File size: 4,767 Bytes
6171ee9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_lightning_module.py
# reference: https://github.com/lifeiteng/vall-e
import os, sys
now_dir = os.getcwd()
sys.path.append(now_dir)
from typing import Dict
import torch
from pytorch_lightning import LightningModule
from AR.models.t2s_model import Text2SemanticDecoder
from AR.modules.lr_schedulers import WarmupCosineLRSchedule
from AR.modules.optim import ScaledAdam
class Text2SemanticLightningModule(LightningModule):
def __init__(self, config, output_dir, is_train=True):
super().__init__()
self.config = config
self.top_k = 3
self.model = Text2SemanticDecoder(config=config, top_k=self.top_k)
pretrained_s1 = config.get("pretrained_s1")
if pretrained_s1 and is_train:
# print(self.load_state_dict(torch.load(pretrained_s1,map_location="cpu")["state_dict"]))
print(
self.load_state_dict(
torch.load(pretrained_s1, map_location="cpu")["weight"]
)
)
if is_train:
self.automatic_optimization = False
self.save_hyperparameters()
self.eval_dir = output_dir / "eval"
self.eval_dir.mkdir(parents=True, exist_ok=True)
def training_step(self, batch: Dict, batch_idx: int):
opt = self.optimizers()
scheduler = self.lr_schedulers()
forward=self.model.forward if self.config["train"].get("if_dpo",False)==True else self.model.forward_old
loss, acc = forward(
batch["phoneme_ids"],
batch["phoneme_ids_len"],
batch["semantic_ids"],
batch["semantic_ids_len"],
batch["bert_feature"],
)
self.manual_backward(loss)
if batch_idx > 0 and batch_idx % 4 == 0:
opt.step()
opt.zero_grad()
scheduler.step()
self.log(
"total_loss",
loss,
on_step=True,
on_epoch=True,
prog_bar=True,
sync_dist=True,
)
self.log(
"lr",
scheduler.get_last_lr()[0],
on_epoch=True,
prog_bar=True,
sync_dist=True,
)
self.log(
f"top_{self.top_k}_acc",
acc,
on_step=True,
on_epoch=True,
prog_bar=True,
sync_dist=True,
)
def validation_step(self, batch: Dict, batch_idx: int):
return
# # get loss
# loss, acc = self.model.forward(
# batch['phoneme_ids'], batch['phoneme_ids_len'],
# batch['semantic_ids'], batch['semantic_ids_len'],
# batch['bert_feature']
# )
#
# self.log(
# "val_total_loss",
# loss,
# on_step=True,
# on_epoch=True,
# prog_bar=True,
# sync_dist=True)
# self.log(
# f"val_top_{self.top_k}_acc",
# acc,
# on_step=True,
# on_epoch=True,
# prog_bar=True,
# sync_dist=True)
#
# # get infer output
# semantic_len = batch['semantic_ids'].size(1)
# prompt_len = min(int(semantic_len * 0.5), 150)
# prompt = batch['semantic_ids'][:, :prompt_len]
# pred_semantic = self.model.infer(batch['phoneme_ids'],
# batch['phoneme_ids_len'], prompt,
# batch['bert_feature']
# )
# save_name = f'semantic_toks_{batch_idx}.pt'
# save_path = os.path.join(self.eval_dir, save_name)
# torch.save(pred_semantic.detach().cpu(), save_path)
def configure_optimizers(self):
model_parameters = self.model.parameters()
parameters_names = []
parameters_names.append(
[name_param_pair[0] for name_param_pair in self.model.named_parameters()]
)
lm_opt = ScaledAdam(
model_parameters,
lr=0.01,
betas=(0.9, 0.95),
clipping_scale=2.0,
parameters_names=parameters_names,
show_dominant_parameters=False,
clipping_update_period=1000,
)
return {
"optimizer": lm_opt,
"lr_scheduler": {
"scheduler": WarmupCosineLRSchedule(
lm_opt,
init_lr=self.config["optimizer"]["lr_init"],
peak_lr=self.config["optimizer"]["lr"],
end_lr=self.config["optimizer"]["lr_end"],
warmup_steps=self.config["optimizer"]["warmup_steps"],
total_steps=self.config["optimizer"]["decay_steps"],
)
},
}
|