--- license: apache-2.0 pipeline_tag: text-to-image --- # ***ControlNet Tile SDXL*** ![images](./masonry.webp) # Image Deblur Example(Repaint Detail) ![images_0)](./000118_tile_blur_concat.webp) ![images_1)](./000126_tile_blur_concat.webp) ![images_2)](./000129_tile_blur_concat.webp) ![images_3)](./000132_tile_blur_concat.webp) ![images_4)](./000139_tile_blur_concat.webp) # Image Variation Example(like midjourney) ![images_5)](./000003_tile_var_concat.webp) ![images_6)](./000008_tile_var_concat.webp) ![images_7)](./000018_tile_var_concat.webp) ![images_8)](./000030_tile_var_concat.webp) ![images_9)](./000039_tile_var_concat.webp) # Image Super-resolution(like realESRGAN) support any aspect ratio and any times upscale, followings are 3 * 3 times ![images_5)](./000003.webp) ![images_6)](./000003_scribble.webp) ![images_7)](./000053.webp) ![images_8)](./000053_scribble.webp) # Code to Use Tile blur code reference: https://huggingface.co/TTPlanet/TTPLanet_SDXL_Controlnet_Tile_Realistic/blob/main/TTP_tile_preprocessor_v5.py https://github.com/lllyasviel/ControlNet-v1-1-nightly/blob/main/gradio_tile.py ```python from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler from PIL import Image from guided_filter import FastGuidedFilter # I have upload this file in this repo import torch import numpy as np import cv2 def resize_image_control(control_image, resolution): HH, WW, _ = control_image.shape crop_h = random.randint(0, HH - resolution[1]) crop_w = random.randint(0, WW - resolution[0]) crop_image = control_image[crop_h:crop_h+resolution[1], crop_w:crop_w+resolution[0], :] return crop_image, crop_w, crop_h def apply_gaussian_blur(image_np, ksize=5, sigmaX=1.0): if ksize % 2 == 0: ksize += 1 # ksize must be odd blurred_image = cv2.GaussianBlur(image_np, (ksize, ksize), sigmaX=sigmaX) return blurred_image def apply_guided_filter(image_np, radius, eps, scale): filter = FastGuidedFilter(image_np, radius, eps, scale) return filter.filter(image_np) controlnet_conditioning_scale = 1.0 prompt = "your prompt, the longer the better, you can describe it as detail as possible" negative_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' eulera_scheduler = EulerAncestralDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler") controlnet = ControlNetModel.from_pretrained( "xinsir/controlnet-tile-sdxl-1.0", torch_dtype=torch.float16 ) # when test with other base model, you need to change the vae also. vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) pipe = StableDiffusionXLControlNetPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, safety_checker=None, torch_dtype=torch.float16, scheduler=eulera_scheduler, ) controlnet_img = cv2.imread("your original image path") height, width, _ = controlnet_img.shape ratio = np.sqrt(1024. * 1024. / (width * height)) W, H = int(width * ratio), int(height * ratio) crop_w, crop_h = 0, 0 controlnet_img = cv2.resize(controlnet_img, (W, H)) blur_strength = random.sample([i / 10. for i in range(10, 201, 2)], k=1)[0] radius = random.sample([i for i in range(1, 40, 2)], k=1)[0] eps = random.sample([i / 1000. for i in range(1, 101, 2)], k=1)[0] scale_factor = random.sample([i / 10. for i in range(10, 181, 5)], k=1)[0] if random.random() > 0.5: controlnet_img = apply_gaussian_blur(controlnet_img, ksize=int(blur_strength), sigmaX=blur_strength / 2) if random.random() > 0.5: # Apply Guided Filter controlnet_img = apply_guided_filter(controlnet_img, radius, eps, scale_factor) # Resize image controlnet_img = cv2.resize(controlnet_img, (int(W / scale_factor), int(H / scale_factor)), interpolation=cv2.INTER_AREA) controlnet_img = cv2.resize(controlnet_img, (W, H), interpolation=cv2.INTER_CUBIC) controlnet_img = cv2.cvtColor(controlnet_img, cv2.COLOR_BGR2RGB) controlnet_img = Image.fromarray(controlnet_img) # need to resize the image resolution to 1024 * 1024 or same bucket resolution to get the best performance images = pipe( prompt, negative_prompt=negative_prompt, image=controlnet_img, controlnet_conditioning_scale=controlnet_conditioning_scale, width=new_width, height=new_height, num_inference_steps=30, ).images images[0].save(f"your image save path, png format is usually better than jpg or webp in terms of image quality but got much bigger") ``` # Code to Use Tile var Use more detail prompt to regerate can help! ```python from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler from PIL import Image import torch import numpy as np import cv2 controlnet_conditioning_scale = 1.0 prompt = "your prompt, the longer the better, you can describe it as detail as possible" negative_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' eulera_scheduler = EulerAncestralDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler") controlnet = ControlNetModel.from_pretrained( "xinsir/controlnet-tile-sdxl-1.0", torch_dtype=torch.float16 ) # when test with other base model, you need to change the vae also. vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) pipe = StableDiffusionXLControlNetPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, safety_checker=None, torch_dtype=torch.float16, scheduler=eulera_scheduler, ) controlnet_img = cv2.imread("your original image path") height, width, _ = controlnet_img.shape ratio = np.sqrt(1024. * 1024. / (width * height)) W, H = int(width * ratio), int(height * ratio) crop_w, crop_h = 0, 0 controlnet_img = cv2.resize(controlnet_img, (W, H)) controlnet_img = cv2.cvtColor(controlnet_img, cv2.COLOR_BGR2RGB) controlnet_img = Image.fromarray(controlnet_img) # need to resize the image resolution to 1024 * 1024 or same bucket resolution to get the best performance images = pipe( prompt, negative_prompt=negative_prompt, image=controlnet_img, controlnet_conditioning_scale=controlnet_conditioning_scale, width=new_width, height=new_height, num_inference_steps=30, ).images images[0].save(f"your image save path, png format is usually better than jpg or webp in terms of image quality but got much bigger") ``` # Code to Use Tile super performance may unstable and next version is optimizing! ```python from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler from PIL import Image import torch import numpy as np import cv2 controlnet_conditioning_scale = 1.0 prompt = "your prompt, the longer the better, you can describe it as detail as possible" negative_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' eulera_scheduler = EulerAncestralDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler") controlnet = ControlNetModel.from_pretrained( "xinsir/controlnet-tile-sdxl-1.0", torch_dtype=torch.float16 ) # when test with other base model, you need to change the vae also. vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) pipe = StableDiffusionXLControlNetPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, safety_checker=None, torch_dtype=torch.float16, scheduler=eulera_scheduler, ) controlnet_img = cv2.imread("your original image path") height, width, _ = controlnet_img.shape ratio = np.sqrt(1024. * 1024. / (width * height)) W, H = int(width * ratio) // 48 * 48, int(height * ratio) // 48 * 48 controlnet_img = cv2.resize(controlnet_img, (W, H)) controlnet_img = cv2.cvtColor(controlnet_img, cv2.COLOR_BGR2RGB) controlnet_img = Image.fromarray(controlnet_img) # need to resize the image resolution to 1024 * 1024 or same bucket resolution to get the best performance target_width = W // 3 target_height = H // 3 for i in range(3): # 两行 for j in range(3): # 两列 left = j * target_width top = i * target_height right = left + target_width bottom = top + target_height # 根据计算的边界裁剪图像 cropped_image = controlnet_img.crop((left, top, right, bottom)) cropped_image = cropped_image.resize((W, H)) images.append(cropped_image) seed = random.randint(0, 2147483647) generator = torch.Generator('cuda').manual_seed(seed) result_images = [] for sub_img in images: new_width, new_height = W, H out = pipe(prompt=[prompt]*1, image=sub_img, control_image=sub_img, negative_prompt=[negative_prompt]*1, generator=generator, width=new_width, height=new_height, num_inference_steps=30, crops_coords_top_left=(W, H), target_size=(W, H), original_size=(W * 2, H * 2), ) result_images.append(out.images[0]) new_im = Image.new('RGB', (new_width*3, new_height*3)) # 拼接图片到新的图像上 new_im.paste(result_images[0], (0, 0)) new_im.paste(result_images[1], (new_width, 0)) new_im.paste(result_images[2], (new_width * 2, 0)) new_im.paste(result_images[3], (0, new_height)) new_im.paste(result_images[4], (new_width, new_height)) new_im.paste(result_images[5], (new_width * 2, new_height)) new_im.paste(result_images[6], (0, new_height * 2)) new_im.paste(result_images[7], (new_width, new_height * 2)) new_im.paste(result_images[8], (new_width * 2, new_height * 2)) new_im.save(f"your image save path, png format is usually better than jpg or webp in terms of image quality but got much bigger") ```