File size: 47,465 Bytes
6171ee9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
import os,shutil,sys,pdb,re
now_dir = os.getcwd()
sys.path.insert(0, now_dir)
import json,yaml,warnings,torch
import platform
import psutil
import signal

warnings.filterwarnings("ignore")
torch.manual_seed(233333)
tmp = os.path.join(now_dir, "TEMP")
os.makedirs(tmp, exist_ok=True)
os.environ["TEMP"] = tmp
if(os.path.exists(tmp)):
    for name in os.listdir(tmp):
        if(name=="jieba.cache"):continue
        path="%s/%s"%(tmp,name)
        delete=os.remove if os.path.isfile(path) else shutil.rmtree
        try:
            delete(path)
        except Exception as e:
            print(str(e))
            pass
import site
site_packages_roots = []
for path in site.getsitepackages():
    if "packages" in path:
        site_packages_roots.append(path)
if(site_packages_roots==[]):site_packages_roots=["%s/runtime/Lib/site-packages" % now_dir]
#os.environ["OPENBLAS_NUM_THREADS"] = "4"
os.environ["no_proxy"] = "localhost, 127.0.0.1, ::1"
os.environ["all_proxy"] = ""
for site_packages_root in site_packages_roots:
    if os.path.exists(site_packages_root):
        try:
            with open("%s/users.pth" % (site_packages_root), "w") as f:
                f.write(
                    "%s\n%s/tools\n%s/tools/damo_asr\n%s/GPT_SoVITS\n%s/tools/uvr5"
                    % (now_dir, now_dir, now_dir, now_dir, now_dir)
                )
            break
        except PermissionError:
            pass
from tools import my_utils
import traceback
import shutil
import pdb
import gradio as gr
from subprocess import Popen
import signal
from config import python_exec,infer_device,is_half,exp_root,webui_port_main,webui_port_infer_tts,webui_port_uvr5,webui_port_subfix,is_share
from tools.i18n.i18n import I18nAuto
i18n = I18nAuto()
from scipy.io import wavfile
from tools.my_utils import load_audio
from multiprocessing import cpu_count

# os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 当遇到mps不支持的步骤时使用cpu

n_cpu=cpu_count()
           
ngpu = torch.cuda.device_count()
gpu_infos = []
mem = []
if_gpu_ok = False

# 判断是否有能用来训练和加速推理的N卡
if torch.cuda.is_available() or ngpu != 0:
    for i in range(ngpu):
        gpu_name = torch.cuda.get_device_name(i)
        if any(value in gpu_name.upper()for value in ["10","16","20","30","40","A2","A3","A4","P4","A50","500","A60","70","80","90","M4","T4","TITAN","L4","4060"]):
            # A10#A100#V100#A40#P40#M40#K80#A4500
            if_gpu_ok = True  # 至少有一张能用的N卡
            gpu_infos.append("%s\t%s" % (i, gpu_name))
            mem.append(int(torch.cuda.get_device_properties(i).total_memory/ 1024/ 1024/ 1024+ 0.4))
# # 判断是否支持mps加速
# if torch.backends.mps.is_available():
#     if_gpu_ok = True
#     gpu_infos.append("%s\t%s" % ("0", "Apple GPU"))
#     mem.append(psutil.virtual_memory().total/ 1024 / 1024 / 1024) # 实测使用系统内存作为显存不会爆显存

if if_gpu_ok and len(gpu_infos) > 0:
    gpu_info = "\n".join(gpu_infos)
    default_batch_size = min(mem) // 2
else:
    gpu_info = ("%s\t%s" % ("0", "CPU"))
    gpu_infos.append("%s\t%s" % ("0", "CPU"))
    default_batch_size = psutil.virtual_memory().total/ 1024 / 1024 / 1024 / 2
gpus = "-".join([i[0] for i in gpu_infos])

pretrained_sovits_name="GPT_SoVITS/pretrained_models/s2G488k.pth"
pretrained_gpt_name="GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
def get_weights_names():
    SoVITS_names = [pretrained_sovits_name]
    for name in os.listdir(SoVITS_weight_root):
        if name.endswith(".pth"):SoVITS_names.append(name)
    GPT_names = [pretrained_gpt_name]
    for name in os.listdir(GPT_weight_root):
        if name.endswith(".ckpt"): GPT_names.append(name)
    return SoVITS_names,GPT_names
SoVITS_weight_root="SoVITS_weights"
GPT_weight_root="GPT_weights"
os.makedirs(SoVITS_weight_root,exist_ok=True)
os.makedirs(GPT_weight_root,exist_ok=True)
SoVITS_names,GPT_names = get_weights_names()

def custom_sort_key(s):
    # 使用正则表达式提取字符串中的数字部分和非数字部分
    parts = re.split('(\d+)', s)
    # 将数字部分转换为整数,非数字部分保持不变
    parts = [int(part) if part.isdigit() else part for part in parts]
    return parts

def change_choices():
    SoVITS_names, GPT_names = get_weights_names()
    return {"choices": sorted(SoVITS_names,key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names,key=custom_sort_key), "__type__": "update"}

p_label=None
p_uvr5=None
p_asr=None
p_denoise=None
p_tts_inference=None

def kill_proc_tree(pid, including_parent=True):  
    try:
        parent = psutil.Process(pid)
    except psutil.NoSuchProcess:
        # Process already terminated
        return

    children = parent.children(recursive=True)
    for child in children:
        try:
            os.kill(child.pid, signal.SIGTERM)  # or signal.SIGKILL
        except OSError:
            pass
    if including_parent:
        try:
            os.kill(parent.pid, signal.SIGTERM)  # or signal.SIGKILL
        except OSError:
            pass

system=platform.system()
def kill_process(pid):
    if(system=="Windows"):
        cmd = "taskkill /t /f /pid %s" % pid
        os.system(cmd)
    else:
        kill_proc_tree(pid)
    

def change_label(if_label,path_list):
    global p_label
    if(if_label==True and p_label==None):
        path_list=my_utils.clean_path(path_list)
        cmd = '"%s" tools/subfix_webui.py --load_list "%s" --webui_port %s --is_share %s'%(python_exec,path_list,webui_port_subfix,is_share)
        yield i18n("打标工具WebUI已开启")
        print(cmd)
        p_label = Popen(cmd, shell=True)
    elif(if_label==False and p_label!=None):
        kill_process(p_label.pid)
        p_label=None
        yield i18n("打标工具WebUI已关闭")

def change_uvr5(if_uvr5):
    global p_uvr5
    if(if_uvr5==True and p_uvr5==None):
        cmd = '"%s" tools/uvr5/webui.py "%s" %s %s %s'%(python_exec,infer_device,is_half,webui_port_uvr5,is_share)
        yield i18n("UVR5已开启")
        print(cmd)
        p_uvr5 = Popen(cmd, shell=True)
    elif(if_uvr5==False and p_uvr5!=None):
        kill_process(p_uvr5.pid)
        p_uvr5=None
        yield i18n("UVR5已关闭")

def change_tts_inference(if_tts,bert_path,cnhubert_base_path,gpu_number,gpt_path,sovits_path):
    global p_tts_inference
    if(if_tts==True and p_tts_inference==None):
        os.environ["gpt_path"]=gpt_path if "/" in gpt_path else "%s/%s"%(GPT_weight_root,gpt_path)
        os.environ["sovits_path"]=sovits_path if "/"in sovits_path else "%s/%s"%(SoVITS_weight_root,sovits_path)
        os.environ["cnhubert_base_path"]=cnhubert_base_path
        os.environ["bert_path"]=bert_path
        os.environ["_CUDA_VISIBLE_DEVICES"]=gpu_number
        os.environ["is_half"]=str(is_half)
        os.environ["infer_ttswebui"]=str(webui_port_infer_tts)
        os.environ["is_share"]=str(is_share)
        cmd = '"%s" GPT_SoVITS/inference_webui.py'%(python_exec)
        yield i18n("TTS推理进程已开启")
        print(cmd)
        p_tts_inference = Popen(cmd, shell=True)
    elif(if_tts==False and p_tts_inference!=None):
        kill_process(p_tts_inference.pid)
        p_tts_inference=None
        yield i18n("TTS推理进程已关闭")

from tools.asr.config import asr_dict
def open_asr(asr_inp_dir, asr_opt_dir, asr_model, asr_model_size, asr_lang):
    global p_asr
    if(p_asr==None):
        asr_inp_dir=my_utils.clean_path(asr_inp_dir)
        cmd = f'"{python_exec}" tools/asr/{asr_dict[asr_model]["path"]}'
        cmd += f' -i "{asr_inp_dir}"'
        cmd += f' -o "{asr_opt_dir}"'
        cmd += f' -s {asr_model_size}'
        cmd += f' -l {asr_lang}'
        cmd += " -p %s"%("float16"if is_half==True else "float32")

        yield "ASR任务开启:%s"%cmd,{"__type__":"update","visible":False},{"__type__":"update","visible":True}
        print(cmd)
        p_asr = Popen(cmd, shell=True)
        p_asr.wait()
        p_asr=None
        yield f"ASR任务完成, 查看终端进行下一步",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
    else:
        yield "已有正在进行的ASR任务,需先终止才能开启下一次任务",{"__type__":"update","visible":False},{"__type__":"update","visible":True}
        # return None

def close_asr():
    global p_asr
    if(p_asr!=None):
        kill_process(p_asr.pid)
        p_asr=None
    return "已终止ASR进程",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
def open_denoise(denoise_inp_dir, denoise_opt_dir):
    global p_denoise
    if(p_denoise==None):
        denoise_inp_dir=my_utils.clean_path(denoise_inp_dir)
        denoise_opt_dir=my_utils.clean_path(denoise_opt_dir)
        cmd = '"%s" tools/cmd-denoise.py -i "%s" -o "%s" -p %s'%(python_exec,denoise_inp_dir,denoise_opt_dir,"float16"if is_half==True else "float32")

        yield "语音降噪任务开启:%s"%cmd,{"__type__":"update","visible":False},{"__type__":"update","visible":True}
        print(cmd)
        p_denoise = Popen(cmd, shell=True)
        p_denoise.wait()
        p_denoise=None
        yield f"语音降噪任务完成, 查看终端进行下一步",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
    else:
        yield "已有正在进行的语音降噪任务,需先终止才能开启下一次任务",{"__type__":"update","visible":False},{"__type__":"update","visible":True}
        # return None

def close_denoise():
    global p_denoise
    if(p_denoise!=None):
        kill_process(p_denoise.pid)
        p_denoise=None
    return "已终止语音降噪进程",{"__type__":"update","visible":True},{"__type__":"update","visible":False}

p_train_SoVITS=None
def open1Ba(batch_size,total_epoch,exp_name,text_low_lr_rate,if_save_latest,if_save_every_weights,save_every_epoch,gpu_numbers1Ba,pretrained_s2G,pretrained_s2D):
    global p_train_SoVITS
    if(p_train_SoVITS==None):
        with open("GPT_SoVITS/configs/s2.json")as f:
            data=f.read()
            data=json.loads(data)
        s2_dir="%s/%s"%(exp_root,exp_name)
        os.makedirs("%s/logs_s2"%(s2_dir),exist_ok=True)
        if(is_half==False):
            data["train"]["fp16_run"]=False
            batch_size=max(1,batch_size//2)
        data["train"]["batch_size"]=batch_size
        data["train"]["epochs"]=total_epoch
        data["train"]["text_low_lr_rate"]=text_low_lr_rate
        data["train"]["pretrained_s2G"]=pretrained_s2G
        data["train"]["pretrained_s2D"]=pretrained_s2D
        data["train"]["if_save_latest"]=if_save_latest
        data["train"]["if_save_every_weights"]=if_save_every_weights
        data["train"]["save_every_epoch"]=save_every_epoch
        data["train"]["gpu_numbers"]=gpu_numbers1Ba
        data["data"]["exp_dir"]=data["s2_ckpt_dir"]=s2_dir
        data["save_weight_dir"]=SoVITS_weight_root
        data["name"]=exp_name
        tmp_config_path="%s/tmp_s2.json"%tmp
        with open(tmp_config_path,"w")as f:f.write(json.dumps(data))

        cmd = '"%s" GPT_SoVITS/s2_train.py --config "%s"'%(python_exec,tmp_config_path)
        yield "SoVITS训练开始:%s"%cmd,{"__type__":"update","visible":False},{"__type__":"update","visible":True}
        print(cmd)
        p_train_SoVITS = Popen(cmd, shell=True)
        p_train_SoVITS.wait()
        p_train_SoVITS=None
        yield "SoVITS训练完成",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
    else:
        yield "已有正在进行的SoVITS训练任务,需先终止才能开启下一次任务",{"__type__":"update","visible":False},{"__type__":"update","visible":True}

def close1Ba():
    global p_train_SoVITS
    if(p_train_SoVITS!=None):
        kill_process(p_train_SoVITS.pid)
        p_train_SoVITS=None
    return "已终止SoVITS训练",{"__type__":"update","visible":True},{"__type__":"update","visible":False}

p_train_GPT=None
def open1Bb(batch_size,total_epoch,exp_name,if_dpo,if_save_latest,if_save_every_weights,save_every_epoch,gpu_numbers,pretrained_s1):
    global p_train_GPT
    if(p_train_GPT==None):
        with open("GPT_SoVITS/configs/s1longer.yaml")as f:
            data=f.read()
            data=yaml.load(data, Loader=yaml.FullLoader)
        s1_dir="%s/%s"%(exp_root,exp_name)
        os.makedirs("%s/logs_s1"%(s1_dir),exist_ok=True)
        if(is_half==False):
            data["train"]["precision"]="32"
            batch_size = max(1, batch_size // 2)
        data["train"]["batch_size"]=batch_size
        data["train"]["epochs"]=total_epoch
        data["pretrained_s1"]=pretrained_s1
        data["train"]["save_every_n_epoch"]=save_every_epoch
        data["train"]["if_save_every_weights"]=if_save_every_weights
        data["train"]["if_save_latest"]=if_save_latest
        data["train"]["if_dpo"]=if_dpo
        data["train"]["half_weights_save_dir"]=GPT_weight_root
        data["train"]["exp_name"]=exp_name
        data["train_semantic_path"]="%s/6-name2semantic.tsv"%s1_dir
        data["train_phoneme_path"]="%s/2-name2text.txt"%s1_dir
        data["output_dir"]="%s/logs_s1"%s1_dir

        os.environ["_CUDA_VISIBLE_DEVICES"]=gpu_numbers.replace("-",",")
        os.environ["hz"]="25hz"
        tmp_config_path="%s/tmp_s1.yaml"%tmp
        with open(tmp_config_path, "w") as f:f.write(yaml.dump(data, default_flow_style=False))
        # cmd = '"%s" GPT_SoVITS/s1_train.py --config_file "%s" --train_semantic_path "%s/6-name2semantic.tsv" --train_phoneme_path "%s/2-name2text.txt" --output_dir "%s/logs_s1"'%(python_exec,tmp_config_path,s1_dir,s1_dir,s1_dir)
        cmd = '"%s" GPT_SoVITS/s1_train.py --config_file "%s" '%(python_exec,tmp_config_path)
        yield "GPT训练开始:%s"%cmd,{"__type__":"update","visible":False},{"__type__":"update","visible":True}
        print(cmd)
        p_train_GPT = Popen(cmd, shell=True)
        p_train_GPT.wait()
        p_train_GPT=None
        yield "GPT训练完成",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
    else:
        yield "已有正在进行的GPT训练任务,需先终止才能开启下一次任务",{"__type__":"update","visible":False},{"__type__":"update","visible":True}

def close1Bb():
    global p_train_GPT
    if(p_train_GPT!=None):
        kill_process(p_train_GPT.pid)
        p_train_GPT=None
    return "已终止GPT训练",{"__type__":"update","visible":True},{"__type__":"update","visible":False}

ps_slice=[]
def open_slice(inp,opt_root,threshold,min_length,min_interval,hop_size,max_sil_kept,_max,alpha,n_parts):
    global ps_slice
    inp = my_utils.clean_path(inp)
    opt_root = my_utils.clean_path(opt_root)
    if(os.path.exists(inp)==False):
        yield "输入路径不存在",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
        return
    if os.path.isfile(inp):n_parts=1
    elif os.path.isdir(inp):pass
    else:
        yield "输入路径存在但既不是文件也不是文件夹",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
        return
    if (ps_slice == []):
        for i_part in range(n_parts):
            cmd = '"%s" tools/slice_audio.py "%s" "%s" %s %s %s %s %s %s %s %s %s''' % (python_exec,inp, opt_root, threshold, min_length, min_interval, hop_size, max_sil_kept, _max, alpha, i_part, n_parts)
            print(cmd)
            p = Popen(cmd, shell=True)
            ps_slice.append(p)
        yield "切割执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
        for p in ps_slice:
            p.wait()
        ps_slice=[]
        yield "切割结束",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
    else:
        yield "已有正在进行的切割任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}

def close_slice():
    global ps_slice
    if (ps_slice != []):
        for p_slice in ps_slice:
            try:
                kill_process(p_slice.pid)
            except:
                traceback.print_exc()
        ps_slice=[]
    return "已终止所有切割进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}

ps1a=[]
def open1a(inp_text,inp_wav_dir,exp_name,gpu_numbers,bert_pretrained_dir):
    global ps1a
    inp_text = my_utils.clean_path(inp_text)
    inp_wav_dir = my_utils.clean_path(inp_wav_dir)
    if (ps1a == []):
        opt_dir="%s/%s"%(exp_root,exp_name)
        config={
            "inp_text":inp_text,
            "inp_wav_dir":inp_wav_dir,
            "exp_name":exp_name,
            "opt_dir":opt_dir,
            "bert_pretrained_dir":bert_pretrained_dir,
        }
        gpu_names=gpu_numbers.split("-")
        all_parts=len(gpu_names)
        for i_part in range(all_parts):
            config.update(
                {
                    "i_part": str(i_part),
                    "all_parts": str(all_parts),
                    "_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
                    "is_half": str(is_half)
                }
            )
            os.environ.update(config)
            cmd = '"%s" GPT_SoVITS/prepare_datasets/1-get-text.py'%python_exec
            print(cmd)
            p = Popen(cmd, shell=True)
            ps1a.append(p)
        yield "文本进程执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
        for p in ps1a:
            p.wait()
        opt = []
        for i_part in range(all_parts):
            txt_path = "%s/2-name2text-%s.txt" % (opt_dir, i_part)
            with open(txt_path, "r", encoding="utf8") as f:
                opt += f.read().strip("\n").split("\n")
            os.remove(txt_path)
        path_text = "%s/2-name2text.txt" % opt_dir
        with open(path_text, "w", encoding="utf8") as f:
            f.write("\n".join(opt) + "\n")
        ps1a=[]
        yield "文本进程结束",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
    else:
        yield "已有正在进行的文本任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}

def close1a():
    global ps1a
    if (ps1a != []):
        for p1a in ps1a:
            try:
                kill_process(p1a.pid)
            except:
                traceback.print_exc()
        ps1a=[]
    return "已终止所有1a进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}

ps1b=[]
def open1b(inp_text,inp_wav_dir,exp_name,gpu_numbers,ssl_pretrained_dir):
    global ps1b
    inp_text = my_utils.clean_path(inp_text)
    inp_wav_dir = my_utils.clean_path(inp_wav_dir)
    if (ps1b == []):
        config={
            "inp_text":inp_text,
            "inp_wav_dir":inp_wav_dir,
            "exp_name":exp_name,
            "opt_dir":"%s/%s"%(exp_root,exp_name),
            "cnhubert_base_dir":ssl_pretrained_dir,
            "is_half": str(is_half)
        }
        gpu_names=gpu_numbers.split("-")
        all_parts=len(gpu_names)
        for i_part in range(all_parts):
            config.update(
                {
                    "i_part": str(i_part),
                    "all_parts": str(all_parts),
                    "_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
                }
            )
            os.environ.update(config)
            cmd = '"%s" GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py'%python_exec
            print(cmd)
            p = Popen(cmd, shell=True)
            ps1b.append(p)
        yield "SSL提取进程执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
        for p in ps1b:
            p.wait()
        ps1b=[]
        yield "SSL提取进程结束",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
    else:
        yield "已有正在进行的SSL提取任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}

def close1b():
    global ps1b
    if (ps1b != []):
        for p1b in ps1b:
            try:
                kill_process(p1b.pid)
            except:
                traceback.print_exc()
        ps1b=[]
    return "已终止所有1b进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}

ps1c=[]
def open1c(inp_text,exp_name,gpu_numbers,pretrained_s2G_path):
    global ps1c
    inp_text = my_utils.clean_path(inp_text)
    if (ps1c == []):
        opt_dir="%s/%s"%(exp_root,exp_name)
        config={
            "inp_text":inp_text,
            "exp_name":exp_name,
            "opt_dir":opt_dir,
            "pretrained_s2G":pretrained_s2G_path,
            "s2config_path":"GPT_SoVITS/configs/s2.json",
            "is_half": str(is_half)
        }
        gpu_names=gpu_numbers.split("-")
        all_parts=len(gpu_names)
        for i_part in range(all_parts):
            config.update(
                {
                    "i_part": str(i_part),
                    "all_parts": str(all_parts),
                    "_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
                }
            )
            os.environ.update(config)
            cmd = '"%s" GPT_SoVITS/prepare_datasets/3-get-semantic.py'%python_exec
            print(cmd)
            p = Popen(cmd, shell=True)
            ps1c.append(p)
        yield "语义token提取进程执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
        for p in ps1c:
            p.wait()
        opt = ["item_name\tsemantic_audio"]
        path_semantic = "%s/6-name2semantic.tsv" % opt_dir
        for i_part in range(all_parts):
            semantic_path = "%s/6-name2semantic-%s.tsv" % (opt_dir, i_part)
            with open(semantic_path, "r", encoding="utf8") as f:
                opt += f.read().strip("\n").split("\n")
            os.remove(semantic_path)
        with open(path_semantic, "w", encoding="utf8") as f:
            f.write("\n".join(opt) + "\n")
        ps1c=[]
        yield "语义token提取进程结束",{"__type__":"update","visible":True},{"__type__":"update","visible":False}
    else:
        yield "已有正在进行的语义token提取任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}

def close1c():
    global ps1c
    if (ps1c != []):
        for p1c in ps1c:
            try:
                kill_process(p1c.pid)
            except:
                traceback.print_exc()
        ps1c=[]
    return "已终止所有语义token进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
#####inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numbers1c,bert_pretrained_dir,cnhubert_base_dir,pretrained_s2G
ps1abc=[]
def open1abc(inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numbers1c,bert_pretrained_dir,ssl_pretrained_dir,pretrained_s2G_path):
    global ps1abc
    inp_text = my_utils.clean_path(inp_text)
    inp_wav_dir = my_utils.clean_path(inp_wav_dir)
    if (ps1abc == []):
        opt_dir="%s/%s"%(exp_root,exp_name)
        try:
            #############################1a
            path_text="%s/2-name2text.txt" % opt_dir
            if(os.path.exists(path_text)==False or (os.path.exists(path_text)==True and len(open(path_text,"r",encoding="utf8").read().strip("\n").split("\n"))<2)):
                config={
                    "inp_text":inp_text,
                    "inp_wav_dir":inp_wav_dir,
                    "exp_name":exp_name,
                    "opt_dir":opt_dir,
                    "bert_pretrained_dir":bert_pretrained_dir,
                    "is_half": str(is_half)
                }
                gpu_names=gpu_numbers1a.split("-")
                all_parts=len(gpu_names)
                for i_part in range(all_parts):
                    config.update(
                        {
                            "i_part": str(i_part),
                            "all_parts": str(all_parts),
                            "_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
                        }
                    )
                    os.environ.update(config)
                    cmd = '"%s" GPT_SoVITS/prepare_datasets/1-get-text.py'%python_exec
                    print(cmd)
                    p = Popen(cmd, shell=True)
                    ps1abc.append(p)
                yield "进度:1a-ing", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
                for p in ps1abc:p.wait()

                opt = []
                for i_part in range(all_parts):#txt_path="%s/2-name2text-%s.txt"%(opt_dir,i_part)
                    txt_path = "%s/2-name2text-%s.txt" % (opt_dir, i_part)
                    with open(txt_path, "r",encoding="utf8") as f:
                        opt += f.read().strip("\n").split("\n")
                    os.remove(txt_path)
                with open(path_text, "w",encoding="utf8") as f:
                    f.write("\n".join(opt) + "\n")

            yield "进度:1a-done", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
            ps1abc=[]
            #############################1b
            config={
                "inp_text":inp_text,
                "inp_wav_dir":inp_wav_dir,
                "exp_name":exp_name,
                "opt_dir":opt_dir,
                "cnhubert_base_dir":ssl_pretrained_dir,
            }
            gpu_names=gpu_numbers1Ba.split("-")
            all_parts=len(gpu_names)
            for i_part in range(all_parts):
                config.update(
                    {
                        "i_part": str(i_part),
                        "all_parts": str(all_parts),
                        "_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
                    }
                )
                os.environ.update(config)
                cmd = '"%s" GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py'%python_exec
                print(cmd)
                p = Popen(cmd, shell=True)
                ps1abc.append(p)
            yield "进度:1a-done, 1b-ing", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
            for p in ps1abc:p.wait()
            yield "进度:1a1b-done", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
            ps1abc=[]
            #############################1c
            path_semantic = "%s/6-name2semantic.tsv" % opt_dir
            if(os.path.exists(path_semantic)==False or (os.path.exists(path_semantic)==True and os.path.getsize(path_semantic)<31)):
                config={
                    "inp_text":inp_text,
                    "exp_name":exp_name,
                    "opt_dir":opt_dir,
                    "pretrained_s2G":pretrained_s2G_path,
                    "s2config_path":"GPT_SoVITS/configs/s2.json",
                }
                gpu_names=gpu_numbers1c.split("-")
                all_parts=len(gpu_names)
                for i_part in range(all_parts):
                    config.update(
                        {
                            "i_part": str(i_part),
                            "all_parts": str(all_parts),
                            "_CUDA_VISIBLE_DEVICES": gpu_names[i_part],
                        }
                    )
                    os.environ.update(config)
                    cmd = '"%s" GPT_SoVITS/prepare_datasets/3-get-semantic.py'%python_exec
                    print(cmd)
                    p = Popen(cmd, shell=True)
                    ps1abc.append(p)
                yield "进度:1a1b-done, 1cing", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
                for p in ps1abc:p.wait()

                opt = ["item_name\tsemantic_audio"]
                for i_part in range(all_parts):
                    semantic_path = "%s/6-name2semantic-%s.tsv" % (opt_dir, i_part)
                    with open(semantic_path, "r",encoding="utf8") as f:
                        opt += f.read().strip("\n").split("\n")
                    os.remove(semantic_path)
                with open(path_semantic, "w",encoding="utf8") as f:
                    f.write("\n".join(opt) + "\n")
                yield "进度:all-done", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
            ps1abc = []
            yield "一键三连进程结束", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
        except:
            traceback.print_exc()
            close1abc()
            yield "一键三连中途报错", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
    else:
        yield "已有正在进行的一键三连任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}

def close1abc():
    global ps1abc
    if (ps1abc != []):
        for p1abc in ps1abc:
            try:
                kill_process(p1abc.pid)
            except:
                traceback.print_exc()
        ps1abc=[]
    return "已终止所有一键三连进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}

with gr.Blocks(title="GPT-SoVITS WebUI") as app:
    gr.Markdown(
        value=
            i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.")
    )
    gr.Markdown(
        value=
            i18n("中文教程文档:https://www.yuque.com/baicaigongchang1145haoyuangong/ib3g1e")
    )

    with gr.Tabs():
        with gr.TabItem(i18n("0-前置数据集获取工具")):#提前随机切片防止uvr5爆内存->uvr5->slicer->asr->打标
            gr.Markdown(value=i18n("0a-UVR5人声伴奏分离&去混响去延迟工具"))
            with gr.Row():
                if_uvr5 = gr.Checkbox(label=i18n("是否开启UVR5-WebUI"),show_label=True)
                uvr5_info = gr.Textbox(label=i18n("UVR5进程输出信息"))
            gr.Markdown(value=i18n("0b-语音切分工具"))
            with gr.Row():
                with gr.Row():
                    slice_inp_path=gr.Textbox(label=i18n("音频自动切分输入路径,可文件可文件夹"),value="")
                    slice_opt_root=gr.Textbox(label=i18n("切分后的子音频的输出根目录"),value="output/slicer_opt")
                    threshold=gr.Textbox(label=i18n("threshold:音量小于这个值视作静音的备选切割点"),value="-34")
                    min_length=gr.Textbox(label=i18n("min_length:每段最小多长,如果第一段太短一直和后面段连起来直到超过这个值"),value="4000")
                    min_interval=gr.Textbox(label=i18n("min_interval:最短切割间隔"),value="300")
                    hop_size=gr.Textbox(label=i18n("hop_size:怎么算音量曲线,越小精度越大计算量越高(不是精度越大效果越好)"),value="10")
                    max_sil_kept=gr.Textbox(label=i18n("max_sil_kept:切完后静音最多留多长"),value="500")
                with gr.Row():
                    open_slicer_button=gr.Button(i18n("开启语音切割"), variant="primary",visible=True)
                    close_slicer_button=gr.Button(i18n("终止语音切割"), variant="primary",visible=False)
                    _max=gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("max:归一化后最大值多少"),value=0.9,interactive=True)
                    alpha=gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("alpha_mix:混多少比例归一化后音频进来"),value=0.25,interactive=True)
                    n_process=gr.Slider(minimum=1,maximum=n_cpu,step=1,label=i18n("切割使用的进程数"),value=4,interactive=True)
                    slicer_info = gr.Textbox(label=i18n("语音切割进程输出信息"))
            gr.Markdown(value=i18n("0bb-语音降噪工具"))
            with gr.Row():
                open_denoise_button = gr.Button(i18n("开启语音降噪"), variant="primary",visible=True)
                close_denoise_button = gr.Button(i18n("终止语音降噪进程"), variant="primary",visible=False)
                denoise_input_dir=gr.Textbox(label=i18n("降噪音频文件输入文件夹"),value="")
                denoise_output_dir=gr.Textbox(label=i18n("降噪结果输出文件夹"),value="output/denoise_opt")
                denoise_info = gr.Textbox(label=i18n("语音降噪进程输出信息"))
            gr.Markdown(value=i18n("0c-中文批量离线ASR工具"))
            with gr.Row():
                open_asr_button = gr.Button(i18n("开启离线批量ASR"), variant="primary",visible=True)
                close_asr_button = gr.Button(i18n("终止ASR进程"), variant="primary",visible=False)
                with gr.Column():
                    with gr.Row():
                        asr_inp_dir = gr.Textbox(
                            label=i18n("输入文件夹路径"),
                            value="D:\\GPT-SoVITS\\raw\\xxx",
                            interactive=True,
                        )
                        asr_opt_dir = gr.Textbox(
                            label       = i18n("输出文件夹路径"),
                            value       = "output/asr_opt",
                            interactive = True,
                        )
                    with gr.Row():
                        asr_model = gr.Dropdown(
                            label       = i18n("ASR 模型"),
                            choices     = list(asr_dict.keys()),
                            interactive = True,
                            value="达摩 ASR (中文)"
                        )
                        asr_size = gr.Dropdown(
                            label       = i18n("ASR 模型尺寸"),
                            choices     = ["large"],
                            interactive = True,
                            value="large"
                        )
                        asr_lang = gr.Dropdown(
                            label       = i18n("ASR 语言设置"),
                            choices     = ["zh"],
                            interactive = True,
                            value="zh"
                        )
                    with gr.Row():
                        asr_info = gr.Textbox(label=i18n("ASR进程输出信息"))

                def change_lang_choices(key): #根据选择的模型修改可选的语言
                    # return gr.Dropdown(choices=asr_dict[key]['lang'])
                    return {"__type__": "update", "choices": asr_dict[key]['lang'],"value":asr_dict[key]['lang'][0]}
                def change_size_choices(key): # 根据选择的模型修改可选的模型尺寸
                    # return gr.Dropdown(choices=asr_dict[key]['size'])
                    return {"__type__": "update", "choices": asr_dict[key]['size']}
                asr_model.change(change_lang_choices, [asr_model], [asr_lang])
                asr_model.change(change_size_choices, [asr_model], [asr_size])
                
            gr.Markdown(value=i18n("0d-语音文本校对标注工具"))
            with gr.Row():
                if_label = gr.Checkbox(label=i18n("是否开启打标WebUI"),show_label=True)
                path_list = gr.Textbox(
                    label=i18n(".list标注文件的路径"),
                    value="D:\\RVC1006\\GPT-SoVITS\\raw\\xxx.list",
                    interactive=True,
                )
                label_info = gr.Textbox(label=i18n("打标工具进程输出信息"))
            if_label.change(change_label, [if_label,path_list], [label_info])
            if_uvr5.change(change_uvr5, [if_uvr5], [uvr5_info])
            open_asr_button.click(open_asr, [asr_inp_dir, asr_opt_dir, asr_model, asr_size, asr_lang], [asr_info,open_asr_button,close_asr_button])
            close_asr_button.click(close_asr, [], [asr_info,open_asr_button,close_asr_button])
            open_slicer_button.click(open_slice, [slice_inp_path,slice_opt_root,threshold,min_length,min_interval,hop_size,max_sil_kept,_max,alpha,n_process], [slicer_info,open_slicer_button,close_slicer_button])
            close_slicer_button.click(close_slice, [], [slicer_info,open_slicer_button,close_slicer_button])
            open_denoise_button.click(open_denoise, [denoise_input_dir,denoise_output_dir], [denoise_info,open_denoise_button,close_denoise_button])
            close_denoise_button.click(close_denoise, [], [denoise_info,open_denoise_button,close_denoise_button])

        with gr.TabItem(i18n("1-GPT-SoVITS-TTS")):
            with gr.Row():
                exp_name = gr.Textbox(label=i18n("*实验/模型名"), value="xxx", interactive=True)
                gpu_info = gr.Textbox(label=i18n("显卡信息"), value=gpu_info, visible=True, interactive=False)
                pretrained_s2G = gr.Textbox(label=i18n("预训练的SoVITS-G模型路径"), value="GPT_SoVITS/pretrained_models/s2G488k.pth", interactive=True)
                pretrained_s2D = gr.Textbox(label=i18n("预训练的SoVITS-D模型路径"), value="GPT_SoVITS/pretrained_models/s2D488k.pth", interactive=True)
                pretrained_s1 = gr.Textbox(label=i18n("预训练的GPT模型路径"), value="GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt", interactive=True)
            with gr.TabItem(i18n("1A-训练集格式化工具")):
                gr.Markdown(value=i18n("输出logs/实验名目录下应有23456开头的文件和文件夹"))
                with gr.Row():
                    inp_text = gr.Textbox(label=i18n("*文本标注文件"),value=r"D:\RVC1006\GPT-SoVITS\raw\xxx.list",interactive=True)
                    inp_wav_dir = gr.Textbox(
                        label=i18n("*训练集音频文件目录"),
                        # value=r"D:\RVC1006\GPT-SoVITS\raw\xxx",
                        interactive=True,
                        placeholder=i18n("填切割后音频所在目录!读取的音频文件完整路径=该目录-拼接-list文件里波形对应的文件名(不是全路径)。如果留空则使用.list文件里的绝对全路径。")
                    )
                gr.Markdown(value=i18n("1Aa-文本内容"))
                with gr.Row():
                    gpu_numbers1a = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"),value="%s-%s"%(gpus,gpus),interactive=True)
                    bert_pretrained_dir = gr.Textbox(label=i18n("预训练的中文BERT模型路径"),value="GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",interactive=False)
                    button1a_open = gr.Button(i18n("开启文本获取"), variant="primary",visible=True)
                    button1a_close = gr.Button(i18n("终止文本获取进程"), variant="primary",visible=False)
                    info1a=gr.Textbox(label=i18n("文本进程输出信息"))
                gr.Markdown(value=i18n("1Ab-SSL自监督特征提取"))
                with gr.Row():
                    gpu_numbers1Ba = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"),value="%s-%s"%(gpus,gpus),interactive=True)
                    cnhubert_base_dir = gr.Textbox(label=i18n("预训练的SSL模型路径"),value="GPT_SoVITS/pretrained_models/chinese-hubert-base",interactive=False)
                    button1b_open = gr.Button(i18n("开启SSL提取"), variant="primary",visible=True)
                    button1b_close = gr.Button(i18n("终止SSL提取进程"), variant="primary",visible=False)
                    info1b=gr.Textbox(label=i18n("SSL进程输出信息"))
                gr.Markdown(value=i18n("1Ac-语义token提取"))
                with gr.Row():
                    gpu_numbers1c = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"),value="%s-%s"%(gpus,gpus),interactive=True)
                    button1c_open = gr.Button(i18n("开启语义token提取"), variant="primary",visible=True)
                    button1c_close = gr.Button(i18n("终止语义token提取进程"), variant="primary",visible=False)
                    info1c=gr.Textbox(label=i18n("语义token提取进程输出信息"))
                gr.Markdown(value=i18n("1Aabc-训练集格式化一键三连"))
                with gr.Row():
                    button1abc_open = gr.Button(i18n("开启一键三连"), variant="primary",visible=True)
                    button1abc_close = gr.Button(i18n("终止一键三连"), variant="primary",visible=False)
                    info1abc=gr.Textbox(label=i18n("一键三连进程输出信息"))
            button1a_open.click(open1a, [inp_text,inp_wav_dir,exp_name,gpu_numbers1a,bert_pretrained_dir], [info1a,button1a_open,button1a_close])
            button1a_close.click(close1a, [], [info1a,button1a_open,button1a_close])
            button1b_open.click(open1b, [inp_text,inp_wav_dir,exp_name,gpu_numbers1Ba,cnhubert_base_dir], [info1b,button1b_open,button1b_close])
            button1b_close.click(close1b, [], [info1b,button1b_open,button1b_close])
            button1c_open.click(open1c, [inp_text,exp_name,gpu_numbers1c,pretrained_s2G], [info1c,button1c_open,button1c_close])
            button1c_close.click(close1c, [], [info1c,button1c_open,button1c_close])
            button1abc_open.click(open1abc, [inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numbers1c,bert_pretrained_dir,cnhubert_base_dir,pretrained_s2G], [info1abc,button1abc_open,button1abc_close])
            button1abc_close.click(close1abc, [], [info1abc,button1abc_open,button1abc_close])
            with gr.TabItem(i18n("1B-微调训练")):
                gr.Markdown(value=i18n("1Ba-SoVITS训练。用于分享的模型文件输出在SoVITS_weights下。"))
                with gr.Row():
                    batch_size = gr.Slider(minimum=1,maximum=40,step=1,label=i18n("每张显卡的batch_size"),value=default_batch_size,interactive=True)
                    total_epoch = gr.Slider(minimum=1,maximum=25,step=1,label=i18n("总训练轮数total_epoch,不建议太高"),value=8,interactive=True)
                    text_low_lr_rate = gr.Slider(minimum=0.2,maximum=0.6,step=0.05,label=i18n("文本模块学习率权重"),value=0.4,interactive=True)
                    save_every_epoch = gr.Slider(minimum=1,maximum=25,step=1,label=i18n("保存频率save_every_epoch"),value=4,interactive=True)
                    if_save_latest = gr.Checkbox(label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"), value=True, interactive=True, show_label=True)
                    if_save_every_weights = gr.Checkbox(label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"), value=True, interactive=True, show_label=True)
                    gpu_numbers1Ba = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"), value="%s" % (gpus), interactive=True)
                with gr.Row():
                    button1Ba_open = gr.Button(i18n("开启SoVITS训练"), variant="primary",visible=True)
                    button1Ba_close = gr.Button(i18n("终止SoVITS训练"), variant="primary",visible=False)
                    info1Ba=gr.Textbox(label=i18n("SoVITS训练进程输出信息"))
                gr.Markdown(value=i18n("1Bb-GPT训练。用于分享的模型文件输出在GPT_weights下。"))
                with gr.Row():
                    batch_size1Bb = gr.Slider(minimum=1,maximum=40,step=1,label=i18n("每张显卡的batch_size"),value=default_batch_size,interactive=True)
                    total_epoch1Bb = gr.Slider(minimum=2,maximum=50,step=1,label=i18n("总训练轮数total_epoch"),value=15,interactive=True)
                    if_dpo = gr.Checkbox(label=i18n("是否开启dpo训练选项(实验性)"), value=False, interactive=True, show_label=True)
                    if_save_latest1Bb = gr.Checkbox(label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"), value=True, interactive=True, show_label=True)
                    if_save_every_weights1Bb = gr.Checkbox(label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"), value=True, interactive=True, show_label=True)
                    save_every_epoch1Bb = gr.Slider(minimum=1,maximum=50,step=1,label=i18n("保存频率save_every_epoch"),value=5,interactive=True)
                    gpu_numbers1Bb = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"), value="%s" % (gpus), interactive=True)
                with gr.Row():
                    button1Bb_open = gr.Button(i18n("开启GPT训练"), variant="primary",visible=True)
                    button1Bb_close = gr.Button(i18n("终止GPT训练"), variant="primary",visible=False)
                    info1Bb=gr.Textbox(label=i18n("GPT训练进程输出信息"))
            button1Ba_open.click(open1Ba, [batch_size,total_epoch,exp_name,text_low_lr_rate,if_save_latest,if_save_every_weights,save_every_epoch,gpu_numbers1Ba,pretrained_s2G,pretrained_s2D], [info1Ba,button1Ba_open,button1Ba_close])
            button1Ba_close.click(close1Ba, [], [info1Ba,button1Ba_open,button1Ba_close])
            button1Bb_open.click(open1Bb, [batch_size1Bb,total_epoch1Bb,exp_name,if_dpo,if_save_latest1Bb,if_save_every_weights1Bb,save_every_epoch1Bb,gpu_numbers1Bb,pretrained_s1],   [info1Bb,button1Bb_open,button1Bb_close])
            button1Bb_close.click(close1Bb, [], [info1Bb,button1Bb_open,button1Bb_close])
            with gr.TabItem(i18n("1C-推理")):
                gr.Markdown(value=i18n("选择训练完存放在SoVITS_weights和GPT_weights下的模型。默认的一个是底模,体验5秒Zero Shot TTS用。"))
                with gr.Row():
                    GPT_dropdown = gr.Dropdown(label=i18n("*GPT模型列表"), choices=sorted(GPT_names,key=custom_sort_key),value=pretrained_gpt_name,interactive=True)
                    SoVITS_dropdown = gr.Dropdown(label=i18n("*SoVITS模型列表"), choices=sorted(SoVITS_names,key=custom_sort_key),value=pretrained_sovits_name,interactive=True)
                    gpu_number_1C=gr.Textbox(label=i18n("GPU卡号,只能填1个整数"), value=gpus, interactive=True)
                    refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary")
                    refresh_button.click(fn=change_choices,inputs=[],outputs=[SoVITS_dropdown,GPT_dropdown])
                with gr.Row():
                    if_tts = gr.Checkbox(label=i18n("是否开启TTS推理WebUI"), show_label=True)
                    tts_info = gr.Textbox(label=i18n("TTS推理WebUI进程输出信息"))
                    if_tts.change(change_tts_inference, [if_tts,bert_pretrained_dir,cnhubert_base_dir,gpu_number_1C,GPT_dropdown,SoVITS_dropdown], [tts_info])
        with gr.TabItem(i18n("2-GPT-SoVITS-变声")):gr.Markdown(value=i18n("施工中,请静候佳音"))
    app.queue(concurrency_count=511, max_size=1022).launch(
        server_name="0.0.0.0",
        inbrowser=True,
        share=is_share,
        server_port=webui_port_main,
        quiet=True,
    )