File size: 13,462 Bytes
6171ee9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_model.py
# reference: https://github.com/lifeiteng/vall-e
import torch
from tqdm import tqdm

from AR.modules.embedding_onnx import SinePositionalEmbedding
from AR.modules.embedding_onnx import TokenEmbedding
from AR.modules.transformer_onnx import LayerNorm
from AR.modules.transformer_onnx import TransformerEncoder
from AR.modules.transformer_onnx import TransformerEncoderLayer
from torch import nn
from torch.nn import functional as F
from torchmetrics.classification import MulticlassAccuracy

default_config = {
    "embedding_dim": 512,
    "hidden_dim": 512,
    "num_head": 8,
    "num_layers": 12,
    "num_codebook": 8,
    "p_dropout": 0.0,
    "vocab_size": 1024 + 1,
    "phoneme_vocab_size": 512,
    "EOS": 1024,
}

inf_tensor_value = torch.FloatTensor([-float("Inf")]).float()

def logits_to_probs(
    logits,
    previous_tokens = None,
    temperature: float = 1.0,
    top_k = None,
    top_p = None,
    repetition_penalty: float = 1.0,
):
    previous_tokens = previous_tokens.squeeze()
    if previous_tokens is not None and repetition_penalty != 1.0:
        previous_tokens = previous_tokens.long()
        score = torch.gather(logits, dim=0, index=previous_tokens)
        score = torch.where(
            score < 0, score * repetition_penalty, score / repetition_penalty
        )
        logits.scatter_(dim=0, index=previous_tokens, src=score)

    if top_p is not None and top_p < 1.0:
        sorted_logits, sorted_indices = torch.sort(logits, descending=True)
        cum_probs = torch.cumsum(
            torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1
        )
        sorted_indices_to_remove = cum_probs > top_p
        sorted_indices_to_remove[0] = False  # keep at least one option
        indices_to_remove = sorted_indices_to_remove.scatter(
            dim=0, index=sorted_indices, src=sorted_indices_to_remove
        )
        logits = logits.masked_fill(indices_to_remove, -float("Inf"))

    logits = logits / max(temperature, 1e-5)

    if top_k is not None:
        v, _ = torch.topk(logits, top_k)
        pivot = v.select(-1, -1).unsqueeze(-1)
        logits = torch.where(logits < pivot, inf_tensor_value, logits)

    probs = torch.nn.functional.softmax(logits, dim=-1)
    return probs


def multinomial_sample_one_no_sync(
    probs_sort
):  # Does multinomial sampling without a cuda synchronization
    q = torch.randn_like(probs_sort)
    return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)


def sample(
    logits,
    previous_tokens,
    **sampling_kwargs,
):
    probs = logits_to_probs(
        logits=logits, previous_tokens=previous_tokens, **sampling_kwargs
    )
    idx_next = multinomial_sample_one_no_sync(probs)
    return idx_next, probs


class OnnxEncoder(nn.Module):
    def __init__(self, ar_text_embedding, bert_proj, ar_text_position):
        super().__init__()
        self.ar_text_embedding = ar_text_embedding
        self.bert_proj = bert_proj
        self.ar_text_position = ar_text_position
    
    def forward(self, x, bert_feature):
        x = self.ar_text_embedding(x)
        x = x + self.bert_proj(bert_feature.transpose(1, 2))
        return self.ar_text_position(x)


class T2SFirstStageDecoder(nn.Module):
    def __init__(self, ar_audio_embedding, ar_audio_position, h, ar_predict_layer, loss_fct, ar_accuracy_metric,
    top_k, early_stop_num, num_layers):
        super().__init__()
        self.ar_audio_embedding = ar_audio_embedding
        self.ar_audio_position = ar_audio_position
        self.h = h
        self.ar_predict_layer = ar_predict_layer
        self.loss_fct = loss_fct
        self.ar_accuracy_metric = ar_accuracy_metric
        self.top_k = top_k
        self.early_stop_num = early_stop_num
        self.num_layers = num_layers
    
    def forward(self, x, prompt):
        y = prompt
        x_example = x[:,:,0] * 0.0
        #N, 1, 512
        cache = {
            "all_stage": self.num_layers,
            "k": None,
            "v": None,
            "y_emb": None,
            "first_infer": 1,
            "stage": 0,
        }

        y_emb = self.ar_audio_embedding(y)

        cache["y_emb"] = y_emb
        y_pos = self.ar_audio_position(y_emb)

        xy_pos = torch.concat([x, y_pos], dim=1)

        y_example = y_pos[:,:,0] * 0.0
        x_attn_mask = torch.matmul(x_example.transpose(0, 1) , x_example).bool()
        y_attn_mask = torch.ones_like(torch.matmul(y_example.transpose(0, 1), y_example), dtype=torch.int64)
        y_attn_mask = torch.cumsum(y_attn_mask, dim=1) - torch.cumsum(
            torch.ones_like(y_example.transpose(0, 1), dtype=torch.int64), dim=0
        )
        y_attn_mask = y_attn_mask > 0

        x_y_pad = torch.matmul(x_example.transpose(0, 1), y_example).bool()
        y_x_pad = torch.matmul(y_example.transpose(0, 1), x_example).bool()
        x_attn_mask_pad = torch.cat([x_attn_mask, torch.ones_like(x_y_pad)], dim=1)
        y_attn_mask = torch.cat([y_x_pad, y_attn_mask], dim=1)
        xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0)
        cache["k"] = torch.matmul(x_attn_mask_pad[0].float().unsqueeze(-1), torch.zeros((1, 512)))\
        .unsqueeze(1).repeat(self.num_layers, 1, 1, 1)
        cache["v"] = torch.matmul(x_attn_mask_pad[0].float().unsqueeze(-1), torch.zeros((1, 512)))\
        .unsqueeze(1).repeat(self.num_layers, 1, 1, 1)

        xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache)
        logits = self.ar_predict_layer(xy_dec[:, -1])
        samples = sample(logits[0], y, top_k=self.top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)

        y = torch.concat([y, samples], dim=1)

        return y, cache["k"], cache["v"], cache["y_emb"], x_example


class T2SStageDecoder(nn.Module):
    def __init__(self, ar_audio_embedding, ar_audio_position, h, ar_predict_layer, loss_fct, ar_accuracy_metric,
    top_k, early_stop_num, num_layers):
        super().__init__()
        self.ar_audio_embedding = ar_audio_embedding
        self.ar_audio_position = ar_audio_position
        self.h = h
        self.ar_predict_layer = ar_predict_layer
        self.loss_fct = loss_fct
        self.ar_accuracy_metric = ar_accuracy_metric
        self.top_k = top_k
        self.early_stop_num = early_stop_num
        self.num_layers = num_layers

    def forward(self, y, k, v, y_emb, x_example):
        cache = {
            "all_stage": self.num_layers,
            "k": torch.nn.functional.pad(k, (0, 0, 0, 0, 0, 1)),
            "v": torch.nn.functional.pad(v, (0, 0, 0, 0, 0, 1)),
            "y_emb": y_emb,
            "first_infer": 0,
            "stage": 0,
        }

        y_emb = torch.cat(
            [cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], 1
        )
        cache["y_emb"] = y_emb
        y_pos = self.ar_audio_position(y_emb)

        xy_pos = y_pos[:, -1:]
        
        y_example = y_pos[:,:,0] * 0.0

        xy_attn_mask = torch.cat([x_example, y_example], dim=1)
        xy_attn_mask = torch.zeros_like(xy_attn_mask, dtype=torch.bool)

        xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache)
        logits = self.ar_predict_layer(xy_dec[:, -1])
        samples = sample(logits[0], y, top_k=self.top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)

        y = torch.concat([y, samples], dim=1)

        return y, cache["k"], cache["v"], cache["y_emb"], logits, samples


class Text2SemanticDecoder(nn.Module):
    def __init__(self, config, norm_first=False, top_k=3):
        super(Text2SemanticDecoder, self).__init__()
        self.model_dim = config["model"]["hidden_dim"]
        self.embedding_dim = config["model"]["embedding_dim"]
        self.num_head = config["model"]["head"]
        self.num_layers = config["model"]["n_layer"]
        self.norm_first = norm_first
        self.vocab_size = config["model"]["vocab_size"]
        self.phoneme_vocab_size = config["model"]["phoneme_vocab_size"]
        self.p_dropout = float(config["model"]["dropout"])
        self.EOS = config["model"]["EOS"]
        self.norm_first = norm_first
        assert self.EOS == self.vocab_size - 1
        self.bert_proj = nn.Linear(1024, self.embedding_dim)
        self.ar_text_embedding = TokenEmbedding(self.embedding_dim, self.phoneme_vocab_size, self.p_dropout)
        self.ar_text_position = SinePositionalEmbedding(self.embedding_dim, dropout=0.1, scale=False, alpha=True)
        self.ar_audio_embedding = TokenEmbedding(self.embedding_dim, self.vocab_size, self.p_dropout)
        self.ar_audio_position = SinePositionalEmbedding(self.embedding_dim, dropout=0.1, scale=False, alpha=True)
        self.h = TransformerEncoder(
            TransformerEncoderLayer(
                d_model=self.model_dim,
                nhead=self.num_head,
                dim_feedforward=self.model_dim * 4,
                dropout=0.1,
                batch_first=True,
                norm_first=norm_first,
            ),
            num_layers=self.num_layers,
            norm=LayerNorm(self.model_dim) if norm_first else None,
        )
        self.ar_predict_layer = nn.Linear(self.model_dim, self.vocab_size, bias=False)
        self.loss_fct = nn.CrossEntropyLoss(reduction="sum")
        self.ar_accuracy_metric = MulticlassAccuracy(
            self.vocab_size,
            top_k=top_k,
            average="micro",
            multidim_average="global",
            ignore_index=self.EOS,
        )
        self.top_k = torch.LongTensor([1])
        self.early_stop_num = torch.LongTensor([-1])

    def init_onnx(self):
        self.onnx_encoder = OnnxEncoder(self.ar_text_embedding, self.bert_proj, self.ar_text_position)
        self.first_stage_decoder = T2SFirstStageDecoder(self.ar_audio_embedding, self.ar_audio_position, self.h, 
            self.ar_predict_layer, self.loss_fct, self.ar_accuracy_metric, self.top_k, self.early_stop_num,
            self.num_layers)
        self.stage_decoder = T2SStageDecoder(self.ar_audio_embedding, self.ar_audio_position, self.h, 
            self.ar_predict_layer, self.loss_fct, self.ar_accuracy_metric, self.top_k, self.early_stop_num,
            self.num_layers)

    def forward(self, x, prompts, bert_feature):
        early_stop_num = self.early_stop_num
        prefix_len = prompts.shape[1]

        x = self.onnx_encoder(x, bert_feature)
        y, k, v, y_emb, stage, x_example = self.first_stage_decoder(x, prompts)

        stop = False
        for idx in range(1, 1500):
            enco = self.stage_decoder(y, k, v, y_emb, stage, x_example)
            y, k, v, y_emb, stage, logits, samples = enco
            if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
                stop = True
            if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
                stop = True
            if stop:
                break
        y[0, -1] = 0
        return y, idx

    def infer(self, x, prompts, bert_feature):
        top_k = self.top_k
        early_stop_num = self.early_stop_num

        x = self.onnx_encoder(x, bert_feature)

        y = prompts
        prefix_len = y.shape[1]
        x_len = x.shape[1]
        x_example = x[:,:,0] * 0.0
        x_attn_mask = torch.matmul(x_example.transpose(0, 1), x_example)
        x_attn_mask = torch.zeros_like(x_attn_mask, dtype=torch.bool)

        stop = False
        cache = {
            "all_stage": self.num_layers,
            "k": [None] * self.num_layers,
            "v": [None] * self.num_layers,
            "y_emb": None,
            "first_infer": 1,
            "stage": 0,
        }
        for idx in range(1500):
            if cache["first_infer"] == 1:
                y_emb = self.ar_audio_embedding(y)
            else:
                y_emb = torch.cat(
                    [cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], 1
                )
            cache["y_emb"] = y_emb
            y_pos = self.ar_audio_position(y_emb)
            if cache["first_infer"] == 1:
                xy_pos = torch.concat([x, y_pos], dim=1)
            else:
                xy_pos = y_pos[:, -1:]
            y_len = y_pos.shape[1]
            if cache["first_infer"] == 1:
                x_attn_mask_pad = F.pad(x_attn_mask, (0, y_len), value=True)
                y_attn_mask = F.pad(
                    torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
                    (x_len, 0), value=False
                )
                xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0)
            else:
                xy_attn_mask = torch.zeros((1, x_len + y_len), dtype=torch.bool)
            xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache)
            logits = self.ar_predict_layer(xy_dec[:, -1])
            samples = sample(logits[0], y, top_k=top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)
            if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
                stop = True
            if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
                stop = True
            if stop:
                if prompts.shape[1] == y.shape[1]:
                    y = torch.concat([y, torch.zeros_like(samples)], dim=1)
                break
            y = torch.concat([y, samples], dim=1)
            cache["first_infer"] = 0
        return y, idx