File size: 13,025 Bytes
41f97d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np

class Graph():
    """ The Graph to model the skeletons

    Args:
        strategy (string): must be one of the follow candidates
        - uniform: Uniform Labeling
        - distance: Distance Partitioning
        - spatial: Spatial Configuration
        max_hop (int): the maximal distance between two connected nodes
        dilation (int): controls the spacing between the kernel points

    """
    def __init__(self,
                 strategy='spatial',
                 max_hop=1,
                 dilation=1):
        self.max_hop = max_hop
        self.dilation = dilation

        self.get_edge()
        self.hop_dis = get_hop_distance(self.num_node,
                                        self.edge,
                                        max_hop=max_hop)
        self.get_adjacency(strategy)

    def __str__(self):
        return self.A

    def get_edge(self):
        # edge is a list of [child, parent] paris  
        self.num_node = 22
        self_link = [(i, i) for i in range(self.num_node)]
        neighbor_link = [(1,0), (2,1), (3,2), (4,3), (5,0), (6,5), (7,6), (8,7), (9,0), (10,9), (11,10), (12,11), \
                        (13,12), (14,11), (15,14), (16,15), (17,16), (18,11), (19,18), (20,19), (21,20)]
        self.edge = self_link + neighbor_link
        self.center = 0

    def get_adjacency(self, strategy):
        valid_hop = range(0, self.max_hop + 1, self.dilation)
        adjacency = np.zeros((self.num_node, self.num_node))
        for hop in valid_hop:
            adjacency[self.hop_dis == hop] = 1
        normalize_adjacency = normalize_digraph(adjacency)

        if strategy == 'uniform':
            A = np.zeros((1, self.num_node, self.num_node))
            A[0] = normalize_adjacency
            self.A = A
        elif strategy == 'distance':
            A = np.zeros((len(valid_hop), self.num_node, self.num_node))
            for i, hop in enumerate(valid_hop):
                A[i][self.hop_dis == hop] = normalize_adjacency[self.hop_dis ==
                                                                hop]
            self.A = A
        elif strategy == 'spatial':
            A = []
            for hop in valid_hop:
                a_root = np.zeros((self.num_node, self.num_node))
                a_close = np.zeros((self.num_node, self.num_node))
                a_further = np.zeros((self.num_node, self.num_node))
                for i in range(self.num_node):
                    for j in range(self.num_node):
                        if self.hop_dis[j, i] == hop:
                            if self.hop_dis[j, self.center] == self.hop_dis[
                                    i, self.center]:
                                a_root[j, i] = normalize_adjacency[j, i]
                            elif self.hop_dis[j, self.center] > self.hop_dis[
                                    i, self.center]:
                                a_close[j, i] = normalize_adjacency[j, i]
                            else:
                                a_further[j, i] = normalize_adjacency[j, i]
                if hop == 0:
                    A.append(a_root)
                else:
                    A.append(a_root + a_close)
                    A.append(a_further)
            A = np.stack(A)
            self.A = A
        else:
            raise ValueError("Do Not Exist This Strategy")

def get_hop_distance(num_node, edge, max_hop=1):
    A = np.zeros((num_node, num_node))
    for i, j in edge:
        A[j, i] = 1
        A[i, j] = 1

    # compute hop steps
    hop_dis = np.zeros((num_node, num_node)) + np.inf
    transfer_mat = [np.linalg.matrix_power(A, d) for d in range(max_hop + 1)]
    arrive_mat = (np.stack(transfer_mat) > 0)
    for d in range(max_hop, -1, -1):
        hop_dis[arrive_mat[d]] = d
    return hop_dis

def normalize_digraph(A):
    Dl = np.sum(A, 0)
    num_node = A.shape[0]
    Dn = np.zeros((num_node, num_node))
    for i in range(num_node):
        if Dl[i] > 0:
            Dn[i, i] = Dl[i]**(-1)
    AD = np.dot(A, Dn)
    return AD

def normalize_undigraph(A):
    Dl = np.sum(A, 0)
    num_node = A.shape[0]
    Dn = np.zeros((num_node, num_node))
    for i in range(num_node):
        if Dl[i] > 0:
            Dn[i, i] = Dl[i]**(-0.5)
    DAD = np.dot(np.dot(Dn, A), Dn)
    return DAD

def zero(x):
    return 0

def iden(x):
    return x

class ConvTemporalGraphical(nn.Module):
    r"""The basic module for applying a graph convolution.

    Args:
        in_channels (int): Number of channels in the input sequence data
        out_channels (int): Number of channels produced by the convolution
        kernel_size (int): Size of the graph convolving kernel
        t_kernel_size (int): Size of the temporal convolving kernel
        t_stride (int, optional): Stride of the temporal convolution. Default: 1
        t_padding (int, optional): Temporal zero-padding added to both sides of
            the input. Default: 0
        t_dilation (int, optional): Spacing between temporal kernel elements.
            Default: 1
        bias (bool, optional): If ``True``, adds a learnable bias to the output.
            Default: ``True``

    Shape:
        - Input[0]: Input graph sequence in :math:`(N, in_channels, T_{in}, V)` format
        - Input[1]: Input graph adjacency matrix in :math:`(K, V, V)` format
        - Output[0]: Output graph sequence in :math:`(N, out_channels, T_{out}, V)` format
        - Output[1]: Graph adjacency matrix for output data in :math:`(K, V, V)` format

        where
            :math:`N` is a batch size,
            :math:`K` is the spatial kernel size, as :math:`K == kernel_size[1]`,
            :math:`T_{in}/T_{out}` is a length of input/output sequence,
            :math:`V` is the number of graph nodes. 
    """
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 t_kernel_size=1,
                 t_stride=1,
                 t_padding=0,
                 t_dilation=1,
                 bias=True):
        super().__init__()

        self.kernel_size = kernel_size
        self.conv = nn.Conv2d(in_channels,
                              out_channels * kernel_size,
                              kernel_size=(t_kernel_size, 1),
                              padding=(t_padding, 0),
                              stride=(t_stride, 1),
                              dilation=(t_dilation, 1),
                              bias=bias)

    def forward(self, x, A):
        assert A.size(0) == self.kernel_size

        x = self.conv(x)

        n, kc, t, v = x.size()
        x = x.view(n, self.kernel_size, kc // self.kernel_size, t, v)
        x = torch.einsum('nkctv,kvw->nctw', (x, A))

        return x.contiguous(), A

class st_gcn_block(nn.Module):
    r"""Applies a spatial temporal graph convolution over an input graph sequence.

    Args:
        in_channels (int): Number of channels in the input sequence data
        out_channels (int): Number of channels produced by the convolution
        kernel_size (tuple): Size of the temporal convolving kernel and graph convolving kernel
        stride (int, optional): Stride of the temporal convolution. Default: 1
        dropout (int, optional): Dropout rate of the final output. Default: 0
        residual (bool, optional): If ``True``, applies a residual mechanism. Default: ``True``

    Shape:
        - Input[0]: Input graph sequence in :math:`(N, in_channels, T_{in}, V)` format
        - Input[1]: Input graph adjacency matrix in :math:`(K, V, V)` format
        - Output[0]: Outpu graph sequence in :math:`(N, out_channels, T_{out}, V)` format
        - Output[1]: Graph adjacency matrix for output data in :math:`(K, V, V)` format

        where
            :math:`N` is a batch size,
            :math:`K` is the spatial kernel size, as :math:`K == kernel_size[1]`,
            :math:`T_{in}/T_{out}` is a length of input/output sequence,
            :math:`V` is the number of graph nodes.

    """
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 dropout=0,
                 residual=True):
        super().__init__()

        assert len(kernel_size) == 2
        assert kernel_size[0] % 2 == 1
        padding = ((kernel_size[0] - 1) // 2, 0)

        self.gcn = ConvTemporalGraphical(in_channels, out_channels,
                                         kernel_size[1])

        self.tcn = nn.Sequential(
            nn.BatchNorm2d(out_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(
                out_channels,
                out_channels,
                (kernel_size[0], 1),
                (stride, 1),
                padding,
            ),
            nn.BatchNorm2d(out_channels),
            nn.Dropout(dropout, inplace=True),
        )

        if not residual:
            self.residual = zero

        elif (in_channels == out_channels) and (stride == 1):
            self.residual = iden

        else:
            self.residual = nn.Sequential(
                nn.Conv2d(in_channels,
                          out_channels,
                          kernel_size=1,
                          stride=(stride, 1)),
                nn.BatchNorm2d(out_channels),
            )

        self.relu = nn.ReLU(inplace=True)

    def forward(self, x, A):

        res = self.residual(x)
        x, A = self.gcn(x, A)
        x = self.tcn(x) + res

        return self.relu(x), A
    
class ST_GCN_18(nn.Module):
    r"""Spatial temporal graph convolutional networks.

    Args:
        in_channels (int): Number of channels in the input data
        num_class (int): Number of classes for the classification task
        graph_cfg (dict): The arguments for building the graph
        edge_importance_weighting (bool): If ``True``, adds a learnable
            importance weighting to the edges of the graph
        **kwargs (optional): Other parameters for graph convolution units

    Shape:
        - Input: :math:`(N, in_channels, T_{in}, V_{in}, M_{in})`
        - Output: :math:`(N, num_class)` where
            :math:`N` is a batch size,
            :math:`T_{in}` is a length of input sequence,
            :math:`V_{in}` is the number of graph nodes,
            :math:`M_{in}` is the number of instance in a frame.
    """
    def __init__(self,
                 in_channels,
                 edge_importance_weighting=True,
                 data_bn=True,
                 **kwargs):
        super().__init__()

        # load graph
        self.graph = Graph()
        A = torch.tensor(self.graph.A,
                         dtype=torch.float32,
                         requires_grad=False)
        self.register_buffer('A', A)

        # build networks
        spatial_kernel_size = A.size(0)
        temporal_kernel_size = 9
        kernel_size = (temporal_kernel_size, spatial_kernel_size)
        self.data_bn = nn.BatchNorm1d(in_channels *
                                      A.size(1)) if data_bn else iden
        kwargs0 = {k: v for k, v in kwargs.items() if k != 'dropout'}
        self.st_gcn_networks = nn.ModuleList((
            st_gcn_block(in_channels,
                         64,
                         kernel_size,
                         1,
                         residual=False,
                         **kwargs0),
            st_gcn_block(64, 64, kernel_size, 1, **kwargs),
            st_gcn_block(64, 64, kernel_size, 1, **kwargs),
            st_gcn_block(64, 64, kernel_size, 1, **kwargs),
            st_gcn_block(64, 128, kernel_size, 2, **kwargs),
            st_gcn_block(128, 128, kernel_size, 1, **kwargs),
            st_gcn_block(128, 128, kernel_size, 1, **kwargs),
            st_gcn_block(128, 256, kernel_size, 2, **kwargs),
            st_gcn_block(256, 256, kernel_size, 1, **kwargs),
            st_gcn_block(256, 512, kernel_size, 1, **kwargs),
        ))

        # initialize parameters for edge importance weighting
        if edge_importance_weighting:
            self.edge_importance = nn.ParameterList([
                nn.Parameter(torch.ones(self.A.size()))
                for i in self.st_gcn_networks
            ])
        else:
            self.edge_importance = [1] * len(self.st_gcn_networks)

    def forward(self, x):
        # data normalization
        N, C, T, V, M = x.size()
        x = x.permute(0, 4, 3, 1, 2).contiguous()
        x = x.view(N * M, V * C, T)
        x = self.data_bn(x)
        x = x.view(N, M, V, C, T)
        x = x.permute(0, 1, 3, 4, 2).contiguous()
        x = x.view(N * M, C, T, V)

        # forward
        for gcn, importance in zip(self.st_gcn_networks, self.edge_importance):
            x, _ = gcn(x, self.A * importance)

        # global pooling
        x = F.avg_pool2d(x, x.size()[2:]) # (b, 512, t, joint)
        x = x.view(N, M, -1, 1, 1).mean(dim=1)

        return x