_norm": 0.234375,
1631
+ "learning_rate": 1.966893865628043e-06,
1632
+ "loss": 0.9397,
1633
+ "step": 5775
1634
+ },
1635
+ {
1636
+ "epoch": 0.8067881485603005,
1637
+ "grad_norm": 0.185546875,
1638
+ "learning_rate": 1.9321185143969956e-06,
1639
+ "loss": 0.8989,
1640
+ "step": 5800
1641
+ },
1642
+ {
1643
+ "epoch": 0.8102656836834052,
1644
+ "grad_norm": 0.193359375,
1645
+ "learning_rate": 1.8973431631659482e-06,
1646
+ "loss": 0.9185,
1647
+ "step": 5825
1648
+ },
1649
+ {
1650
+ "epoch": 0.8137432188065099,
1651
+ "grad_norm": 0.1533203125,
1652
+ "learning_rate": 1.8625678119349007e-06,
1653
+ "loss": 0.9832,
1654
+ "step": 5850
1655
+ },
1656
+ {
1657
+ "epoch": 0.8172207539296147,
1658
+ "grad_norm": 0.51953125,
1659
+ "learning_rate": 1.8277924607038533e-06,
1660
+ "loss": 0.9346,
1661
+ "step": 5875
1662
+ },
1663
+ {
1664
+ "epoch": 0.8206982890527195,
1665
+ "grad_norm": 0.2255859375,
1666
+ "learning_rate": 1.7930171094728057e-06,
1667
+ "loss": 0.9447,
1668
+ "step": 5900
1669
+ },
1670
+ {
1671
+ "epoch": 0.8241758241758241,
1672
+ "grad_norm": 0.12890625,
1673
+ "learning_rate": 1.7582417582417585e-06,
1674
+ "loss": 1.0909,
1675
+ "step": 5925
1676
+ },
1677
+ {
1678
+ "epoch": 0.8276533592989289,
1679
+ "grad_norm": 0.5859375,
1680
+ "learning_rate": 1.723466407010711e-06,
1681
+ "loss": 0.9239,
1682
+ "step": 5950
1683
+ },
1684
+ {
1685
+ "epoch": 0.8311308944220337,
1686
+ "grad_norm": 0.1455078125,
1687
+ "learning_rate": 1.6886910557796634e-06,
1688
+ "loss": 1.0372,
1689
+ "step": 5975
1690
+ },
1691
+ {
1692
+ "epoch": 0.8346084295451384,
1693
+ "grad_norm": 0.1953125,
1694
+ "learning_rate": 1.653915704548616e-06,
1695
+ "loss": 0.9608,
1696
+ "step": 6000
1697
+ },
1698
+ {
1699
+ "epoch": 0.8380859646682431,
1700
+ "grad_norm": 0.27734375,
1701
+ "learning_rate": 1.6191403533175688e-06,
1702
+ "loss": 1.0171,
1703
+ "step": 6025
1704
+ },
1705
+ {
1706
+ "epoch": 0.8415634997913479,
1707
+ "grad_norm": 1.75,
1708
+ "learning_rate": 1.5843650020865212e-06,
1709
+ "loss": 0.9034,
1710
+ "step": 6050
1711
+ },
1712
+ {
1713
+ "epoch": 0.8450410349144526,
1714
+ "grad_norm": 0.458984375,
1715
+ "learning_rate": 1.5495896508554737e-06,
1716
+ "loss": 0.9747,
1717
+ "step": 6075
1718
+ },
1719
+ {
1720
+ "epoch": 0.8485185700375574,
1721
+ "grad_norm": 0.203125,
1722
+ "learning_rate": 1.5148142996244263e-06,
1723
+ "loss": 0.968,
1724
+ "step": 6100
1725
+ },
1726
+ {
1727
+ "epoch": 0.8519961051606622,
1728
+ "grad_norm": 0.23046875,
1729
+ "learning_rate": 1.4800389483933789e-06,
1730
+ "loss": 0.9446,
1731
+ "step": 6125
1732
+ },
1733
+ {
1734
+ "epoch": 0.8554736402837668,
1735
+ "grad_norm": 0.359375,
1736
+ "learning_rate": 1.4452635971623313e-06,
1737
+ "loss": 0.9708,
1738
+ "step": 6150
1739
+ },
1740
+ {
1741
+ "epoch": 0.8589511754068716,
1742
+ "grad_norm": 0.1455078125,
1743
+ "learning_rate": 1.410488245931284e-06,
1744
+ "loss": 0.9382,
1745
+ "step": 6175
1746
+ },
1747
+ {
1748
+ "epoch": 0.8624287105299764,
1749
+ "grad_norm": 0.197265625,
1750
+ "learning_rate": 1.3757128947002366e-06,
1751
+ "loss": 1.058,
1752
+ "step": 6200
1753
+ },
1754
+ {
1755
+ "epoch": 0.865906245653081,
1756
+ "grad_norm": 0.322265625,
1757
+ "learning_rate": 1.340937543469189e-06,
1758
+ "loss": 0.9862,
1759
+ "step": 6225
1760
+ },
1761
+ {
1762
+ "epoch": 0.8693837807761858,
1763
+ "grad_norm": 0.322265625,
1764
+ "learning_rate": 1.3061621922381418e-06,
1765
+ "loss": 0.9465,
1766
+ "step": 6250
1767
+ },
1768
+ {
1769
+ "epoch": 0.8728613158992906,
1770
+ "grad_norm": 0.1123046875,
1771
+ "learning_rate": 1.2713868410070944e-06,
1772
+ "loss": 0.9073,
1773
+ "step": 6275
1774
+ },
1775
+ {
1776
+ "epoch": 0.8763388510223953,
1777
+ "grad_norm": 0.1943359375,
1778
+ "learning_rate": 1.236611489776047e-06,
1779
+ "loss": 0.8929,
1780
+ "step": 6300
1781
+ },
1782
+ {
1783
+ "epoch": 0.8798163861455001,
1784
+ "grad_norm": 0.421875,
1785
+ "learning_rate": 1.2018361385449993e-06,
1786
+ "loss": 0.9447,
1787
+ "step": 6325
1788
+ },
1789
+ {
1790
+ "epoch": 0.8832939212686048,
1791
+ "grad_norm": 0.1259765625,
1792
+ "learning_rate": 1.1670607873139519e-06,
1793
+ "loss": 0.9536,
1794
+ "step": 6350
1795
+ },
1796
+ {
1797
+ "epoch": 0.8867714563917095,
1798
+ "grad_norm": 0.1630859375,
1799
+ "learning_rate": 1.1322854360829045e-06,
1800
+ "loss": 0.9508,
1801
+ "step": 6375
1802
+ },
1803
+ {
1804
+ "epoch": 0.8902489915148143,
1805
+ "grad_norm": 0.1806640625,
1806
+ "learning_rate": 1.097510084851857e-06,
1807
+ "loss": 0.9177,
1808
+ "step": 6400
1809
+ },
1810
+ {
1811
+ "epoch": 0.8937265266379191,
1812
+ "grad_norm": 0.1669921875,
1813
+ "learning_rate": 1.0627347336208096e-06,
1814
+ "loss": 0.9255,
1815
+ "step": 6425
1816
+ },
1817
+ {
1818
+ "epoch": 0.8972040617610237,
1819
+ "grad_norm": 0.267578125,
1820
+ "learning_rate": 1.0279593823897622e-06,
1821
+ "loss": 0.9855,
1822
+ "step": 6450
1823
+ },
1824
+ {
1825
+ "epoch": 0.9006815968841285,
1826
+ "grad_norm": 2.03125,
1827
+ "learning_rate": 9.931840311587148e-07,
1828
+ "loss": 0.9591,
1829
+ "step": 6475
1830
+ },
1831
+ {
1832
+ "epoch": 0.9041591320072333,
1833
+ "grad_norm": 0.56640625,
1834
+ "learning_rate": 9.584086799276674e-07,
1835
+ "loss": 0.929,
1836
+ "step": 6500
1837
+ },
1838
+ {
1839
+ "epoch": 0.907636667130338,
1840
+ "grad_norm": 0.2236328125,
1841
+ "learning_rate": 9.236333286966199e-07,
1842
+ "loss": 0.9179,
1843
+ "step": 6525
1844
+ },
1845
+ {
1846
+ "epoch": 0.9111142022534428,
1847
+ "grad_norm": 0.6171875,
1848
+ "learning_rate": 8.888579774655724e-07,
1849
+ "loss": 0.9565,
1850
+ "step": 6550
1851
+ },
1852
+ {
1853
+ "epoch": 0.9145917373765475,
1854
+ "grad_norm": 0.2021484375,
1855
+ "learning_rate": 8.540826262345251e-07,
1856
+ "loss": 0.8986,
1857
+ "step": 6575
1858
+ },
1859
+ {
1860
+ "epoch": 0.9180692724996522,
1861
+ "grad_norm": 0.1806640625,
1862
+ "learning_rate": 8.193072750034777e-07,
1863
+ "loss": 0.9654,
1864
+ "step": 6600
1865
+ },
1866
+ {
1867
+ "epoch": 0.921546807622757,
1868
+ "grad_norm": 0.23046875,
1869
+ "learning_rate": 7.845319237724301e-07,
1870
+ "loss": 1.0365,
1871
+ "step": 6625
1872
+ },
1873
+ {
1874
+ "epoch": 0.9250243427458618,
1875
+ "grad_norm": 0.1875,
1876
+ "learning_rate": 7.497565725413827e-07,
1877
+ "loss": 0.9217,
1878
+ "step": 6650
1879
+ },
1880
+ {
1881
+ "epoch": 0.9285018778689664,
1882
+ "grad_norm": 0.2412109375,
1883
+ "learning_rate": 7.149812213103353e-07,
1884
+ "loss": 1.0513,
1885
+ "step": 6675
1886
+ },
1887
+ {
1888
+ "epoch": 0.9319794129920712,
1889
+ "grad_norm": 0.2470703125,
1890
+ "learning_rate": 6.802058700792878e-07,
1891
+ "loss": 0.9691,
1892
+ "step": 6700
1893
+ },
1894
+ {
1895
+ "epoch": 0.935456948115176,
1896
+ "grad_norm": 0.1796875,
1897
+ "learning_rate": 6.454305188482404e-07,
1898
+ "loss": 0.9488,
1899
+ "step": 6725
1900
+ },
1901
+ {
1902
+ "epoch": 0.9389344832382807,
1903
+ "grad_norm": 0.1708984375,
1904
+ "learning_rate": 6.106551676171929e-07,
1905
+ "loss": 0.9356,
1906
+ "step": 6750
1907
+ },
1908
+ {
1909
+ "epoch": 0.9424120183613854,
1910
+ "grad_norm": 0.236328125,
1911
+ "learning_rate": 5.758798163861455e-07,
1912
+ "loss": 0.9483,
1913
+ "step": 6775
1914
+ },
1915
+ {
1916
+ "epoch": 0.9458895534844902,
1917
+ "grad_norm": 0.11474609375,
1918
+ "learning_rate": 5.411044651550981e-07,
1919
+ "loss": 0.8652,
1920
+ "step": 6800
1921
+ },
1922
+ {
1923
+ "epoch": 0.9493670886075949,
1924
+ "grad_norm": 0.23828125,
1925
+ "learning_rate": 5.063291139240507e-07,
1926
+ "loss": 0.9684,
1927
+ "step": 6825
1928
+ },
1929
+ {
1930
+ "epoch": 0.9528446237306997,
1931
+ "grad_norm": 0.29296875,
1932
+ "learning_rate": 4.7155376269300323e-07,
1933
+ "loss": 0.961,
1934
+ "step": 6850
1935
+ },
1936
+ {
1937
+ "epoch": 0.9563221588538044,
1938
+ "grad_norm": 0.306640625,
1939
+ "learning_rate": 4.367784114619558e-07,
1940
+ "loss": 0.9501,
1941
+ "step": 6875
1942
+ },
1943
+ {
1944
+ "epoch": 0.9597996939769091,
1945
+ "grad_norm": 0.150390625,
1946
+ "learning_rate": 4.0200306023090834e-07,
1947
+ "loss": 0.9993,
1948
+ "step": 6900
1949
+ },
1950
+ {
1951
+ "epoch": 0.9632772291000139,
1952
+ "grad_norm": 0.1630859375,
1953
+ "learning_rate": 3.672277089998609e-07,
1954
+ "loss": 0.8676,
1955
+ "step": 6925
1956
+ },
1957
+ {
1958
+ "epoch": 0.9667547642231187,
1959
+ "grad_norm": 0.185546875,
1960
+ "learning_rate": 3.324523577688135e-07,
1961
+ "loss": 1.0496,
1962
+ "step": 6950
1963
+ },
1964
+ {
1965
+ "epoch": 0.9702322993462233,
1966
+ "grad_norm": 0.142578125,
1967
+ "learning_rate": 2.9767700653776607e-07,
1968
+ "loss": 0.9382,
1969
+ "step": 6975
1970
+ },
1971
+ {
1972
+ "epoch": 0.9737098344693281,
1973
+ "grad_norm": 0.1416015625,
1974
+ "learning_rate": 2.6290165530671865e-07,
1975
+ "loss": 0.9294,
1976
+ "step": 7000
1977
+ },
1978
+ {
1979
+ "epoch": 0.9771873695924329,
1980
+ "grad_norm": 0.1181640625,
1981
+ "learning_rate": 2.2812630407567118e-07,
1982
+ "loss": 1.0387,
1983
+ "step": 7025
1984
+ },
1985
+ {
1986
+ "epoch": 0.9806649047155376,
1987
+ "grad_norm": 0.26171875,
1988
+ "learning_rate": 1.9335095284462375e-07,
1989
+ "loss": 0.9241,
1990
+ "step": 7050
1991
+ },
1992
+ {
1993
+ "epoch": 0.9841424398386424,
1994
+ "grad_norm": 0.2099609375,
1995
+ "learning_rate": 1.585756016135763e-07,
1996
+ "loss": 0.9952,
1997
+ "step": 7075
1998
+ },
1999
+ {
2000
+ "epoch": 0.9876199749617471,
2001
+ "grad_norm": 0.2099609375,
2002
+ "learning_rate": 1.2380025038252888e-07,
2003
+ "loss": 0.9206,
2004
+ "step": 7100
2005
+ },
2006
+ {
2007
+ "epoch": 0.9910975100848518,
2008
+ "grad_norm": 0.1640625,
2009
+ "learning_rate": 8.902489915148144e-08,
2010
+ "loss": 0.9654,
2011
+ "step": 7125
2012
+ },
2013
+ {
2014
+ "epoch": 0.9945750452079566,
2015
+ "grad_norm": 0.2197265625,
2016
+ "learning_rate": 5.4249547920434e-08,
2017
+ "loss": 0.9303,
2018
+ "step": 7150
2019
+ },
2020
+ {
2021
+ "epoch": 0.9980525803310614,
2022
+ "grad_norm": 0.1220703125,
2023
+ "learning_rate": 1.9474196689386566e-08,
2024
+ "loss": 0.9058,
2025
+ "step": 7175
2026
+ }
2027
+ ],
2028
+ "logging_steps": 25,
2029
+ "max_steps": 7189,
2030
+ "num_input_tokens_seen": 0,
2031
+ "num_train_epochs": 1,
2032
+ "save_steps": 500,
2033
+ "stateful_callbacks": {
2034
+ "TrainerControl": {
2035
+ "args": {
2036
+ "should_epoch_stop": false,
2037
+ "should_evaluate": false,
2038
+ "should_log": false,
2039
+ "should_save": true,
2040
+ "should_training_stop": true
2041
+ },
2042
+ "attributes": {}
2043
+ }
2044
+ },
2045
+ "total_flos": 4.082170390057009e+18,
2046
+ "train_batch_size": 1,
2047
+ "trial_name": null,
2048
+ "trial_params": null
2049
+ }
original_model/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5446fd9998148f8ee3d39578c23450b5e1fa84122a30263614b2baf55dc470cb
3
+ size 5496