|
import utils, os |
|
|
|
hps = utils.get_hparams(stage=2) |
|
os.environ["CUDA_VISIBLE_DEVICES"] = hps.train.gpu_numbers.replace("-", ",") |
|
import torch |
|
from torch.nn import functional as F |
|
from torch.utils.data import DataLoader |
|
from torch.utils.tensorboard import SummaryWriter |
|
import torch.multiprocessing as mp |
|
import torch.distributed as dist, traceback |
|
from torch.nn.parallel import DistributedDataParallel as DDP |
|
from torch.cuda.amp import autocast, GradScaler |
|
from tqdm import tqdm |
|
import logging, traceback |
|
|
|
logging.getLogger("matplotlib").setLevel(logging.INFO) |
|
logging.getLogger("h5py").setLevel(logging.INFO) |
|
logging.getLogger("numba").setLevel(logging.INFO) |
|
from random import randint |
|
from module import commons |
|
|
|
from module.data_utils import ( |
|
TextAudioSpeakerLoader, |
|
TextAudioSpeakerCollate, |
|
DistributedBucketSampler, |
|
) |
|
from module.models import ( |
|
SynthesizerTrn, |
|
MultiPeriodDiscriminator, |
|
) |
|
from module.losses import generator_loss, discriminator_loss, feature_loss, kl_loss |
|
from module.mel_processing import mel_spectrogram_torch, spec_to_mel_torch |
|
from process_ckpt import savee |
|
|
|
torch.backends.cudnn.benchmark = False |
|
torch.backends.cudnn.deterministic = False |
|
|
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.allow_tf32 = True |
|
torch.set_float32_matmul_precision("medium") |
|
|
|
global_step = 0 |
|
|
|
device = "cpu" |
|
|
|
|
|
def main(): |
|
|
|
if torch.cuda.is_available(): |
|
n_gpus = torch.cuda.device_count() |
|
else: |
|
n_gpus = 1 |
|
os.environ["MASTER_ADDR"] = "localhost" |
|
os.environ["MASTER_PORT"] = str(randint(20000, 55555)) |
|
|
|
mp.spawn( |
|
run, |
|
nprocs=n_gpus, |
|
args=( |
|
n_gpus, |
|
hps, |
|
), |
|
) |
|
|
|
|
|
def run(rank, n_gpus, hps): |
|
global global_step |
|
if rank == 0: |
|
logger = utils.get_logger(hps.data.exp_dir) |
|
logger.info(hps) |
|
|
|
writer = SummaryWriter(log_dir=hps.s2_ckpt_dir) |
|
writer_eval = SummaryWriter(log_dir=os.path.join(hps.s2_ckpt_dir, "eval")) |
|
|
|
dist.init_process_group( |
|
backend = "gloo" if os.name == "nt" or not torch.cuda.is_available() else "nccl", |
|
init_method="env://", |
|
world_size=n_gpus, |
|
rank=rank, |
|
) |
|
torch.manual_seed(hps.train.seed) |
|
if torch.cuda.is_available(): |
|
torch.cuda.set_device(rank) |
|
|
|
train_dataset = TextAudioSpeakerLoader(hps.data) |
|
train_sampler = DistributedBucketSampler( |
|
train_dataset, |
|
hps.train.batch_size, |
|
[ |
|
32, |
|
300, |
|
400, |
|
500, |
|
600, |
|
700, |
|
800, |
|
900, |
|
1000, |
|
1100, |
|
1200, |
|
1300, |
|
1400, |
|
1500, |
|
1600, |
|
1700, |
|
1800, |
|
1900, |
|
], |
|
num_replicas=n_gpus, |
|
rank=rank, |
|
shuffle=True, |
|
) |
|
collate_fn = TextAudioSpeakerCollate() |
|
train_loader = DataLoader( |
|
train_dataset, |
|
num_workers=6, |
|
shuffle=False, |
|
pin_memory=True, |
|
collate_fn=collate_fn, |
|
batch_sampler=train_sampler, |
|
persistent_workers=True, |
|
prefetch_factor=16, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
net_g = SynthesizerTrn( |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
n_speakers=hps.data.n_speakers, |
|
**hps.model, |
|
).cuda(rank) if torch.cuda.is_available() else SynthesizerTrn( |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
n_speakers=hps.data.n_speakers, |
|
**hps.model, |
|
).to(device) |
|
|
|
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank) if torch.cuda.is_available() else MultiPeriodDiscriminator(hps.model.use_spectral_norm).to(device) |
|
for name, param in net_g.named_parameters(): |
|
if not param.requires_grad: |
|
print(name, "not requires_grad") |
|
|
|
te_p = list(map(id, net_g.enc_p.text_embedding.parameters())) |
|
et_p = list(map(id, net_g.enc_p.encoder_text.parameters())) |
|
mrte_p = list(map(id, net_g.enc_p.mrte.parameters())) |
|
base_params = filter( |
|
lambda p: id(p) not in te_p + et_p + mrte_p and p.requires_grad, |
|
net_g.parameters(), |
|
) |
|
|
|
|
|
|
|
|
|
|
|
optim_g = torch.optim.AdamW( |
|
|
|
[ |
|
{"params": base_params, "lr": hps.train.learning_rate}, |
|
{ |
|
"params": net_g.enc_p.text_embedding.parameters(), |
|
"lr": hps.train.learning_rate * hps.train.text_low_lr_rate, |
|
}, |
|
{ |
|
"params": net_g.enc_p.encoder_text.parameters(), |
|
"lr": hps.train.learning_rate * hps.train.text_low_lr_rate, |
|
}, |
|
{ |
|
"params": net_g.enc_p.mrte.parameters(), |
|
"lr": hps.train.learning_rate * hps.train.text_low_lr_rate, |
|
}, |
|
], |
|
hps.train.learning_rate, |
|
betas=hps.train.betas, |
|
eps=hps.train.eps, |
|
) |
|
optim_d = torch.optim.AdamW( |
|
net_d.parameters(), |
|
hps.train.learning_rate, |
|
betas=hps.train.betas, |
|
eps=hps.train.eps, |
|
) |
|
if torch.cuda.is_available(): |
|
net_g = DDP(net_g, device_ids=[rank], find_unused_parameters=True) |
|
net_d = DDP(net_d, device_ids=[rank], find_unused_parameters=True) |
|
else: |
|
net_g = net_g.to(device) |
|
net_d = net_d.to(device) |
|
|
|
try: |
|
_, _, _, epoch_str = utils.load_checkpoint( |
|
utils.latest_checkpoint_path("%s/logs_s2" % hps.data.exp_dir, "D_*.pth"), |
|
net_d, |
|
optim_d, |
|
) |
|
if rank == 0: |
|
logger.info("loaded D") |
|
|
|
_, _, _, epoch_str = utils.load_checkpoint( |
|
utils.latest_checkpoint_path("%s/logs_s2" % hps.data.exp_dir, "G_*.pth"), |
|
net_g, |
|
optim_g, |
|
) |
|
global_step = (epoch_str - 1) * len(train_loader) |
|
|
|
|
|
except: |
|
|
|
epoch_str = 1 |
|
global_step = 0 |
|
if hps.train.pretrained_s2G != "": |
|
if rank == 0: |
|
logger.info("loaded pretrained %s" % hps.train.pretrained_s2G) |
|
print( |
|
net_g.module.load_state_dict( |
|
torch.load(hps.train.pretrained_s2G, map_location="cpu")["weight"], |
|
strict=False, |
|
) if torch.cuda.is_available() else net_g.load_state_dict( |
|
torch.load(hps.train.pretrained_s2G, map_location="cpu")["weight"], |
|
strict=False, |
|
) |
|
) |
|
if hps.train.pretrained_s2D != "": |
|
if rank == 0: |
|
logger.info("loaded pretrained %s" % hps.train.pretrained_s2D) |
|
print( |
|
net_d.module.load_state_dict( |
|
torch.load(hps.train.pretrained_s2D, map_location="cpu")["weight"] |
|
) if torch.cuda.is_available() else net_d.load_state_dict( |
|
torch.load(hps.train.pretrained_s2D, map_location="cpu")["weight"] |
|
) |
|
) |
|
|
|
|
|
|
|
|
|
scheduler_g = torch.optim.lr_scheduler.ExponentialLR( |
|
optim_g, gamma=hps.train.lr_decay, last_epoch=-1 |
|
) |
|
scheduler_d = torch.optim.lr_scheduler.ExponentialLR( |
|
optim_d, gamma=hps.train.lr_decay, last_epoch=-1 |
|
) |
|
for _ in range(epoch_str): |
|
scheduler_g.step() |
|
scheduler_d.step() |
|
|
|
scaler = GradScaler(enabled=hps.train.fp16_run) |
|
|
|
for epoch in range(epoch_str, hps.train.epochs + 1): |
|
if rank == 0: |
|
train_and_evaluate( |
|
rank, |
|
epoch, |
|
hps, |
|
[net_g, net_d], |
|
[optim_g, optim_d], |
|
[scheduler_g, scheduler_d], |
|
scaler, |
|
|
|
[train_loader, None], |
|
logger, |
|
[writer, writer_eval], |
|
) |
|
else: |
|
train_and_evaluate( |
|
rank, |
|
epoch, |
|
hps, |
|
[net_g, net_d], |
|
[optim_g, optim_d], |
|
[scheduler_g, scheduler_d], |
|
scaler, |
|
[train_loader, None], |
|
None, |
|
None, |
|
) |
|
scheduler_g.step() |
|
scheduler_d.step() |
|
|
|
|
|
def train_and_evaluate( |
|
rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers |
|
): |
|
net_g, net_d = nets |
|
optim_g, optim_d = optims |
|
|
|
train_loader, eval_loader = loaders |
|
if writers is not None: |
|
writer, writer_eval = writers |
|
|
|
train_loader.batch_sampler.set_epoch(epoch) |
|
global global_step |
|
|
|
net_g.train() |
|
net_d.train() |
|
for batch_idx, ( |
|
ssl, |
|
ssl_lengths, |
|
spec, |
|
spec_lengths, |
|
y, |
|
y_lengths, |
|
text, |
|
text_lengths, |
|
) in tqdm(enumerate(train_loader)): |
|
if torch.cuda.is_available(): |
|
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda( |
|
rank, non_blocking=True |
|
) |
|
y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda( |
|
rank, non_blocking=True |
|
) |
|
ssl = ssl.cuda(rank, non_blocking=True) |
|
ssl.requires_grad = False |
|
|
|
text, text_lengths = text.cuda(rank, non_blocking=True), text_lengths.cuda( |
|
rank, non_blocking=True |
|
) |
|
else: |
|
spec, spec_lengths = spec.to(device), spec_lengths.to(device) |
|
y, y_lengths = y.to(device), y_lengths.to(device) |
|
ssl = ssl.to(device) |
|
ssl.requires_grad = False |
|
|
|
text, text_lengths = text.to(device), text_lengths.to(device) |
|
|
|
with autocast(enabled=hps.train.fp16_run): |
|
( |
|
y_hat, |
|
kl_ssl, |
|
ids_slice, |
|
x_mask, |
|
z_mask, |
|
(z, z_p, m_p, logs_p, m_q, logs_q), |
|
stats_ssl, |
|
) = net_g(ssl, spec, spec_lengths, text, text_lengths) |
|
|
|
mel = spec_to_mel_torch( |
|
spec, |
|
hps.data.filter_length, |
|
hps.data.n_mel_channels, |
|
hps.data.sampling_rate, |
|
hps.data.mel_fmin, |
|
hps.data.mel_fmax, |
|
) |
|
y_mel = commons.slice_segments( |
|
mel, ids_slice, hps.train.segment_size // hps.data.hop_length |
|
) |
|
y_hat_mel = mel_spectrogram_torch( |
|
y_hat.squeeze(1), |
|
hps.data.filter_length, |
|
hps.data.n_mel_channels, |
|
hps.data.sampling_rate, |
|
hps.data.hop_length, |
|
hps.data.win_length, |
|
hps.data.mel_fmin, |
|
hps.data.mel_fmax, |
|
) |
|
|
|
y = commons.slice_segments( |
|
y, ids_slice * hps.data.hop_length, hps.train.segment_size |
|
) |
|
|
|
|
|
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach()) |
|
with autocast(enabled=False): |
|
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss( |
|
y_d_hat_r, y_d_hat_g |
|
) |
|
loss_disc_all = loss_disc |
|
optim_d.zero_grad() |
|
scaler.scale(loss_disc_all).backward() |
|
scaler.unscale_(optim_d) |
|
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None) |
|
scaler.step(optim_d) |
|
|
|
with autocast(enabled=hps.train.fp16_run): |
|
|
|
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat) |
|
with autocast(enabled=False): |
|
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel |
|
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl |
|
|
|
loss_fm = feature_loss(fmap_r, fmap_g) |
|
loss_gen, losses_gen = generator_loss(y_d_hat_g) |
|
loss_gen_all = loss_gen + loss_fm + loss_mel + kl_ssl * 1 + loss_kl |
|
|
|
optim_g.zero_grad() |
|
scaler.scale(loss_gen_all).backward() |
|
scaler.unscale_(optim_g) |
|
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None) |
|
scaler.step(optim_g) |
|
scaler.update() |
|
|
|
if rank == 0: |
|
if global_step % hps.train.log_interval == 0: |
|
lr = optim_g.param_groups[0]["lr"] |
|
losses = [loss_disc, loss_gen, loss_fm, loss_mel, kl_ssl, loss_kl] |
|
logger.info( |
|
"Train Epoch: {} [{:.0f}%]".format( |
|
epoch, 100.0 * batch_idx / len(train_loader) |
|
) |
|
) |
|
logger.info([x.item() for x in losses] + [global_step, lr]) |
|
|
|
scalar_dict = { |
|
"loss/g/total": loss_gen_all, |
|
"loss/d/total": loss_disc_all, |
|
"learning_rate": lr, |
|
"grad_norm_d": grad_norm_d, |
|
"grad_norm_g": grad_norm_g, |
|
} |
|
scalar_dict.update( |
|
{ |
|
"loss/g/fm": loss_fm, |
|
"loss/g/mel": loss_mel, |
|
"loss/g/kl_ssl": kl_ssl, |
|
"loss/g/kl": loss_kl, |
|
} |
|
) |
|
|
|
|
|
|
|
|
|
image_dict = { |
|
"slice/mel_org": utils.plot_spectrogram_to_numpy( |
|
y_mel[0].data.cpu().numpy() |
|
), |
|
"slice/mel_gen": utils.plot_spectrogram_to_numpy( |
|
y_hat_mel[0].data.cpu().numpy() |
|
), |
|
"all/mel": utils.plot_spectrogram_to_numpy( |
|
mel[0].data.cpu().numpy() |
|
), |
|
"all/stats_ssl": utils.plot_spectrogram_to_numpy( |
|
stats_ssl[0].data.cpu().numpy() |
|
), |
|
} |
|
utils.summarize( |
|
writer=writer, |
|
global_step=global_step, |
|
images=image_dict, |
|
scalars=scalar_dict, |
|
) |
|
global_step += 1 |
|
if epoch % hps.train.save_every_epoch == 0 and rank == 0: |
|
if hps.train.if_save_latest == 0: |
|
utils.save_checkpoint( |
|
net_g, |
|
optim_g, |
|
hps.train.learning_rate, |
|
epoch, |
|
os.path.join( |
|
"%s/logs_s2" % hps.data.exp_dir, "G_{}.pth".format(global_step) |
|
), |
|
) |
|
utils.save_checkpoint( |
|
net_d, |
|
optim_d, |
|
hps.train.learning_rate, |
|
epoch, |
|
os.path.join( |
|
"%s/logs_s2" % hps.data.exp_dir, "D_{}.pth".format(global_step) |
|
), |
|
) |
|
else: |
|
utils.save_checkpoint( |
|
net_g, |
|
optim_g, |
|
hps.train.learning_rate, |
|
epoch, |
|
os.path.join( |
|
"%s/logs_s2" % hps.data.exp_dir, "G_{}.pth".format(233333333333) |
|
), |
|
) |
|
utils.save_checkpoint( |
|
net_d, |
|
optim_d, |
|
hps.train.learning_rate, |
|
epoch, |
|
os.path.join( |
|
"%s/logs_s2" % hps.data.exp_dir, "D_{}.pth".format(233333333333) |
|
), |
|
) |
|
if rank == 0 and hps.train.if_save_every_weights == True: |
|
if hasattr(net_g, "module"): |
|
ckpt = net_g.module.state_dict() |
|
else: |
|
ckpt = net_g.state_dict() |
|
logger.info( |
|
"saving ckpt %s_e%s:%s" |
|
% ( |
|
hps.name, |
|
epoch, |
|
savee( |
|
ckpt, |
|
hps.name + "_e%s_s%s" % (epoch, global_step), |
|
epoch, |
|
global_step, |
|
hps, |
|
), |
|
) |
|
) |
|
|
|
if rank == 0: |
|
logger.info("====> Epoch: {}".format(epoch)) |
|
|
|
|
|
def evaluate(hps, generator, eval_loader, writer_eval): |
|
generator.eval() |
|
image_dict = {} |
|
audio_dict = {} |
|
print("Evaluating ...") |
|
with torch.no_grad(): |
|
for batch_idx, ( |
|
ssl, |
|
ssl_lengths, |
|
spec, |
|
spec_lengths, |
|
y, |
|
y_lengths, |
|
text, |
|
text_lengths, |
|
) in enumerate(eval_loader): |
|
print(111) |
|
if torch.cuda.is_available(): |
|
spec, spec_lengths = spec.cuda(), spec_lengths.cuda() |
|
y, y_lengths = y.cuda(), y_lengths.cuda() |
|
ssl = ssl.cuda() |
|
text, text_lengths = text.cuda(), text_lengths.cuda() |
|
else: |
|
spec, spec_lengths = spec.to(device), spec_lengths.to(device) |
|
y, y_lengths = y.to(device), y_lengths.to(device) |
|
ssl = ssl.to(device) |
|
text, text_lengths = text.to(device), text_lengths.to(device) |
|
for test in [0, 1]: |
|
y_hat, mask, *_ = generator.module.infer( |
|
ssl, spec, spec_lengths, text, text_lengths, test=test |
|
) if torch.cuda.is_available() else generator.infer( |
|
ssl, spec, spec_lengths, text, text_lengths, test=test |
|
) |
|
y_hat_lengths = mask.sum([1, 2]).long() * hps.data.hop_length |
|
|
|
mel = spec_to_mel_torch( |
|
spec, |
|
hps.data.filter_length, |
|
hps.data.n_mel_channels, |
|
hps.data.sampling_rate, |
|
hps.data.mel_fmin, |
|
hps.data.mel_fmax, |
|
) |
|
y_hat_mel = mel_spectrogram_torch( |
|
y_hat.squeeze(1).float(), |
|
hps.data.filter_length, |
|
hps.data.n_mel_channels, |
|
hps.data.sampling_rate, |
|
hps.data.hop_length, |
|
hps.data.win_length, |
|
hps.data.mel_fmin, |
|
hps.data.mel_fmax, |
|
) |
|
image_dict.update( |
|
{ |
|
f"gen/mel_{batch_idx}_{test}": utils.plot_spectrogram_to_numpy( |
|
y_hat_mel[0].cpu().numpy() |
|
) |
|
} |
|
) |
|
audio_dict.update( |
|
{f"gen/audio_{batch_idx}_{test}": y_hat[0, :, : y_hat_lengths[0]]} |
|
) |
|
image_dict.update( |
|
{ |
|
f"gt/mel_{batch_idx}": utils.plot_spectrogram_to_numpy( |
|
mel[0].cpu().numpy() |
|
) |
|
} |
|
) |
|
audio_dict.update({f"gt/audio_{batch_idx}": y[0, :, : y_lengths[0]]}) |
|
|
|
|
|
|
|
|
|
|
|
|
|
utils.summarize( |
|
writer=writer_eval, |
|
global_step=global_step, |
|
images=image_dict, |
|
audios=audio_dict, |
|
audio_sampling_rate=hps.data.sampling_rate, |
|
) |
|
generator.train() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|