|
import os,argparse |
|
|
|
from modelscope.pipelines import pipeline |
|
from modelscope.utils.constant import Tasks |
|
from tqdm import tqdm |
|
|
|
path_denoise = 'tools/denoise-model/speech_frcrn_ans_cirm_16k' |
|
path_denoise = path_denoise if os.path.exists(path_denoise) else "damo/speech_frcrn_ans_cirm_16k" |
|
ans = pipeline(Tasks.acoustic_noise_suppression,model=path_denoise) |
|
def execute_denoise(input_folder,output_folder): |
|
os.makedirs(output_folder,exist_ok=True) |
|
|
|
|
|
for name in tqdm(os.listdir(input_folder)): |
|
ans("%s/%s"%(input_folder,name),output_path='%s/%s'%(output_folder,name)) |
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("-i", "--input_folder", type=str, required=True, |
|
help="Path to the folder containing WAV files.") |
|
parser.add_argument("-o", "--output_folder", type=str, required=True, |
|
help="Output folder to store transcriptions.") |
|
parser.add_argument("-p", "--precision", type=str, default='float16', choices=['float16','float32'], |
|
help="fp16 or fp32") |
|
cmd = parser.parse_args() |
|
execute_denoise( |
|
input_folder = cmd.input_folder, |
|
output_folder = cmd.output_folder, |
|
) |