xk-huang commited on
Commit
fa6d075
·
1 Parent(s): ddcd863

[add] model

Browse files
config.json ADDED
@@ -0,0 +1,332 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "_name_or_path": "facebook/sam-vit-huge",
4
+ "architectures": [
5
+ "ScaMultitaskV2Model"
6
+ ],
7
+ "cache_dir": "/mnt/blob/weights/.model.cache/",
8
+ "initializer_range": 0.02,
9
+ "mask_caption_decoder_config": {
10
+ "_name_or_path": "",
11
+ "add_cross_attention": false,
12
+ "additional_num_hidden_layers": 12,
13
+ "architectures": null,
14
+ "attention_downsample_rate": 2,
15
+ "bad_words_ids": null,
16
+ "begin_suppress_tokens": null,
17
+ "bos_token_id": null,
18
+ "chunk_size_feed_forward": 0,
19
+ "cross_attention_hidden_size": null,
20
+ "decoder_start_token_id": null,
21
+ "diversity_penalty": 0.0,
22
+ "do_sample": false,
23
+ "early_stopping": false,
24
+ "encoder_no_repeat_ngram_size": 0,
25
+ "eos_token_id": null,
26
+ "exponential_decay_length_penalty": null,
27
+ "finetuning_task": null,
28
+ "forced_bos_token_id": null,
29
+ "forced_eos_token_id": null,
30
+ "hidden_act": "relu",
31
+ "hidden_size": 256,
32
+ "id2label": {
33
+ "0": "LABEL_0",
34
+ "1": "LABEL_1"
35
+ },
36
+ "iou_head_depth": 3,
37
+ "iou_head_hidden_dim": 256,
38
+ "is_decoder": false,
39
+ "is_encoder_decoder": false,
40
+ "label2id": {
41
+ "LABEL_0": 0,
42
+ "LABEL_1": 1
43
+ },
44
+ "layer_norm_eps": 1e-06,
45
+ "length_penalty": 1.0,
46
+ "max_length": 20,
47
+ "min_length": 0,
48
+ "mlp_dim": 2048,
49
+ "model_type": "",
50
+ "no_repeat_ngram_size": 0,
51
+ "num_attention_heads": 8,
52
+ "num_beam_groups": 1,
53
+ "num_beams": 1,
54
+ "num_caption_heads": 1,
55
+ "num_caption_tokens": 8,
56
+ "num_hidden_layers": 2,
57
+ "num_multimask_outputs": 3,
58
+ "num_return_sequences": 1,
59
+ "output_attentions": false,
60
+ "output_hidden_states": false,
61
+ "output_scores": false,
62
+ "pad_token_id": null,
63
+ "prefix": null,
64
+ "problem_type": null,
65
+ "pruned_heads": {},
66
+ "remove_invalid_values": false,
67
+ "repetition_penalty": 1.0,
68
+ "return_dict": true,
69
+ "return_dict_in_generate": false,
70
+ "sep_token_id": null,
71
+ "suppress_tokens": null,
72
+ "task_specific_params": null,
73
+ "temperature": 1.0,
74
+ "tf_legacy_loss": false,
75
+ "tie_encoder_decoder": false,
76
+ "tie_word_embeddings": true,
77
+ "tokenizer_class": null,
78
+ "top_k": 50,
79
+ "top_p": 1.0,
80
+ "torch_dtype": null,
81
+ "torchscript": false,
82
+ "transformers_version": "4.30.2",
83
+ "typical_p": 1.0,
84
+ "use_bfloat16": false
85
+ },
86
+ "model_type": "sca",
87
+ "num_task_tokens": 6,
88
+ "prompt_encoder_config": {
89
+ "_name_or_path": "",
90
+ "add_cross_attention": false,
91
+ "architectures": null,
92
+ "bad_words_ids": null,
93
+ "begin_suppress_tokens": null,
94
+ "bos_token_id": null,
95
+ "chunk_size_feed_forward": 0,
96
+ "cross_attention_hidden_size": null,
97
+ "decoder_start_token_id": null,
98
+ "diversity_penalty": 0.0,
99
+ "do_sample": false,
100
+ "early_stopping": false,
101
+ "encoder_no_repeat_ngram_size": 0,
102
+ "eos_token_id": null,
103
+ "exponential_decay_length_penalty": null,
104
+ "finetuning_task": null,
105
+ "forced_bos_token_id": null,
106
+ "forced_eos_token_id": null,
107
+ "hidden_act": "gelu",
108
+ "hidden_size": 256,
109
+ "id2label": {
110
+ "0": "LABEL_0",
111
+ "1": "LABEL_1"
112
+ },
113
+ "image_embedding_size": 64,
114
+ "image_size": 1024,
115
+ "is_decoder": false,
116
+ "is_encoder_decoder": false,
117
+ "label2id": {
118
+ "LABEL_0": 0,
119
+ "LABEL_1": 1
120
+ },
121
+ "layer_norm_eps": 1e-06,
122
+ "length_penalty": 1.0,
123
+ "mask_input_channels": 16,
124
+ "max_length": 20,
125
+ "min_length": 0,
126
+ "model_type": "",
127
+ "no_repeat_ngram_size": 0,
128
+ "num_beam_groups": 1,
129
+ "num_beams": 1,
130
+ "num_point_embeddings": 4,
131
+ "num_return_sequences": 1,
132
+ "output_attentions": false,
133
+ "output_hidden_states": false,
134
+ "output_scores": false,
135
+ "pad_token_id": null,
136
+ "patch_size": 16,
137
+ "prefix": null,
138
+ "problem_type": null,
139
+ "pruned_heads": {},
140
+ "remove_invalid_values": false,
141
+ "repetition_penalty": 1.0,
142
+ "return_dict": true,
143
+ "return_dict_in_generate": false,
144
+ "sep_token_id": null,
145
+ "suppress_tokens": null,
146
+ "task_specific_params": null,
147
+ "temperature": 1.0,
148
+ "tf_legacy_loss": false,
149
+ "tie_encoder_decoder": false,
150
+ "tie_word_embeddings": true,
151
+ "tokenizer_class": null,
152
+ "top_k": 50,
153
+ "top_p": 1.0,
154
+ "torch_dtype": null,
155
+ "torchscript": false,
156
+ "transformers_version": "4.30.2",
157
+ "typical_p": 1.0,
158
+ "use_bfloat16": false
159
+ },
160
+ "text_config": {
161
+ "_name_or_path": "openlm-research/open_llama_3b_v2",
162
+ "add_cross_attention": false,
163
+ "architectures": [
164
+ "LlamaForCausalLM"
165
+ ],
166
+ "bad_words_ids": null,
167
+ "begin_suppress_tokens": null,
168
+ "bos_token_id": 1,
169
+ "chunk_size_feed_forward": 0,
170
+ "cross_attention_hidden_size": null,
171
+ "decoder_start_token_id": null,
172
+ "diversity_penalty": 0.0,
173
+ "do_sample": false,
174
+ "early_stopping": false,
175
+ "encoder_no_repeat_ngram_size": 0,
176
+ "eos_token_id": 2,
177
+ "exponential_decay_length_penalty": null,
178
+ "finetuning_task": null,
179
+ "forced_bos_token_id": null,
180
+ "forced_eos_token_id": null,
181
+ "hidden_act": "silu",
182
+ "hidden_size": 3200,
183
+ "id2label": {
184
+ "0": "LABEL_0",
185
+ "1": "LABEL_1"
186
+ },
187
+ "initializer_range": 0.02,
188
+ "intermediate_size": 8640,
189
+ "is_decoder": false,
190
+ "is_encoder_decoder": false,
191
+ "label2id": {
192
+ "LABEL_0": 0,
193
+ "LABEL_1": 1
194
+ },
195
+ "length_penalty": 1.0,
196
+ "max_length": 20,
197
+ "max_position_embeddings": 2048,
198
+ "min_length": 0,
199
+ "model_type": "llama",
200
+ "no_repeat_ngram_size": 0,
201
+ "num_attention_heads": 32,
202
+ "num_beam_groups": 1,
203
+ "num_beams": 1,
204
+ "num_hidden_layers": 26,
205
+ "num_return_sequences": 1,
206
+ "output_attentions": false,
207
+ "output_hidden_states": false,
208
+ "output_scores": false,
209
+ "pad_token_id": 0,
210
+ "prefix": null,
211
+ "problem_type": null,
212
+ "pruned_heads": {},
213
+ "remove_invalid_values": false,
214
+ "repetition_penalty": 1.0,
215
+ "return_dict": true,
216
+ "return_dict_in_generate": false,
217
+ "rms_norm_eps": 1e-06,
218
+ "sep_token_id": null,
219
+ "suppress_tokens": null,
220
+ "task_specific_params": null,
221
+ "temperature": 1.0,
222
+ "tf_legacy_loss": false,
223
+ "tie_encoder_decoder": false,
224
+ "tie_word_embeddings": false,
225
+ "tokenizer_class": null,
226
+ "top_k": 50,
227
+ "top_p": 1.0,
228
+ "torch_dtype": "float16",
229
+ "torchscript": false,
230
+ "transformers_version": "4.30.2",
231
+ "typical_p": 1.0,
232
+ "use_bfloat16": false,
233
+ "use_cache": true,
234
+ "vocab_size": 32000
235
+ },
236
+ "tie_word_embeddings": false,
237
+ "torch_dtype": "float16",
238
+ "transformers_version": null,
239
+ "use_decoder_only_language_model": true,
240
+ "vision_config": {
241
+ "_name_or_path": "",
242
+ "add_cross_attention": false,
243
+ "architectures": null,
244
+ "attention_dropout": 0.0,
245
+ "bad_words_ids": null,
246
+ "begin_suppress_tokens": null,
247
+ "bos_token_id": null,
248
+ "chunk_size_feed_forward": 0,
249
+ "cross_attention_hidden_size": null,
250
+ "decoder_start_token_id": null,
251
+ "diversity_penalty": 0.0,
252
+ "do_sample": false,
253
+ "dropout": 0.0,
254
+ "early_stopping": false,
255
+ "encoder_no_repeat_ngram_size": 0,
256
+ "eos_token_id": null,
257
+ "exponential_decay_length_penalty": null,
258
+ "finetuning_task": null,
259
+ "forced_bos_token_id": null,
260
+ "forced_eos_token_id": null,
261
+ "global_attn_indexes": [
262
+ 7,
263
+ 15,
264
+ 23,
265
+ 31
266
+ ],
267
+ "hidden_act": "gelu",
268
+ "hidden_size": 1280,
269
+ "id2label": {
270
+ "0": "LABEL_0",
271
+ "1": "LABEL_1"
272
+ },
273
+ "image_size": 1024,
274
+ "initializer_factor": 1.0,
275
+ "initializer_range": 1e-10,
276
+ "intermediate_size": 6144,
277
+ "is_decoder": false,
278
+ "is_encoder_decoder": false,
279
+ "label2id": {
280
+ "LABEL_0": 0,
281
+ "LABEL_1": 1
282
+ },
283
+ "layer_norm_eps": 1e-06,
284
+ "length_penalty": 1.0,
285
+ "max_length": 20,
286
+ "min_length": 0,
287
+ "mlp_dim": 5120,
288
+ "mlp_ratio": 4.0,
289
+ "model_type": "",
290
+ "no_repeat_ngram_size": 0,
291
+ "num_attention_heads": 16,
292
+ "num_beam_groups": 1,
293
+ "num_beams": 1,
294
+ "num_channels": 3,
295
+ "num_hidden_layers": 32,
296
+ "num_pos_feats": 128,
297
+ "num_return_sequences": 1,
298
+ "output_attentions": false,
299
+ "output_channels": 256,
300
+ "output_hidden_states": false,
301
+ "output_scores": false,
302
+ "pad_token_id": null,
303
+ "patch_size": 16,
304
+ "prefix": null,
305
+ "problem_type": null,
306
+ "projection_dim": 512,
307
+ "pruned_heads": {},
308
+ "qkv_bias": true,
309
+ "remove_invalid_values": false,
310
+ "repetition_penalty": 1.0,
311
+ "return_dict": true,
312
+ "return_dict_in_generate": false,
313
+ "sep_token_id": null,
314
+ "suppress_tokens": null,
315
+ "task_specific_params": null,
316
+ "temperature": 1.0,
317
+ "tf_legacy_loss": false,
318
+ "tie_encoder_decoder": false,
319
+ "tie_word_embeddings": true,
320
+ "tokenizer_class": null,
321
+ "top_k": 50,
322
+ "top_p": 1.0,
323
+ "torch_dtype": null,
324
+ "torchscript": false,
325
+ "transformers_version": "4.30.2",
326
+ "typical_p": 1.0,
327
+ "use_abs_pos": true,
328
+ "use_bfloat16": false,
329
+ "use_rel_pos": true,
330
+ "window_size": 14
331
+ }
332
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step200000
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf13798c876ccaa5889358468b0595fed1fa74febd499115f701c9bad80b9365
3
+ size 8175399446
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": true,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91b289e85fa20fd375d8b33dc12f77616f18abc6359804471d1fafcb425fecb8
3
+ size 511574
tokenizer_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "<s>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "clean_up_tokenization_spaces": false,
13
+ "eos_token": {
14
+ "__type": "AddedToken",
15
+ "content": "</s>",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "model_max_length": 20,
22
+ "pad_token": null,
23
+ "sp_model_kwargs": {},
24
+ "tokenizer_class": "LlamaTokenizer",
25
+ "unk_token": {
26
+ "__type": "AddedToken",
27
+ "content": "<unk>",
28
+ "lstrip": false,
29
+ "normalized": true,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
trainer_state.json ADDED
@@ -0,0 +1,2194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 2.9787235260009766,
3
+ "best_model_checkpoint": "/mnt/output/projects/sca-xiaoke-v3/amlt-results/7300886584.15971-e315970f-15b9-410a-b0a9-3912402cdf8b/checkpoint-195000",
4
+ "epoch": 82.67879288962381,
5
+ "global_step": 200000,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "_prepare_inputs_in_ms": 14.42616805434227,
12
+ "compute_loss_in_ms": 1299.8907640576363,
13
+ "epoch": 0.0,
14
+ "learning_rate/full": 0.0,
15
+ "loss": 9.016,
16
+ "step": 1,
17
+ "training_step_in_ms": 2032.6302126049995
18
+ },
19
+ {
20
+ "epoch": 0.0,
21
+ "eval_visual_genome-densecap-local-densecap-test_loss": 9.1282958984375,
22
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.03355821582361717,
23
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 189.4348,
24
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 4.223,
25
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.132,
26
+ "step": 1
27
+ },
28
+ {
29
+ "_prepare_inputs_in_ms": 4.084589669218985,
30
+ "compute_loss_in_ms": 284.03653898784466,
31
+ "epoch": 0.41,
32
+ "learning_rate/full": 0.00039998495845181817,
33
+ "loss": 3.8908,
34
+ "step": 1000,
35
+ "training_step_in_ms": 1082.7972516678535
36
+ },
37
+ {
38
+ "_prepare_inputs_in_ms": 4.054305288940668,
39
+ "compute_loss_in_ms": 284.15025370568037,
40
+ "epoch": 0.83,
41
+ "learning_rate/full": 0.0003999216713877652,
42
+ "loss": 3.4805,
43
+ "step": 2000,
44
+ "training_step_in_ms": 1086.274579320103
45
+ },
46
+ {
47
+ "_prepare_inputs_in_ms": 4.071794345974922,
48
+ "compute_loss_in_ms": 284.45942908525467,
49
+ "epoch": 1.24,
50
+ "learning_rate/full": 0.00039980895784128267,
51
+ "loss": 3.405,
52
+ "step": 3000,
53
+ "training_step_in_ms": 1119.1077427528799
54
+ },
55
+ {
56
+ "_prepare_inputs_in_ms": 4.085798408836126,
57
+ "compute_loss_in_ms": 284.8285736106336,
58
+ "epoch": 1.65,
59
+ "learning_rate/full": 0.00039964684567845476,
60
+ "loss": 3.3537,
61
+ "step": 4000,
62
+ "training_step_in_ms": 1150.6125138737261
63
+ },
64
+ {
65
+ "_prepare_inputs_in_ms": 4.0938322730362415,
66
+ "compute_loss_in_ms": 285.10985093563795,
67
+ "epoch": 2.07,
68
+ "learning_rate/full": 0.0003994358471466495,
69
+ "loss": 3.3218,
70
+ "step": 5000,
71
+ "training_step_in_ms": 1108.4499053694308
72
+ },
73
+ {
74
+ "epoch": 2.07,
75
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.269989252090454,
76
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.21715476097311398,
77
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 111.5411,
78
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.172,
79
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.224,
80
+ "step": 5000
81
+ },
82
+ {
83
+ "_prepare_inputs_in_ms": 4.128877357011888,
84
+ "compute_loss_in_ms": 285.1207774169743,
85
+ "epoch": 2.48,
86
+ "learning_rate/full": 0.0003991751687428334,
87
+ "loss": 3.2918,
88
+ "step": 6000,
89
+ "training_step_in_ms": 1120.3654654994607
90
+ },
91
+ {
92
+ "_prepare_inputs_in_ms": 4.121768821030855,
93
+ "compute_loss_in_ms": 284.9130438826978,
94
+ "epoch": 2.89,
95
+ "learning_rate/full": 0.0003988659173490642,
96
+ "loss": 3.2675,
97
+ "step": 7000,
98
+ "training_step_in_ms": 1130.791154742241
99
+ },
100
+ {
101
+ "_prepare_inputs_in_ms": 4.129346951842308,
102
+ "compute_loss_in_ms": 285.35304405912757,
103
+ "epoch": 3.31,
104
+ "learning_rate/full": 0.0003985069299623724,
105
+ "loss": 3.2451,
106
+ "step": 8000,
107
+ "training_step_in_ms": 1133.7338739708066
108
+ },
109
+ {
110
+ "_prepare_inputs_in_ms": 4.133303381502628,
111
+ "compute_loss_in_ms": 285.2391963750124,
112
+ "epoch": 3.72,
113
+ "learning_rate/full": 0.0003980992984040504,
114
+ "loss": 3.2334,
115
+ "step": 9000,
116
+ "training_step_in_ms": 1086.6298492662609
117
+ },
118
+ {
119
+ "_prepare_inputs_in_ms": 4.132662046700716,
120
+ "compute_loss_in_ms": 285.1939390525222,
121
+ "epoch": 4.13,
122
+ "learning_rate/full": 0.00039764230739017226,
123
+ "loss": 3.2122,
124
+ "step": 10000,
125
+ "training_step_in_ms": 1111.2217365466058
126
+ },
127
+ {
128
+ "epoch": 4.13,
129
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.1718945503234863,
130
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.23451229725961228,
131
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 108.8619,
132
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.349,
133
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.23,
134
+ "step": 10000
135
+ },
136
+ {
137
+ "_prepare_inputs_in_ms": 4.151588522079514,
138
+ "compute_loss_in_ms": 285.39055866748095,
139
+ "epoch": 4.55,
140
+ "learning_rate/full": 0.00039713751381134497,
141
+ "loss": 3.1979,
142
+ "step": 11000,
143
+ "training_step_in_ms": 1089.2837468609214
144
+ },
145
+ {
146
+ "_prepare_inputs_in_ms": 4.139887526631355,
147
+ "compute_loss_in_ms": 285.3860225379467,
148
+ "epoch": 4.96,
149
+ "learning_rate/full": 0.000396583019288311,
150
+ "loss": 3.1933,
151
+ "step": 12000,
152
+ "training_step_in_ms": 1084.1714271605015
153
+ },
154
+ {
155
+ "_prepare_inputs_in_ms": 4.176147662103176,
156
+ "compute_loss_in_ms": 285.6273371577263,
157
+ "epoch": 5.37,
158
+ "learning_rate/full": 0.0003959805510184613,
159
+ "loss": 3.1765,
160
+ "step": 13000,
161
+ "training_step_in_ms": 1089.3080548346043
162
+ },
163
+ {
164
+ "_prepare_inputs_in_ms": 4.1766685508191586,
165
+ "compute_loss_in_ms": 285.3720509596169,
166
+ "epoch": 5.79,
167
+ "learning_rate/full": 0.00039532972748016767,
168
+ "loss": 3.1727,
169
+ "step": 14000,
170
+ "training_step_in_ms": 1091.7199603579938
171
+ },
172
+ {
173
+ "_prepare_inputs_in_ms": 4.191178072243929,
174
+ "compute_loss_in_ms": 285.4580160602927,
175
+ "epoch": 6.2,
176
+ "learning_rate/full": 0.0003946307092543998,
177
+ "loss": 3.1591,
178
+ "step": 15000,
179
+ "training_step_in_ms": 1090.6033144891262
180
+ },
181
+ {
182
+ "epoch": 6.2,
183
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.1219239234924316,
184
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.24624792238728155,
185
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 108.8497,
186
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.35,
187
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.23,
188
+ "step": 15000
189
+ },
190
+ {
191
+ "_prepare_inputs_in_ms": 4.180258305334464,
192
+ "compute_loss_in_ms": 285.4601420760155,
193
+ "epoch": 6.61,
194
+ "learning_rate/full": 0.0003938828970266217,
195
+ "loss": 3.1562,
196
+ "step": 16000,
197
+ "training_step_in_ms": 1084.842809855938
198
+ },
199
+ {
200
+ "_prepare_inputs_in_ms": 4.194100107997656,
201
+ "compute_loss_in_ms": 285.48905945569277,
202
+ "epoch": 7.03,
203
+ "learning_rate/full": 0.00039308797090204444,
204
+ "loss": 3.1508,
205
+ "step": 17000,
206
+ "training_step_in_ms": 1085.5392471551895
207
+ },
208
+ {
209
+ "_prepare_inputs_in_ms": 4.201232250779867,
210
+ "compute_loss_in_ms": 285.61364733427763,
211
+ "epoch": 7.44,
212
+ "learning_rate/full": 0.0003922445359987763,
213
+ "loss": 3.1333,
214
+ "step": 18000,
215
+ "training_step_in_ms": 1091.4973263852298
216
+ },
217
+ {
218
+ "_prepare_inputs_in_ms": 4.189023811370134,
219
+ "compute_loss_in_ms": 285.4624082148075,
220
+ "epoch": 7.85,
221
+ "learning_rate/full": 0.0003913554018411121,
222
+ "loss": 3.1351,
223
+ "step": 19000,
224
+ "training_step_in_ms": 1095.9623138792813
225
+ },
226
+ {
227
+ "_prepare_inputs_in_ms": 4.215472485870123,
228
+ "compute_loss_in_ms": 285.6230415776372,
229
+ "epoch": 8.27,
230
+ "learning_rate/full": 0.00039041818639024787,
231
+ "loss": 3.1297,
232
+ "step": 20000,
233
+ "training_step_in_ms": 1185.9847482070327
234
+ },
235
+ {
236
+ "epoch": 8.27,
237
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.094672918319702,
238
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.24975866124736495,
239
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 108.4566,
240
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.376,
241
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.231,
242
+ "step": 20000
243
+ },
244
+ {
245
+ "_prepare_inputs_in_ms": 4.1831618874538234,
246
+ "compute_loss_in_ms": 285.3183429725468,
247
+ "epoch": 8.68,
248
+ "learning_rate/full": 0.00038943398810118026,
249
+ "loss": 3.119,
250
+ "step": 21000,
251
+ "training_step_in_ms": 1082.7558356113732
252
+ },
253
+ {
254
+ "_prepare_inputs_in_ms": 4.174146838486195,
255
+ "compute_loss_in_ms": 285.4058397859335,
256
+ "epoch": 9.09,
257
+ "learning_rate/full": 0.0003884019945070803,
258
+ "loss": 3.1178,
259
+ "step": 22000,
260
+ "training_step_in_ms": 1087.0350129008293
261
+ },
262
+ {
263
+ "_prepare_inputs_in_ms": 4.204949229955673,
264
+ "compute_loss_in_ms": 285.3504670076072,
265
+ "epoch": 9.51,
266
+ "learning_rate/full": 0.00038732452418171673,
267
+ "loss": 3.1093,
268
+ "step": 23000,
269
+ "training_step_in_ms": 1090.7997342124581
270
+ },
271
+ {
272
+ "_prepare_inputs_in_ms": 4.196985870599747,
273
+ "compute_loss_in_ms": 285.4016271494329,
274
+ "epoch": 9.92,
275
+ "learning_rate/full": 0.0003862008343330083,
276
+ "loss": 3.1062,
277
+ "step": 24000,
278
+ "training_step_in_ms": 1090.5269000642002
279
+ },
280
+ {
281
+ "_prepare_inputs_in_ms": 4.206760194152594,
282
+ "compute_loss_in_ms": 285.6653628349304,
283
+ "epoch": 10.33,
284
+ "learning_rate/full": 0.00038503000849003844,
285
+ "loss": 3.0972,
286
+ "step": 25000,
287
+ "training_step_in_ms": 1090.913136728108
288
+ },
289
+ {
290
+ "epoch": 10.33,
291
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.075335741043091,
292
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.25707208633373096,
293
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 108.472,
294
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.375,
295
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.23,
296
+ "step": 25000
297
+ },
298
+ {
299
+ "_prepare_inputs_in_ms": 4.204354642367944,
300
+ "compute_loss_in_ms": 285.44070146232843,
301
+ "epoch": 10.75,
302
+ "learning_rate/full": 0.0003838159164157488,
303
+ "loss": 3.097,
304
+ "step": 26000,
305
+ "training_step_in_ms": 1085.0929874032736
306
+ },
307
+ {
308
+ "_prepare_inputs_in_ms": 4.202797457575798,
309
+ "compute_loss_in_ms": 285.55905482545495,
310
+ "epoch": 11.16,
311
+ "learning_rate/full": 0.00038255527679000744,
312
+ "loss": 3.0903,
313
+ "step": 27000,
314
+ "training_step_in_ms": 1089.4926370121539
315
+ },
316
+ {
317
+ "_prepare_inputs_in_ms": 4.2012519761919975,
318
+ "compute_loss_in_ms": 285.71758703514934,
319
+ "epoch": 11.58,
320
+ "learning_rate/full": 0.0003812482649321827,
321
+ "loss": 3.0892,
322
+ "step": 28000,
323
+ "training_step_in_ms": 1090.198759533465
324
+ },
325
+ {
326
+ "_prepare_inputs_in_ms": 4.220829274505377,
327
+ "compute_loss_in_ms": 285.5986107811332,
328
+ "epoch": 11.99,
329
+ "learning_rate/full": 0.0003798978172979138,
330
+ "loss": 3.0889,
331
+ "step": 29000,
332
+ "training_step_in_ms": 1085.0686310827732
333
+ },
334
+ {
335
+ "_prepare_inputs_in_ms": 4.217640113085508,
336
+ "compute_loss_in_ms": 285.6399230584502,
337
+ "epoch": 12.4,
338
+ "learning_rate/full": 0.0003785029825690954,
339
+ "loss": 3.0749,
340
+ "step": 30000,
341
+ "training_step_in_ms": 1087.9900991134346
342
+ },
343
+ {
344
+ "epoch": 12.4,
345
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.058861017227173,
346
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.25600252799309026,
347
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 109.6245,
348
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.298,
349
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.228,
350
+ "step": 30000
351
+ },
352
+ {
353
+ "_prepare_inputs_in_ms": 4.224213841484814,
354
+ "compute_loss_in_ms": 285.3009058833122,
355
+ "epoch": 12.82,
356
+ "learning_rate/full": 0.00037706410490032555,
357
+ "loss": 3.0794,
358
+ "step": 31000,
359
+ "training_step_in_ms": 1087.378763064742
360
+ },
361
+ {
362
+ "_prepare_inputs_in_ms": 4.233129996806383,
363
+ "compute_loss_in_ms": 285.4745088033378,
364
+ "epoch": 13.23,
365
+ "learning_rate/full": 0.0003755815393131386,
366
+ "loss": 3.074,
367
+ "step": 32000,
368
+ "training_step_in_ms": 1091.7205754183233
369
+ },
370
+ {
371
+ "_prepare_inputs_in_ms": 4.223707340657711,
372
+ "compute_loss_in_ms": 285.1553194858134,
373
+ "epoch": 13.64,
374
+ "learning_rate/full": 0.0003740556516084091,
375
+ "loss": 3.0686,
376
+ "step": 33000,
377
+ "training_step_in_ms": 1087.8120190612972
378
+ },
379
+ {
380
+ "_prepare_inputs_in_ms": 4.245889626443386,
381
+ "compute_loss_in_ms": 285.67459550127387,
382
+ "epoch": 14.06,
383
+ "learning_rate/full": 0.0003724852264850082,
384
+ "loss": 3.0733,
385
+ "step": 34000,
386
+ "training_step_in_ms": 1086.3751963675022
387
+ },
388
+ {
389
+ "_prepare_inputs_in_ms": 4.233293745666742,
390
+ "compute_loss_in_ms": 285.4981838874519,
391
+ "epoch": 14.47,
392
+ "learning_rate/full": 0.00037087542640234865,
393
+ "loss": 3.064,
394
+ "step": 35000,
395
+ "training_step_in_ms": 1089.8129360377789
396
+ },
397
+ {
398
+ "epoch": 14.47,
399
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.052946090698242,
400
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.2584196718918565,
401
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 108.4779,
402
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.375,
403
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.23,
404
+ "step": 35000
405
+ },
406
+ {
407
+ "_prepare_inputs_in_ms": 4.194417025257901,
408
+ "compute_loss_in_ms": 285.25339871644974,
409
+ "epoch": 14.88,
410
+ "learning_rate/full": 0.00036922019737873653,
411
+ "loss": 3.064,
412
+ "step": 36000,
413
+ "training_step_in_ms": 1084.3368335030973
414
+ },
415
+ {
416
+ "_prepare_inputs_in_ms": 4.225800335407257,
417
+ "compute_loss_in_ms": 285.52921985834837,
418
+ "epoch": 15.3,
419
+ "learning_rate/full": 0.00036752484999829976,
420
+ "loss": 3.0581,
421
+ "step": 37000,
422
+ "training_step_in_ms": 1090.5179475583136
423
+ },
424
+ {
425
+ "_prepare_inputs_in_ms": 4.208773214370012,
426
+ "compute_loss_in_ms": 285.2426546551287,
427
+ "epoch": 15.71,
428
+ "learning_rate/full": 0.0003657881683678541,
429
+ "loss": 3.0581,
430
+ "step": 38000,
431
+ "training_step_in_ms": 1089.0830878019333
432
+ },
433
+ {
434
+ "_prepare_inputs_in_ms": 4.219740275293589,
435
+ "compute_loss_in_ms": 285.45426247641444,
436
+ "epoch": 16.12,
437
+ "learning_rate/full": 0.00036401058098760525,
438
+ "loss": 3.0534,
439
+ "step": 39000,
440
+ "training_step_in_ms": 1088.1995187923312
441
+ },
442
+ {
443
+ "_prepare_inputs_in_ms": 4.224584739655256,
444
+ "compute_loss_in_ms": 285.29780930280685,
445
+ "epoch": 16.54,
446
+ "learning_rate/full": 0.00036219068645119566,
447
+ "loss": 3.0525,
448
+ "step": 40000,
449
+ "training_step_in_ms": 1088.9517585895956
450
+ },
451
+ {
452
+ "epoch": 16.54,
453
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.0416412353515625,
454
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.26328806809020683,
455
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 110.03,
456
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.271,
457
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.227,
458
+ "step": 40000
459
+ },
460
+ {
461
+ "_prepare_inputs_in_ms": 4.210097938776016,
462
+ "compute_loss_in_ms": 285.2052926979959,
463
+ "epoch": 16.95,
464
+ "learning_rate/full": 0.0003603344533347134,
465
+ "loss": 3.0483,
466
+ "step": 41000,
467
+ "training_step_in_ms": 1085.6118382960558
468
+ },
469
+ {
470
+ "_prepare_inputs_in_ms": 4.248851552605629,
471
+ "compute_loss_in_ms": 285.6537539064884,
472
+ "epoch": 17.36,
473
+ "learning_rate/full": 0.00035843490089475537,
474
+ "loss": 3.0399,
475
+ "step": 42000,
476
+ "training_step_in_ms": 1091.6559825353324
477
+ },
478
+ {
479
+ "_prepare_inputs_in_ms": 4.214634284377098,
480
+ "compute_loss_in_ms": 285.3575124628842,
481
+ "epoch": 17.78,
482
+ "learning_rate/full": 0.0003564981368437495,
483
+ "loss": 3.0455,
484
+ "step": 43000,
485
+ "training_step_in_ms": 1088.8244492001832
486
+ },
487
+ {
488
+ "_prepare_inputs_in_ms": 4.242138650268316,
489
+ "compute_loss_in_ms": 285.5602181442082,
490
+ "epoch": 18.19,
491
+ "learning_rate/full": 0.00035452076268085417,
492
+ "loss": 3.0397,
493
+ "step": 44000,
494
+ "training_step_in_ms": 1087.6106830611825
495
+ },
496
+ {
497
+ "_prepare_inputs_in_ms": 4.231096193194389,
498
+ "compute_loss_in_ms": 285.38128500804305,
499
+ "epoch": 18.6,
500
+ "learning_rate/full": 0.0003525072209606466,
501
+ "loss": 3.0366,
502
+ "step": 45000,
503
+ "training_step_in_ms": 1090.0634618513286
504
+ },
505
+ {
506
+ "epoch": 18.6,
507
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.0333669185638428,
508
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.262616571295984,
509
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 108.2623,
510
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.389,
511
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.231,
512
+ "step": 45000
513
+ },
514
+ {
515
+ "_prepare_inputs_in_ms": 4.224474132061005,
516
+ "compute_loss_in_ms": 285.69229750707746,
517
+ "epoch": 19.02,
518
+ "learning_rate/full": 0.00035045605036568154,
519
+ "loss": 3.0403,
520
+ "step": 46000,
521
+ "training_step_in_ms": 1087.4972796961665
522
+ },
523
+ {
524
+ "_prepare_inputs_in_ms": 4.218343399465084,
525
+ "compute_loss_in_ms": 285.2950618080795,
526
+ "epoch": 19.43,
527
+ "learning_rate/full": 0.0003483677569916109,
528
+ "loss": 3.0296,
529
+ "step": 47000,
530
+ "training_step_in_ms": 1088.6641021184623
531
+ },
532
+ {
533
+ "_prepare_inputs_in_ms": 4.212014690041542,
534
+ "compute_loss_in_ms": 285.24483662098646,
535
+ "epoch": 19.84,
536
+ "learning_rate/full": 0.0003462450012513184,
537
+ "loss": 3.0351,
538
+ "step": 48000,
539
+ "training_step_in_ms": 1086.902916610241
540
+ },
541
+ {
542
+ "_prepare_inputs_in_ms": 4.228286672383547,
543
+ "compute_loss_in_ms": 285.4265847504139,
544
+ "epoch": 20.26,
545
+ "learning_rate/full": 0.0003440818719590809,
546
+ "loss": 3.0301,
547
+ "step": 49000,
548
+ "training_step_in_ms": 1089.4173335321248
549
+ },
550
+ {
551
+ "_prepare_inputs_in_ms": 4.209285493940115,
552
+ "compute_loss_in_ms": 285.17769135162234,
553
+ "epoch": 20.67,
554
+ "learning_rate/full": 0.0003418853377786221,
555
+ "loss": 3.0266,
556
+ "step": 50000,
557
+ "training_step_in_ms": 1092.610530115664
558
+ },
559
+ {
560
+ "epoch": 20.67,
561
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.026047468185425,
562
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.26601445767420673,
563
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 111.3497,
564
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.185,
565
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.225,
566
+ "step": 50000
567
+ },
568
+ {
569
+ "_prepare_inputs_in_ms": 4.215818756237263,
570
+ "compute_loss_in_ms": 285.3216738887131,
571
+ "epoch": 21.08,
572
+ "learning_rate/full": 0.00033965379551414244,
573
+ "loss": 3.0364,
574
+ "step": 51000,
575
+ "training_step_in_ms": 1090.6509163863957
576
+ },
577
+ {
578
+ "_prepare_inputs_in_ms": 4.2158047296106815,
579
+ "compute_loss_in_ms": 285.3607781082392,
580
+ "epoch": 21.5,
581
+ "learning_rate/full": 0.00033738779576530426,
582
+ "loss": 3.0221,
583
+ "step": 52000,
584
+ "training_step_in_ms": 1089.9412010349333
585
+ },
586
+ {
587
+ "_prepare_inputs_in_ms": 4.225385930389166,
588
+ "compute_loss_in_ms": 285.4064598791301,
589
+ "epoch": 21.91,
590
+ "learning_rate/full": 0.0003350878976336386,
591
+ "loss": 3.0233,
592
+ "step": 53000,
593
+ "training_step_in_ms": 1086.4266870431602
594
+ },
595
+ {
596
+ "_prepare_inputs_in_ms": 4.2348253689706326,
597
+ "compute_loss_in_ms": 285.5650148577988,
598
+ "epoch": 22.32,
599
+ "learning_rate/full": 0.0003327546685845955,
600
+ "loss": 3.0177,
601
+ "step": 54000,
602
+ "training_step_in_ms": 1090.5466065071523
603
+ },
604
+ {
605
+ "_prepare_inputs_in_ms": 4.244904510676861,
606
+ "compute_loss_in_ms": 285.4943734779954,
607
+ "epoch": 22.74,
608
+ "learning_rate/full": 0.00033038868430752995,
609
+ "loss": 3.0227,
610
+ "step": 55000,
611
+ "training_step_in_ms": 1089.5386388339102
612
+ },
613
+ {
614
+ "epoch": 22.74,
615
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.0213677883148193,
616
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.26657402454724916,
617
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 109.863,
618
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.282,
619
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.228,
620
+ "step": 55000
621
+ },
622
+ {
623
+ "_prepare_inputs_in_ms": 4.222077999900027,
624
+ "compute_loss_in_ms": 285.3860865868628,
625
+ "epoch": 23.15,
626
+ "learning_rate/full": 0.00032798811209649607,
627
+ "loss": 3.0201,
628
+ "step": 56000,
629
+ "training_step_in_ms": 1089.8713997229934
630
+ },
631
+ {
632
+ "_prepare_inputs_in_ms": 4.218684710562229,
633
+ "compute_loss_in_ms": 285.196179587394,
634
+ "epoch": 23.56,
635
+ "learning_rate/full": 0.0003255583453025672,
636
+ "loss": 3.0133,
637
+ "step": 57000,
638
+ "training_step_in_ms": 1088.3847643770278
639
+ },
640
+ {
641
+ "_prepare_inputs_in_ms": 4.225137319415808,
642
+ "compute_loss_in_ms": 285.31357542052865,
643
+ "epoch": 23.98,
644
+ "learning_rate/full": 0.0003231000773635045,
645
+ "loss": 3.0174,
646
+ "step": 58000,
647
+ "training_step_in_ms": 1086.5370167195797
648
+ },
649
+ {
650
+ "_prepare_inputs_in_ms": 4.230918549001217,
651
+ "compute_loss_in_ms": 285.4190446138382,
652
+ "epoch": 24.39,
653
+ "learning_rate/full": 0.0003206140056326384,
654
+ "loss": 3.0116,
655
+ "step": 59000,
656
+ "training_step_in_ms": 1090.3938182927668
657
+ },
658
+ {
659
+ "_prepare_inputs_in_ms": 4.227691676467657,
660
+ "compute_loss_in_ms": 285.3117839321494,
661
+ "epoch": 24.8,
662
+ "learning_rate/full": 0.000318090679282307,
663
+ "loss": 3.0123,
664
+ "step": 60000,
665
+ "training_step_in_ms": 1090.3038867227733
666
+ },
667
+ {
668
+ "epoch": 24.8,
669
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.0163190364837646,
670
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.2694944095513101,
671
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 109.5302,
672
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.304,
673
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.228,
674
+ "step": 60000
675
+ },
676
+ {
677
+ "_prepare_inputs_in_ms": 4.2251157578898635,
678
+ "compute_loss_in_ms": 285.44914393499494,
679
+ "epoch": 25.22,
680
+ "learning_rate/full": 0.0003155381574633497,
681
+ "loss": 3.0074,
682
+ "step": 61000,
683
+ "training_step_in_ms": 1087.7947441898286
684
+ },
685
+ {
686
+ "_prepare_inputs_in_ms": 4.233858399093151,
687
+ "compute_loss_in_ms": 285.5572083890438,
688
+ "epoch": 25.63,
689
+ "learning_rate/full": 0.0003129570712337902,
690
+ "loss": 3.0038,
691
+ "step": 62000,
692
+ "training_step_in_ms": 1091.406288355589
693
+ },
694
+ {
695
+ "_prepare_inputs_in_ms": 4.241201400756836,
696
+ "compute_loss_in_ms": 285.4022887274623,
697
+ "epoch": 26.04,
698
+ "learning_rate/full": 0.00031035068146119334,
699
+ "loss": 3.0069,
700
+ "step": 63000,
701
+ "training_step_in_ms": 1089.0374966450036
702
+ },
703
+ {
704
+ "_prepare_inputs_in_ms": 4.214517045766115,
705
+ "compute_loss_in_ms": 285.32751731202006,
706
+ "epoch": 26.46,
707
+ "learning_rate/full": 0.0003077170643091587,
708
+ "loss": 3.0004,
709
+ "step": 64000,
710
+ "training_step_in_ms": 1089.311513543129
711
+ },
712
+ {
713
+ "_prepare_inputs_in_ms": 4.223439604043961,
714
+ "compute_loss_in_ms": 285.6179902665317,
715
+ "epoch": 26.87,
716
+ "learning_rate/full": 0.00030505419362911944,
717
+ "loss": 3.0048,
718
+ "step": 65000,
719
+ "training_step_in_ms": 1088.4543421529233
720
+ },
721
+ {
722
+ "epoch": 26.87,
723
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.012563705444336,
724
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.26603180141607496,
725
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 108.7667,
726
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.355,
727
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.23,
728
+ "step": 65000
729
+ },
730
+ {
731
+ "_prepare_inputs_in_ms": 4.235190596522354,
732
+ "compute_loss_in_ms": 285.59519398212433,
733
+ "epoch": 27.28,
734
+ "learning_rate/full": 0.0003023680520765336,
735
+ "loss": 2.9934,
736
+ "step": 66000,
737
+ "training_step_in_ms": 1088.0777766555548
738
+ },
739
+ {
740
+ "_prepare_inputs_in_ms": 4.217139046639204,
741
+ "compute_loss_in_ms": 285.50919711589813,
742
+ "epoch": 27.7,
743
+ "learning_rate/full": 0.0002996566527388639,
744
+ "loss": 2.9982,
745
+ "step": 67000,
746
+ "training_step_in_ms": 1091.6493426598608
747
+ },
748
+ {
749
+ "_prepare_inputs_in_ms": 4.244372218847275,
750
+ "compute_loss_in_ms": 285.5752951391041,
751
+ "epoch": 28.11,
752
+ "learning_rate/full": 0.0002969206646133254,
753
+ "loss": 2.9969,
754
+ "step": 68000,
755
+ "training_step_in_ms": 1088.2136982679367
756
+ },
757
+ {
758
+ "_prepare_inputs_in_ms": 4.213636931031942,
759
+ "compute_loss_in_ms": 285.255677562207,
760
+ "epoch": 28.52,
761
+ "learning_rate/full": 0.0002941607627640486,
762
+ "loss": 2.9923,
763
+ "step": 69000,
764
+ "training_step_in_ms": 1088.9643149748445
765
+ },
766
+ {
767
+ "_prepare_inputs_in_ms": 4.2318920604884624,
768
+ "compute_loss_in_ms": 285.6222639977932,
769
+ "epoch": 28.94,
770
+ "learning_rate/full": 0.0002913748308243434,
771
+ "loss": 2.9912,
772
+ "step": 70000,
773
+ "training_step_in_ms": 1086.640508864075
774
+ },
775
+ {
776
+ "epoch": 28.94,
777
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.01218318939209,
778
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.2704365100152127,
779
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 109.8069,
780
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.286,
781
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.228,
782
+ "step": 70000
783
+ },
784
+ {
785
+ "_prepare_inputs_in_ms": 4.22964243627176,
786
+ "compute_loss_in_ms": 285.81058219075203,
787
+ "epoch": 29.35,
788
+ "learning_rate/full": 0.00028856630835486283,
789
+ "loss": 2.9907,
790
+ "step": 71000,
791
+ "training_step_in_ms": 1089.0001546032727
792
+ },
793
+ {
794
+ "_prepare_inputs_in_ms": 4.219989389181137,
795
+ "compute_loss_in_ms": 285.4850408025086,
796
+ "epoch": 29.76,
797
+ "learning_rate/full": 0.00028574157192993993,
798
+ "loss": 2.9922,
799
+ "step": 72000,
800
+ "training_step_in_ms": 1112.2257943935692
801
+ },
802
+ {
803
+ "_prepare_inputs_in_ms": 4.236269619315863,
804
+ "compute_loss_in_ms": 285.3517268039286,
805
+ "epoch": 30.18,
806
+ "learning_rate/full": 0.0002828899985518552,
807
+ "loss": 2.9829,
808
+ "step": 73000,
809
+ "training_step_in_ms": 1115.709298092872
810
+ },
811
+ {
812
+ "_prepare_inputs_in_ms": 4.212801028043032,
813
+ "compute_loss_in_ms": 285.1435379870236,
814
+ "epoch": 30.59,
815
+ "learning_rate/full": 0.0002800179323426103,
816
+ "loss": 2.9854,
817
+ "step": 74000,
818
+ "training_step_in_ms": 1112.750349264592
819
+ },
820
+ {
821
+ "_prepare_inputs_in_ms": 4.226626381278038,
822
+ "compute_loss_in_ms": 285.37043143063784,
823
+ "epoch": 31.0,
824
+ "learning_rate/full": 0.0002771289848538608,
825
+ "loss": 2.9928,
826
+ "step": 75000,
827
+ "training_step_in_ms": 1113.63447811082
828
+ },
829
+ {
830
+ "epoch": 31.0,
831
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.00150203704834,
832
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.27227553064507803,
833
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 110.2006,
834
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.259,
835
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.227,
836
+ "step": 75000
837
+ },
838
+ {
839
+ "_prepare_inputs_in_ms": 4.221666444365571,
840
+ "compute_loss_in_ms": 285.4123991020024,
841
+ "epoch": 31.42,
842
+ "learning_rate/full": 0.00027422392710754273,
843
+ "loss": 2.9787,
844
+ "step": 76000,
845
+ "training_step_in_ms": 1110.9835148528218
846
+ },
847
+ {
848
+ "_prepare_inputs_in_ms": 4.2181270979344845,
849
+ "compute_loss_in_ms": 285.3203030079603,
850
+ "epoch": 31.83,
851
+ "learning_rate/full": 0.0002712947161076778,
852
+ "loss": 2.9822,
853
+ "step": 77000,
854
+ "training_step_in_ms": 1113.9973731786013
855
+ },
856
+ {
857
+ "_prepare_inputs_in_ms": 4.2350912764668465,
858
+ "compute_loss_in_ms": 285.4480539858341,
859
+ "epoch": 32.24,
860
+ "learning_rate/full": 0.00026835083436875734,
861
+ "loss": 2.9765,
862
+ "step": 78000,
863
+ "training_step_in_ms": 1115.4474330842495
864
+ },
865
+ {
866
+ "_prepare_inputs_in_ms": 4.229009635746479,
867
+ "compute_loss_in_ms": 285.5191092900932,
868
+ "epoch": 32.66,
869
+ "learning_rate/full": 0.0002653871161688328,
870
+ "loss": 2.9801,
871
+ "step": 79000,
872
+ "training_step_in_ms": 1113.7964499779046
873
+ },
874
+ {
875
+ "_prepare_inputs_in_ms": 4.2362766563892365,
876
+ "compute_loss_in_ms": 285.7597692273557,
877
+ "epoch": 33.07,
878
+ "learning_rate/full": 0.00026241022007566643,
879
+ "loss": 2.9807,
880
+ "step": 80000,
881
+ "training_step_in_ms": 1115.4754909984767
882
+ },
883
+ {
884
+ "epoch": 33.07,
885
+ "eval_visual_genome-densecap-local-densecap-test_loss": 3.000786781311035,
886
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.2716794971860456,
887
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 108.7776,
888
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.354,
889
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.23,
890
+ "step": 80000
891
+ },
892
+ {
893
+ "_prepare_inputs_in_ms": 4.232099074416045,
894
+ "compute_loss_in_ms": 285.50172889232635,
895
+ "epoch": 33.48,
896
+ "learning_rate/full": 0.0002594179251945605,
897
+ "loss": 2.9739,
898
+ "step": 81000,
899
+ "training_step_in_ms": 1110.9056022837758
900
+ },
901
+ {
902
+ "_prepare_inputs_in_ms": 4.237273696810007,
903
+ "compute_loss_in_ms": 285.7116014882922,
904
+ "epoch": 33.9,
905
+ "learning_rate/full": 0.00025641096982950234,
906
+ "loss": 2.9746,
907
+ "step": 82000,
908
+ "training_step_in_ms": 1110.9737426675856
909
+ },
910
+ {
911
+ "_prepare_inputs_in_ms": 4.237969063222408,
912
+ "compute_loss_in_ms": 285.6498990356922,
913
+ "epoch": 34.31,
914
+ "learning_rate/full": 0.00025339009590173424,
915
+ "loss": 2.9727,
916
+ "step": 83000,
917
+ "training_step_in_ms": 1117.3185790739954
918
+ },
919
+ {
920
+ "_prepare_inputs_in_ms": 4.234774090349674,
921
+ "compute_loss_in_ms": 285.5246250964701,
922
+ "epoch": 34.73,
923
+ "learning_rate/full": 0.00025035604876669546,
924
+ "loss": 2.9709,
925
+ "step": 84000,
926
+ "training_step_in_ms": 1111.8130441047251
927
+ },
928
+ {
929
+ "_prepare_inputs_in_ms": 4.248618151992559,
930
+ "compute_loss_in_ms": 285.6561874523759,
931
+ "epoch": 35.14,
932
+ "learning_rate/full": 0.00024731263251348453,
933
+ "loss": 2.969,
934
+ "step": 85000,
935
+ "training_step_in_ms": 1112.8755748830736
936
+ },
937
+ {
938
+ "epoch": 35.14,
939
+ "eval_visual_genome-densecap-local-densecap-test_loss": 2.9980032444000244,
940
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.2741870945987276,
941
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 110.6613,
942
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.229,
943
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.226,
944
+ "step": 85000
945
+ },
946
+ {
947
+ "_prepare_inputs_in_ms": 4.240446417796902,
948
+ "compute_loss_in_ms": 285.5394543148577,
949
+ "epoch": 35.55,
950
+ "learning_rate/full": 0.00024425143236331536,
951
+ "loss": 2.9639,
952
+ "step": 86000,
953
+ "training_step_in_ms": 1110.7865899279714
954
+ },
955
+ {
956
+ "_prepare_inputs_in_ms": 4.2231163419783115,
957
+ "compute_loss_in_ms": 285.532758615911,
958
+ "epoch": 35.97,
959
+ "learning_rate/full": 0.000241179291965253,
960
+ "loss": 2.971,
961
+ "step": 87000,
962
+ "training_step_in_ms": 1113.825252827257
963
+ },
964
+ {
965
+ "_prepare_inputs_in_ms": 4.229363452643156,
966
+ "compute_loss_in_ms": 285.72211230918765,
967
+ "epoch": 36.38,
968
+ "learning_rate/full": 0.0002381000579951894,
969
+ "loss": 2.9636,
970
+ "step": 88000,
971
+ "training_step_in_ms": 1118.3622099086642
972
+ },
973
+ {
974
+ "_prepare_inputs_in_ms": 4.2257860116660595,
975
+ "compute_loss_in_ms": 285.5116978622973,
976
+ "epoch": 36.79,
977
+ "learning_rate/full": 0.00023501142340591894,
978
+ "loss": 2.9656,
979
+ "step": 89000,
980
+ "training_step_in_ms": 1111.638593826443
981
+ },
982
+ {
983
+ "_prepare_inputs_in_ms": 4.221606273204088,
984
+ "compute_loss_in_ms": 285.61226362735033,
985
+ "epoch": 37.21,
986
+ "learning_rate/full": 0.00023191415027181022,
987
+ "loss": 2.9615,
988
+ "step": 90000,
989
+ "training_step_in_ms": 1116.2303377054632
990
+ },
991
+ {
992
+ "epoch": 37.21,
993
+ "eval_visual_genome-densecap-local-densecap-test_loss": 2.996258020401001,
994
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.27303322222107285,
995
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 108.8741,
996
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.348,
997
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.23,
998
+ "step": 90000
999
+ },
1000
+ {
1001
+ "_prepare_inputs_in_ms": 4.207164986831386,
1002
+ "compute_loss_in_ms": 285.1755935549736,
1003
+ "epoch": 37.62,
1004
+ "learning_rate/full": 0.00022881211473645583,
1005
+ "loss": 2.963,
1006
+ "step": 91000,
1007
+ "training_step_in_ms": 1110.297369044274
1008
+ },
1009
+ {
1010
+ "_prepare_inputs_in_ms": 4.222084645181894,
1011
+ "compute_loss_in_ms": 285.53527039662004,
1012
+ "epoch": 38.03,
1013
+ "learning_rate/full": 0.00022570298446764845,
1014
+ "loss": 2.9633,
1015
+ "step": 92000,
1016
+ "training_step_in_ms": 1112.9915070161223
1017
+ },
1018
+ {
1019
+ "_prepare_inputs_in_ms": 4.232885275036097,
1020
+ "compute_loss_in_ms": 285.5158912166953,
1021
+ "epoch": 38.45,
1022
+ "learning_rate/full": 0.00022258127581536945,
1023
+ "loss": 2.9538,
1024
+ "step": 93000,
1025
+ "training_step_in_ms": 1114.245859079063
1026
+ },
1027
+ {
1028
+ "_prepare_inputs_in_ms": 4.250343676656485,
1029
+ "compute_loss_in_ms": 285.64605471119285,
1030
+ "epoch": 38.86,
1031
+ "learning_rate/full": 0.00021945398441148287,
1032
+ "loss": 2.9572,
1033
+ "step": 94000,
1034
+ "training_step_in_ms": 1112.7353053241968
1035
+ },
1036
+ {
1037
+ "_prepare_inputs_in_ms": 4.230448927730322,
1038
+ "compute_loss_in_ms": 285.5413333699107,
1039
+ "epoch": 39.27,
1040
+ "learning_rate/full": 0.00021632501765960936,
1041
+ "loss": 2.958,
1042
+ "step": 95000,
1043
+ "training_step_in_ms": 1112.5333589836955
1044
+ },
1045
+ {
1046
+ "epoch": 39.27,
1047
+ "eval_visual_genome-densecap-local-densecap-test_loss": 2.993772506713867,
1048
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.27348855682421375,
1049
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 108.9695,
1050
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.342,
1051
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.229,
1052
+ "step": 95000
1053
+ },
1054
+ {
1055
+ "_prepare_inputs_in_ms": 4.215012745159428,
1056
+ "compute_loss_in_ms": 285.35930648073554,
1057
+ "epoch": 39.69,
1058
+ "learning_rate/full": 0.0002131920229539048,
1059
+ "loss": 2.9558,
1060
+ "step": 96000,
1061
+ "training_step_in_ms": 1111.498819194734
1062
+ },
1063
+ {
1064
+ "_prepare_inputs_in_ms": 4.221161104738712,
1065
+ "compute_loss_in_ms": 285.453462138772,
1066
+ "epoch": 40.1,
1067
+ "learning_rate/full": 0.00021005263255270636,
1068
+ "loss": 2.9559,
1069
+ "step": 97000,
1070
+ "training_step_in_ms": 1114.1434171833098
1071
+ },
1072
+ {
1073
+ "_prepare_inputs_in_ms": 4.220512144267559,
1074
+ "compute_loss_in_ms": 285.53688745573163,
1075
+ "epoch": 40.51,
1076
+ "learning_rate/full": 0.0002069107568468244,
1077
+ "loss": 2.9525,
1078
+ "step": 98000,
1079
+ "training_step_in_ms": 1116.582923579961
1080
+ },
1081
+ {
1082
+ "_prepare_inputs_in_ms": 4.22445010766387,
1083
+ "compute_loss_in_ms": 285.29584189876914,
1084
+ "epoch": 40.93,
1085
+ "learning_rate/full": 0.00020377031677881017,
1086
+ "loss": 2.9509,
1087
+ "step": 99000,
1088
+ "training_step_in_ms": 1112.9648886173964
1089
+ },
1090
+ {
1091
+ "_prepare_inputs_in_ms": 4.237125843763351,
1092
+ "compute_loss_in_ms": 285.87847367301583,
1093
+ "epoch": 41.34,
1094
+ "learning_rate/full": 0.00020062580171962844,
1095
+ "loss": 2.9397,
1096
+ "step": 100000,
1097
+ "training_step_in_ms": 1119.0427548959851
1098
+ },
1099
+ {
1100
+ "epoch": 41.34,
1101
+ "eval_visual_genome-densecap-local-densecap-test_loss": 2.9917938709259033,
1102
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.27402243679815436,
1103
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 108.6022,
1104
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.366,
1105
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.23,
1106
+ "step": 100000
1107
+ },
1108
+ {
1109
+ "_prepare_inputs_in_ms": 4.220401306704777,
1110
+ "compute_loss_in_ms": 285.4624089188874,
1111
+ "epoch": 41.75,
1112
+ "learning_rate/full": 0.00019748427643225179,
1113
+ "loss": 2.9497,
1114
+ "step": 101000,
1115
+ "training_step_in_ms": 1113.234252423048
1116
+ },
1117
+ {
1118
+ "_prepare_inputs_in_ms": 4.218052037060261,
1119
+ "compute_loss_in_ms": 285.50472677126527,
1120
+ "epoch": 42.17,
1121
+ "learning_rate/full": 0.0001943402283833764,
1122
+ "loss": 2.9442,
1123
+ "step": 102000,
1124
+ "training_step_in_ms": 1114.7688954658806
1125
+ },
1126
+ {
1127
+ "_prepare_inputs_in_ms": 4.22609718888998,
1128
+ "compute_loss_in_ms": 285.6670557744801,
1129
+ "epoch": 42.58,
1130
+ "learning_rate/full": 0.0001911975795955237,
1131
+ "loss": 2.938,
1132
+ "step": 103000,
1133
+ "training_step_in_ms": 1114.2966277077794
1134
+ },
1135
+ {
1136
+ "_prepare_inputs_in_ms": 4.231020983308554,
1137
+ "compute_loss_in_ms": 285.41950649395585,
1138
+ "epoch": 42.99,
1139
+ "learning_rate/full": 0.00018806024615043859,
1140
+ "loss": 2.9429,
1141
+ "step": 104000,
1142
+ "training_step_in_ms": 1112.3123243488371
1143
+ },
1144
+ {
1145
+ "_prepare_inputs_in_ms": 4.231835335493088,
1146
+ "compute_loss_in_ms": 285.55181711539626,
1147
+ "epoch": 43.41,
1148
+ "learning_rate/full": 0.0001849258586609575,
1149
+ "loss": 2.9355,
1150
+ "step": 105000,
1151
+ "training_step_in_ms": 1116.4177654609084
1152
+ },
1153
+ {
1154
+ "epoch": 43.41,
1155
+ "eval_visual_genome-densecap-local-densecap-test_loss": 2.9879465103149414,
1156
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.275499690988243,
1157
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 109.1682,
1158
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.328,
1159
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.229,
1160
+ "step": 105000
1161
+ },
1162
+ {
1163
+ "_prepare_inputs_in_ms": 4.192932469815743,
1164
+ "compute_loss_in_ms": 285.3939059227705,
1165
+ "epoch": 43.82,
1166
+ "learning_rate/full": 0.0001817951904902926,
1167
+ "loss": 2.9411,
1168
+ "step": 106000,
1169
+ "training_step_in_ms": 1111.0442412495613
1170
+ },
1171
+ {
1172
+ "_prepare_inputs_in_ms": 4.18786546587944,
1173
+ "compute_loss_in_ms": 285.60110822692513,
1174
+ "epoch": 44.23,
1175
+ "learning_rate/full": 0.00017866588728649688,
1176
+ "loss": 2.9389,
1177
+ "step": 107000,
1178
+ "training_step_in_ms": 1114.2360820770264
1179
+ },
1180
+ {
1181
+ "_prepare_inputs_in_ms": 4.191282417625189,
1182
+ "compute_loss_in_ms": 285.483426745981,
1183
+ "epoch": 44.65,
1184
+ "learning_rate/full": 0.00017554497963615946,
1185
+ "loss": 2.9396,
1186
+ "step": 108000,
1187
+ "training_step_in_ms": 1113.102070134133
1188
+ },
1189
+ {
1190
+ "_prepare_inputs_in_ms": 4.215992953628302,
1191
+ "compute_loss_in_ms": 285.87069864198565,
1192
+ "epoch": 45.06,
1193
+ "learning_rate/full": 0.00017243010589616854,
1194
+ "loss": 2.9398,
1195
+ "step": 109000,
1196
+ "training_step_in_ms": 1115.9531138837337
1197
+ },
1198
+ {
1199
+ "_prepare_inputs_in_ms": 4.180787291377783,
1200
+ "compute_loss_in_ms": 285.6199772916734,
1201
+ "epoch": 45.47,
1202
+ "learning_rate/full": 0.00016932203461501055,
1203
+ "loss": 2.9354,
1204
+ "step": 110000,
1205
+ "training_step_in_ms": 1112.3631411641836
1206
+ },
1207
+ {
1208
+ "epoch": 45.47,
1209
+ "eval_visual_genome-densecap-local-densecap-test_loss": 2.9866650104522705,
1210
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.27461185232552654,
1211
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 108.9151,
1212
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.345,
1213
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.23,
1214
+ "step": 110000
1215
+ },
1216
+ {
1217
+ "_prepare_inputs_in_ms": 4.1715224159926905,
1218
+ "compute_loss_in_ms": 285.4828831627965,
1219
+ "epoch": 45.89,
1220
+ "learning_rate/full": 0.00016622153266276704,
1221
+ "loss": 2.9325,
1222
+ "step": 111000,
1223
+ "training_step_in_ms": 1110.1254166848958
1224
+ },
1225
+ {
1226
+ "_prepare_inputs_in_ms": 4.183446723967791,
1227
+ "compute_loss_in_ms": 285.5392692387104,
1228
+ "epoch": 46.3,
1229
+ "learning_rate/full": 0.00016312936504190095,
1230
+ "loss": 2.9271,
1231
+ "step": 112000,
1232
+ "training_step_in_ms": 1116.0438286960125
1233
+ },
1234
+ {
1235
+ "_prepare_inputs_in_ms": 4.181461203843355,
1236
+ "compute_loss_in_ms": 285.49605195596814,
1237
+ "epoch": 46.71,
1238
+ "learning_rate/full": 0.00016004321335415234,
1239
+ "loss": 2.9338,
1240
+ "step": 113000,
1241
+ "training_step_in_ms": 1114.0362310223281
1242
+ },
1243
+ {
1244
+ "_prepare_inputs_in_ms": 4.20052033662796,
1245
+ "compute_loss_in_ms": 285.6174496598542,
1246
+ "epoch": 47.13,
1247
+ "learning_rate/full": 0.00015696694015230966,
1248
+ "loss": 2.93,
1249
+ "step": 114000,
1250
+ "training_step_in_ms": 1112.158472020179
1251
+ },
1252
+ {
1253
+ "_prepare_inputs_in_ms": 4.184404268860817,
1254
+ "compute_loss_in_ms": 285.52299703657627,
1255
+ "epoch": 47.54,
1256
+ "learning_rate/full": 0.00015390436604853944,
1257
+ "loss": 2.9265,
1258
+ "step": 115000,
1259
+ "training_step_in_ms": 1114.8844772167504
1260
+ },
1261
+ {
1262
+ "epoch": 47.54,
1263
+ "eval_visual_genome-densecap-local-densecap-test_loss": 2.985903263092041,
1264
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.2781795787221218,
1265
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 109.8815,
1266
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.281,
1267
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.228,
1268
+ "step": 115000
1269
+ },
1270
+ {
1271
+ "_prepare_inputs_in_ms": 4.152440788542352,
1272
+ "compute_loss_in_ms": 285.35162526741624,
1273
+ "epoch": 47.95,
1274
+ "learning_rate/full": 0.00015085316535270307,
1275
+ "loss": 2.9288,
1276
+ "step": 116000,
1277
+ "training_step_in_ms": 1108.712267011404
1278
+ },
1279
+ {
1280
+ "_prepare_inputs_in_ms": 4.172631837427616,
1281
+ "compute_loss_in_ms": 285.6740382388234,
1282
+ "epoch": 48.37,
1283
+ "learning_rate/full": 0.0001478110551124508,
1284
+ "loss": 2.9217,
1285
+ "step": 117000,
1286
+ "training_step_in_ms": 1119.9308814108372
1287
+ },
1288
+ {
1289
+ "_prepare_inputs_in_ms": 4.173140484839678,
1290
+ "compute_loss_in_ms": 285.33917328342795,
1291
+ "epoch": 48.78,
1292
+ "learning_rate/full": 0.0001447878925453241,
1293
+ "loss": 2.9189,
1294
+ "step": 118000,
1295
+ "training_step_in_ms": 1114.4561827853322
1296
+ },
1297
+ {
1298
+ "_prepare_inputs_in_ms": 4.208178836852312,
1299
+ "compute_loss_in_ms": 285.7572955302894,
1300
+ "epoch": 49.19,
1301
+ "learning_rate/full": 0.00014177531694909012,
1302
+ "loss": 2.9234,
1303
+ "step": 119000,
1304
+ "training_step_in_ms": 1117.5116944983602
1305
+ },
1306
+ {
1307
+ "_prepare_inputs_in_ms": 4.171714887022972,
1308
+ "compute_loss_in_ms": 285.51325725764036,
1309
+ "epoch": 49.61,
1310
+ "learning_rate/full": 0.00013877411365635932,
1311
+ "loss": 2.919,
1312
+ "step": 120000,
1313
+ "training_step_in_ms": 1114.4923375099897
1314
+ },
1315
+ {
1316
+ "epoch": 49.61,
1317
+ "eval_visual_genome-densecap-local-densecap-test_loss": 2.984545946121216,
1318
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.27571246372317004,
1319
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 107.5626,
1320
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.438,
1321
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.232,
1322
+ "step": 120000
1323
+ },
1324
+ {
1325
+ "_prepare_inputs_in_ms": 4.169439662520478,
1326
+ "compute_loss_in_ms": 285.2081711217761,
1327
+ "epoch": 50.02,
1328
+ "learning_rate/full": 0.00013579102545242515,
1329
+ "loss": 2.9214,
1330
+ "step": 121000,
1331
+ "training_step_in_ms": 1117.0064120963216
1332
+ },
1333
+ {
1334
+ "_prepare_inputs_in_ms": 4.175419889390469,
1335
+ "compute_loss_in_ms": 285.44106700643897,
1336
+ "epoch": 50.43,
1337
+ "learning_rate/full": 0.00013282377985218108,
1338
+ "loss": 2.9123,
1339
+ "step": 122000,
1340
+ "training_step_in_ms": 1117.1209677942097
1341
+ },
1342
+ {
1343
+ "_prepare_inputs_in_ms": 4.1646773256361485,
1344
+ "compute_loss_in_ms": 285.5908838920295,
1345
+ "epoch": 50.85,
1346
+ "learning_rate/full": 0.0001298731089790791,
1347
+ "loss": 2.9181,
1348
+ "step": 123000,
1349
+ "training_step_in_ms": 1114.7672307156026
1350
+ },
1351
+ {
1352
+ "_prepare_inputs_in_ms": 4.172112949192524,
1353
+ "compute_loss_in_ms": 285.507780585438,
1354
+ "epoch": 51.26,
1355
+ "learning_rate/full": 0.0001269397408670054,
1356
+ "loss": 2.9124,
1357
+ "step": 124000,
1358
+ "training_step_in_ms": 1116.1798403412104
1359
+ },
1360
+ {
1361
+ "_prepare_inputs_in_ms": 4.171217355877161,
1362
+ "compute_loss_in_ms": 285.5308585166931,
1363
+ "epoch": 51.67,
1364
+ "learning_rate/full": 0.0001240214902928718,
1365
+ "loss": 2.9169,
1366
+ "step": 125000,
1367
+ "training_step_in_ms": 1119.0364625044167
1368
+ },
1369
+ {
1370
+ "epoch": 51.67,
1371
+ "eval_visual_genome-densecap-local-densecap-test_loss": 2.9826271533966064,
1372
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.27485379257600506,
1373
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 109.595,
1374
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.3,
1375
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.228,
1376
+ "step": 125000
1377
+ },
1378
+ {
1379
+ "_prepare_inputs_in_ms": 4.1942793857760545,
1380
+ "compute_loss_in_ms": 285.4048260115087,
1381
+ "epoch": 52.09,
1382
+ "learning_rate/full": 0.00012112491367260039,
1383
+ "loss": 2.9117,
1384
+ "step": 126000,
1385
+ "training_step_in_ms": 1113.5866565182805
1386
+ },
1387
+ {
1388
+ "_prepare_inputs_in_ms": 4.165726162493229,
1389
+ "compute_loss_in_ms": 285.52386473864317,
1390
+ "epoch": 52.5,
1391
+ "learning_rate/full": 0.0001182477982996471,
1392
+ "loss": 2.9123,
1393
+ "step": 127000,
1394
+ "training_step_in_ms": 1115.4936682023108
1395
+ },
1396
+ {
1397
+ "_prepare_inputs_in_ms": 4.165291707962751,
1398
+ "compute_loss_in_ms": 285.37697672098875,
1399
+ "epoch": 52.91,
1400
+ "learning_rate/full": 0.00011539085405917883,
1401
+ "loss": 2.9127,
1402
+ "step": 128000,
1403
+ "training_step_in_ms": 1112.6525225900114
1404
+ },
1405
+ {
1406
+ "_prepare_inputs_in_ms": 4.205962881445885,
1407
+ "compute_loss_in_ms": 285.6344051398337,
1408
+ "epoch": 53.33,
1409
+ "learning_rate/full": 0.00011255195764553374,
1410
+ "loss": 2.9072,
1411
+ "step": 129000,
1412
+ "training_step_in_ms": 1114.8041105866432
1413
+ },
1414
+ {
1415
+ "_prepare_inputs_in_ms": 4.192876800894737,
1416
+ "compute_loss_in_ms": 285.6524411961436,
1417
+ "epoch": 53.74,
1418
+ "learning_rate/full": 0.00010973748719012139,
1419
+ "loss": 2.9105,
1420
+ "step": 130000,
1421
+ "training_step_in_ms": 1113.7267719507217
1422
+ },
1423
+ {
1424
+ "epoch": 53.74,
1425
+ "eval_visual_genome-densecap-local-densecap-test_loss": 2.983597993850708,
1426
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.2789962669075427,
1427
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 109.5326,
1428
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.304,
1429
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.228,
1430
+ "step": 130000
1431
+ },
1432
+ {
1433
+ "_prepare_inputs_in_ms": 4.207222261806813,
1434
+ "compute_loss_in_ms": 285.5676299482584,
1435
+ "epoch": 54.15,
1436
+ "learning_rate/full": 0.0001069452876591179,
1437
+ "loss": 2.9063,
1438
+ "step": 131000,
1439
+ "training_step_in_ms": 1114.3601090423763
1440
+ },
1441
+ {
1442
+ "_prepare_inputs_in_ms": 4.189547453075647,
1443
+ "compute_loss_in_ms": 285.45121479034424,
1444
+ "epoch": 54.57,
1445
+ "learning_rate/full": 0.00010417604798597693,
1446
+ "loss": 2.9068,
1447
+ "step": 132000,
1448
+ "training_step_in_ms": 1116.6341638937593
1449
+ },
1450
+ {
1451
+ "_prepare_inputs_in_ms": 4.203598700463772,
1452
+ "compute_loss_in_ms": 285.4171659834683,
1453
+ "epoch": 54.98,
1454
+ "learning_rate/full": 0.00010142771516637335,
1455
+ "loss": 2.8989,
1456
+ "step": 133000,
1457
+ "training_step_in_ms": 1110.624721519649
1458
+ },
1459
+ {
1460
+ "_prepare_inputs_in_ms": 4.217664018273354,
1461
+ "compute_loss_in_ms": 285.5546323284507,
1462
+ "epoch": 55.39,
1463
+ "learning_rate/full": 9.870646386303746e-05,
1464
+ "loss": 2.8974,
1465
+ "step": 134000,
1466
+ "training_step_in_ms": 1115.4996632412076
1467
+ },
1468
+ {
1469
+ "_prepare_inputs_in_ms": 4.18796281516552,
1470
+ "compute_loss_in_ms": 285.3805873543024,
1471
+ "epoch": 55.81,
1472
+ "learning_rate/full": 9.601020522405566e-05,
1473
+ "loss": 2.8997,
1474
+ "step": 135000,
1475
+ "training_step_in_ms": 1114.3139710351825
1476
+ },
1477
+ {
1478
+ "epoch": 55.81,
1479
+ "eval_visual_genome-densecap-local-densecap-test_loss": 2.9829113483428955,
1480
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.2781282773190371,
1481
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 109.4066,
1482
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.312,
1483
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.229,
1484
+ "step": 135000
1485
+ },
1486
+ {
1487
+ "_prepare_inputs_in_ms": 4.179593571802465,
1488
+ "compute_loss_in_ms": 285.6101936176419,
1489
+ "epoch": 56.22,
1490
+ "learning_rate/full": 9.333960451090202e-05,
1491
+ "loss": 2.9042,
1492
+ "step": 136000,
1493
+ "training_step_in_ms": 1112.9348441772163
1494
+ },
1495
+ {
1496
+ "_prepare_inputs_in_ms": 4.178862765431404,
1497
+ "compute_loss_in_ms": 285.4050006046891,
1498
+ "epoch": 56.63,
1499
+ "learning_rate/full": 9.069532065434167e-05,
1500
+ "loss": 2.8997,
1501
+ "step": 137000,
1502
+ "training_step_in_ms": 1110.1743725985289
1503
+ },
1504
+ {
1505
+ "_prepare_inputs_in_ms": 4.17331463098526,
1506
+ "compute_loss_in_ms": 285.60341618955135,
1507
+ "epoch": 57.05,
1508
+ "learning_rate/full": 8.807539988537217e-05,
1509
+ "loss": 2.8999,
1510
+ "step": 138000,
1511
+ "training_step_in_ms": 1112.455148395151
1512
+ },
1513
+ {
1514
+ "_prepare_inputs_in_ms": 4.164013888686895,
1515
+ "compute_loss_in_ms": 285.4794158451259,
1516
+ "epoch": 57.46,
1517
+ "learning_rate/full": 8.54857283641461e-05,
1518
+ "loss": 2.9008,
1519
+ "step": 139000,
1520
+ "training_step_in_ms": 1112.6597697511315
1521
+ },
1522
+ {
1523
+ "_prepare_inputs_in_ms": 4.174750838428736,
1524
+ "compute_loss_in_ms": 285.3338685967028,
1525
+ "epoch": 57.88,
1526
+ "learning_rate/full": 8.292176191253292e-05,
1527
+ "loss": 2.9003,
1528
+ "step": 140000,
1529
+ "training_step_in_ms": 1112.5756445713341
1530
+ },
1531
+ {
1532
+ "epoch": 57.88,
1533
+ "eval_visual_genome-densecap-local-densecap-test_loss": 2.983377456665039,
1534
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.2765083682413393,
1535
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 109.2039,
1536
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.326,
1537
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.229,
1538
+ "step": 140000
1539
+ },
1540
+ {
1541
+ "_prepare_inputs_in_ms": 4.186901926267438,
1542
+ "compute_loss_in_ms": 285.5366085804999,
1543
+ "epoch": 58.29,
1544
+ "learning_rate/full": 8.038926097845864e-05,
1545
+ "loss": 2.89,
1546
+ "step": 141000,
1547
+ "training_step_in_ms": 1111.180388186127
1548
+ },
1549
+ {
1550
+ "_prepare_inputs_in_ms": 4.166560925543308,
1551
+ "compute_loss_in_ms": 285.2483623623848,
1552
+ "epoch": 58.7,
1553
+ "learning_rate/full": 7.788627220446403e-05,
1554
+ "loss": 2.8908,
1555
+ "step": 142000,
1556
+ "training_step_in_ms": 1112.5438826270401
1557
+ },
1558
+ {
1559
+ "_prepare_inputs_in_ms": 4.172076798975468,
1560
+ "compute_loss_in_ms": 285.31228306889534,
1561
+ "epoch": 59.12,
1562
+ "learning_rate/full": 7.541341316557602e-05,
1563
+ "loss": 2.888,
1564
+ "step": 143000,
1565
+ "training_step_in_ms": 1114.1774371489882
1566
+ },
1567
+ {
1568
+ "_prepare_inputs_in_ms": 4.1760097071528435,
1569
+ "compute_loss_in_ms": 285.51259553432465,
1570
+ "epoch": 59.53,
1571
+ "learning_rate/full": 7.29712940027603e-05,
1572
+ "loss": 2.8933,
1573
+ "step": 144000,
1574
+ "training_step_in_ms": 1113.300205629319
1575
+ },
1576
+ {
1577
+ "_prepare_inputs_in_ms": 4.171927604824305,
1578
+ "compute_loss_in_ms": 285.47950995340943,
1579
+ "epoch": 59.94,
1580
+ "learning_rate/full": 7.0560517272378e-05,
1581
+ "loss": 2.8946,
1582
+ "step": 145000,
1583
+ "training_step_in_ms": 1110.925380833447
1584
+ },
1585
+ {
1586
+ "epoch": 59.94,
1587
+ "eval_visual_genome-densecap-local-densecap-test_loss": 2.9790754318237305,
1588
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.27903548274273476,
1589
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 108.6903,
1590
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.36,
1591
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.23,
1592
+ "step": 145000
1593
+ },
1594
+ {
1595
+ "_prepare_inputs_in_ms": 4.179818335829712,
1596
+ "compute_loss_in_ms": 285.67399540916085,
1597
+ "epoch": 60.36,
1598
+ "learning_rate/full": 6.818167779751427e-05,
1599
+ "loss": 2.8868,
1600
+ "step": 146000,
1601
+ "training_step_in_ms": 1113.526238951832
1602
+ },
1603
+ {
1604
+ "_prepare_inputs_in_ms": 4.174669615924358,
1605
+ "compute_loss_in_ms": 285.47526767477393,
1606
+ "epoch": 60.77,
1607
+ "learning_rate/full": 6.58353625212141e-05,
1608
+ "loss": 2.8908,
1609
+ "step": 147000,
1610
+ "training_step_in_ms": 1112.4517313353717
1611
+ },
1612
+ {
1613
+ "_prepare_inputs_in_ms": 4.206293076276779,
1614
+ "compute_loss_in_ms": 285.6568570397794,
1615
+ "epoch": 61.18,
1616
+ "learning_rate/full": 6.351985161010259e-05,
1617
+ "loss": 2.886,
1618
+ "step": 148000,
1619
+ "training_step_in_ms": 1114.374936837703
1620
+ },
1621
+ {
1622
+ "_prepare_inputs_in_ms": 4.173767436295748,
1623
+ "compute_loss_in_ms": 285.36785116791725,
1624
+ "epoch": 61.6,
1625
+ "learning_rate/full": 6.124034730854495e-05,
1626
+ "loss": 2.8877,
1627
+ "step": 149000,
1628
+ "training_step_in_ms": 1113.2941167131066
1629
+ },
1630
+ {
1631
+ "_prepare_inputs_in_ms": 4.186146479099989,
1632
+ "compute_loss_in_ms": 285.7034795098007,
1633
+ "epoch": 62.01,
1634
+ "learning_rate/full": 5.8995079874983696e-05,
1635
+ "loss": 2.887,
1636
+ "step": 150000,
1637
+ "training_step_in_ms": 1114.685032505542
1638
+ },
1639
+ {
1640
+ "epoch": 62.01,
1641
+ "eval_visual_genome-densecap-local-densecap-test_loss": 2.9789364337921143,
1642
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.2814554306931564,
1643
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 110.1484,
1644
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.263,
1645
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.227,
1646
+ "step": 150000
1647
+ },
1648
+ {
1649
+ "_prepare_inputs_in_ms": 4.176326023369301,
1650
+ "compute_loss_in_ms": 285.46767780929804,
1651
+ "epoch": 62.42,
1652
+ "learning_rate/full": 5.678240821954202e-05,
1653
+ "loss": 2.8806,
1654
+ "step": 151000,
1655
+ "training_step_in_ms": 1111.9945207312703
1656
+ },
1657
+ {
1658
+ "_prepare_inputs_in_ms": 4.179010454565287,
1659
+ "compute_loss_in_ms": 285.4651117064059,
1660
+ "epoch": 62.84,
1661
+ "learning_rate/full": 5.460730353825116e-05,
1662
+ "loss": 2.8834,
1663
+ "step": 152000,
1664
+ "training_step_in_ms": 1110.2052029296756
1665
+ },
1666
+ {
1667
+ "_prepare_inputs_in_ms": 4.173945639282465,
1668
+ "compute_loss_in_ms": 285.60662161558867,
1669
+ "epoch": 63.25,
1670
+ "learning_rate/full": 5.246594910646354e-05,
1671
+ "loss": 2.8816,
1672
+ "step": 153000,
1673
+ "training_step_in_ms": 1115.5096570029855
1674
+ },
1675
+ {
1676
+ "_prepare_inputs_in_ms": 4.187856215983629,
1677
+ "compute_loss_in_ms": 285.6514365822077,
1678
+ "epoch": 63.66,
1679
+ "learning_rate/full": 5.0363155892235236e-05,
1680
+ "loss": 2.8866,
1681
+ "step": 154000,
1682
+ "training_step_in_ms": 1113.550076983869
1683
+ },
1684
+ {
1685
+ "_prepare_inputs_in_ms": 4.191848460584879,
1686
+ "compute_loss_in_ms": 285.825974162668,
1687
+ "epoch": 64.08,
1688
+ "learning_rate/full": 4.8297283330226226e-05,
1689
+ "loss": 2.8812,
1690
+ "step": 155000,
1691
+ "training_step_in_ms": 1113.2165458351374
1692
+ },
1693
+ {
1694
+ "epoch": 64.08,
1695
+ "eval_visual_genome-densecap-local-densecap-test_loss": 2.9803640842437744,
1696
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.28091860195000073,
1697
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 110.2234,
1698
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.258,
1699
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.227,
1700
+ "step": 155000
1701
+ },
1702
+ {
1703
+ "_prepare_inputs_in_ms": 4.170489263970677,
1704
+ "compute_loss_in_ms": 285.33177894353867,
1705
+ "epoch": 64.49,
1706
+ "learning_rate/full": 4.626682959161812e-05,
1707
+ "loss": 2.8769,
1708
+ "step": 156000,
1709
+ "training_step_in_ms": 1107.8080112151802
1710
+ },
1711
+ {
1712
+ "_prepare_inputs_in_ms": 4.165396176278591,
1713
+ "compute_loss_in_ms": 285.30143217742443,
1714
+ "epoch": 64.9,
1715
+ "learning_rate/full": 4.427635648454991e-05,
1716
+ "loss": 2.8775,
1717
+ "step": 157000,
1718
+ "training_step_in_ms": 1111.1020593941212
1719
+ },
1720
+ {
1721
+ "_prepare_inputs_in_ms": 4.1787227392196655,
1722
+ "compute_loss_in_ms": 285.6033191792667,
1723
+ "epoch": 65.32,
1724
+ "learning_rate/full": 4.2324305856376166e-05,
1725
+ "loss": 2.8824,
1726
+ "step": 158000,
1727
+ "training_step_in_ms": 1114.8409751541913
1728
+ },
1729
+ {
1730
+ "_prepare_inputs_in_ms": 4.168594349175692,
1731
+ "compute_loss_in_ms": 285.385168325156,
1732
+ "epoch": 65.73,
1733
+ "learning_rate/full": 4.040926393437829e-05,
1734
+ "loss": 2.8742,
1735
+ "step": 159000,
1736
+ "training_step_in_ms": 1112.1875176765025
1737
+ },
1738
+ {
1739
+ "_prepare_inputs_in_ms": 4.188820585608482,
1740
+ "compute_loss_in_ms": 285.74348379299045,
1741
+ "epoch": 66.14,
1742
+ "learning_rate/full": 3.853553323166454e-05,
1743
+ "loss": 2.874,
1744
+ "step": 160000,
1745
+ "training_step_in_ms": 1114.071101732552
1746
+ },
1747
+ {
1748
+ "epoch": 66.14,
1749
+ "eval_visual_genome-densecap-local-densecap-test_loss": 2.980635404586792,
1750
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.2805308037735457,
1751
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 109.2483,
1752
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.323,
1753
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.229,
1754
+ "step": 160000
1755
+ },
1756
+ {
1757
+ "_prepare_inputs_in_ms": 4.17639887550982,
1758
+ "compute_loss_in_ms": 285.54739573970437,
1759
+ "epoch": 66.56,
1760
+ "learning_rate/full": 3.6703457126541777e-05,
1761
+ "loss": 2.8751,
1762
+ "step": 161000,
1763
+ "training_step_in_ms": 1101.9119679294527
1764
+ },
1765
+ {
1766
+ "_prepare_inputs_in_ms": 4.183506786823273,
1767
+ "compute_loss_in_ms": 285.5607514716685,
1768
+ "epoch": 66.97,
1769
+ "learning_rate/full": 3.4908041134979454e-05,
1770
+ "loss": 2.8781,
1771
+ "step": 162000,
1772
+ "training_step_in_ms": 1103.5643678978086
1773
+ },
1774
+ {
1775
+ "_prepare_inputs_in_ms": 4.188889868557453,
1776
+ "compute_loss_in_ms": 285.67521207407117,
1777
+ "epoch": 67.38,
1778
+ "learning_rate/full": 3.315517477040358e-05,
1779
+ "loss": 2.878,
1780
+ "step": 163000,
1781
+ "training_step_in_ms": 1105.4489219635725
1782
+ },
1783
+ {
1784
+ "_prepare_inputs_in_ms": 4.175573732703924,
1785
+ "compute_loss_in_ms": 285.59245705604553,
1786
+ "epoch": 67.8,
1787
+ "learning_rate/full": 3.14417822230312e-05,
1788
+ "loss": 2.8757,
1789
+ "step": 164000,
1790
+ "training_step_in_ms": 1105.2035297378898
1791
+ },
1792
+ {
1793
+ "_prepare_inputs_in_ms": 4.187327720224857,
1794
+ "compute_loss_in_ms": 285.88794915005565,
1795
+ "epoch": 68.21,
1796
+ "learning_rate/full": 2.9771712961539955e-05,
1797
+ "loss": 2.8763,
1798
+ "step": 165000,
1799
+ "training_step_in_ms": 1105.2709091752768
1800
+ },
1801
+ {
1802
+ "epoch": 68.21,
1803
+ "eval_visual_genome-densecap-local-densecap-test_loss": 2.9800891876220703,
1804
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.2802985242098701,
1805
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 110.8323,
1806
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.218,
1807
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.226,
1808
+ "step": 165000
1809
+ },
1810
+ {
1811
+ "_prepare_inputs_in_ms": 4.207263810605538,
1812
+ "compute_loss_in_ms": 285.7474652826786,
1813
+ "epoch": 68.62,
1814
+ "learning_rate/full": 2.8143644982694906e-05,
1815
+ "loss": 2.8761,
1816
+ "step": 166000,
1817
+ "training_step_in_ms": 1100.3973172418773
1818
+ },
1819
+ {
1820
+ "_prepare_inputs_in_ms": 4.210827711969614,
1821
+ "compute_loss_in_ms": 285.5911776944995,
1822
+ "epoch": 69.04,
1823
+ "learning_rate/full": 2.65579799879085e-05,
1824
+ "loss": 2.8751,
1825
+ "step": 167000,
1826
+ "training_step_in_ms": 1104.1183153651655
1827
+ },
1828
+ {
1829
+ "_prepare_inputs_in_ms": 4.198013573884964,
1830
+ "compute_loss_in_ms": 285.68624898046255,
1831
+ "epoch": 69.45,
1832
+ "learning_rate/full": 2.5015109216291467e-05,
1833
+ "loss": 2.8722,
1834
+ "step": 168000,
1835
+ "training_step_in_ms": 1105.6054084450006
1836
+ },
1837
+ {
1838
+ "_prepare_inputs_in_ms": 4.18689937889576,
1839
+ "compute_loss_in_ms": 285.61638662964106,
1840
+ "epoch": 69.86,
1841
+ "learning_rate/full": 2.3515413348120198e-05,
1842
+ "loss": 2.8743,
1843
+ "step": 169000,
1844
+ "training_step_in_ms": 1102.9215082861483
1845
+ },
1846
+ {
1847
+ "_prepare_inputs_in_ms": 4.210809834301472,
1848
+ "compute_loss_in_ms": 285.83876856043935,
1849
+ "epoch": 70.28,
1850
+ "learning_rate/full": 2.20592624109097e-05,
1851
+ "loss": 2.8696,
1852
+ "step": 170000,
1853
+ "training_step_in_ms": 1106.3744595497847
1854
+ },
1855
+ {
1856
+ "epoch": 70.28,
1857
+ "eval_visual_genome-densecap-local-densecap-test_loss": 2.979834794998169,
1858
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.28091535007381413,
1859
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 109.6944,
1860
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.293,
1861
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.228,
1862
+ "step": 170000
1863
+ },
1864
+ {
1865
+ "_prepare_inputs_in_ms": 4.173562210507509,
1866
+ "compute_loss_in_ms": 285.2328538559377,
1867
+ "epoch": 70.69,
1868
+ "learning_rate/full": 2.064562414115867e-05,
1869
+ "loss": 2.8723,
1870
+ "step": 171000,
1871
+ "training_step_in_ms": 1101.5736067220569
1872
+ },
1873
+ {
1874
+ "_prepare_inputs_in_ms": 4.184829708188772,
1875
+ "compute_loss_in_ms": 285.7893420346081,
1876
+ "epoch": 71.1,
1877
+ "learning_rate/full": 1.9277674551421355e-05,
1878
+ "loss": 2.8712,
1879
+ "step": 172000,
1880
+ "training_step_in_ms": 1104.9391337744892
1881
+ },
1882
+ {
1883
+ "_prepare_inputs_in_ms": 4.175479732453823,
1884
+ "compute_loss_in_ms": 285.58204352483153,
1885
+ "epoch": 71.52,
1886
+ "learning_rate/full": 1.7954315491282236e-05,
1887
+ "loss": 2.868,
1888
+ "step": 173000,
1889
+ "training_step_in_ms": 1106.567913543433
1890
+ },
1891
+ {
1892
+ "_prepare_inputs_in_ms": 4.216715902090073,
1893
+ "compute_loss_in_ms": 285.6606830134988,
1894
+ "epoch": 71.93,
1895
+ "learning_rate/full": 1.6674616367900976e-05,
1896
+ "loss": 2.8675,
1897
+ "step": 174000,
1898
+ "training_step_in_ms": 1104.7934159226716
1899
+ },
1900
+ {
1901
+ "_prepare_inputs_in_ms": 4.171092137694359,
1902
+ "compute_loss_in_ms": 285.4122787192464,
1903
+ "epoch": 72.34,
1904
+ "learning_rate/full": 1.5441452273561308e-05,
1905
+ "loss": 2.8671,
1906
+ "step": 175000,
1907
+ "training_step_in_ms": 1106.7299974374473
1908
+ },
1909
+ {
1910
+ "epoch": 72.34,
1911
+ "eval_visual_genome-densecap-local-densecap-test_loss": 2.9793758392333984,
1912
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.281087276669587,
1913
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 110.0629,
1914
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.269,
1915
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.227,
1916
+ "step": 175000
1917
+ },
1918
+ {
1919
+ "_prepare_inputs_in_ms": 4.168345641072204,
1920
+ "compute_loss_in_ms": 285.7807895615697,
1921
+ "epoch": 72.76,
1922
+ "learning_rate/full": 1.4253825239264306e-05,
1923
+ "loss": 2.8714,
1924
+ "step": 176000,
1925
+ "training_step_in_ms": 1101.577396351844
1926
+ },
1927
+ {
1928
+ "_prepare_inputs_in_ms": 4.185015048831701,
1929
+ "compute_loss_in_ms": 285.48355446383357,
1930
+ "epoch": 73.17,
1931
+ "learning_rate/full": 1.3110908410358026e-05,
1932
+ "loss": 2.8674,
1933
+ "step": 177000,
1934
+ "training_step_in_ms": 1106.790641155094
1935
+ },
1936
+ {
1937
+ "_prepare_inputs_in_ms": 4.181742530316114,
1938
+ "compute_loss_in_ms": 285.46897569671273,
1939
+ "epoch": 73.58,
1940
+ "learning_rate/full": 1.2015269571172228e-05,
1941
+ "loss": 2.8685,
1942
+ "step": 178000,
1943
+ "training_step_in_ms": 1105.456206858158
1944
+ },
1945
+ {
1946
+ "_prepare_inputs_in_ms": 4.189217183738947,
1947
+ "compute_loss_in_ms": 285.7022790014744,
1948
+ "epoch": 74.0,
1949
+ "learning_rate/full": 1.0966013151343868e-05,
1950
+ "loss": 2.8703,
1951
+ "step": 179000,
1952
+ "training_step_in_ms": 1103.0243016816676
1953
+ },
1954
+ {
1955
+ "_prepare_inputs_in_ms": 4.1993721053004265,
1956
+ "compute_loss_in_ms": 285.9701578617096,
1957
+ "epoch": 74.41,
1958
+ "learning_rate/full": 9.962417871458617e-06,
1959
+ "loss": 2.8679,
1960
+ "step": 180000,
1961
+ "training_step_in_ms": 1108.1376051008701
1962
+ },
1963
+ {
1964
+ "epoch": 74.41,
1965
+ "eval_visual_genome-densecap-local-densecap-test_loss": 2.978816032409668,
1966
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.28102599122389305,
1967
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 110.271,
1968
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.255,
1969
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.227,
1970
+ "step": 180000
1971
+ },
1972
+ {
1973
+ "_prepare_inputs_in_ms": 4.160367134140759,
1974
+ "compute_loss_in_ms": 285.407042812556,
1975
+ "epoch": 74.82,
1976
+ "learning_rate/full": 9.006738502964407e-06,
1977
+ "loss": 2.8643,
1978
+ "step": 181000,
1979
+ "training_step_in_ms": 1101.3521456047893
1980
+ },
1981
+ {
1982
+ "_prepare_inputs_in_ms": 4.180663630366325,
1983
+ "compute_loss_in_ms": 285.55450112745166,
1984
+ "epoch": 75.24,
1985
+ "learning_rate/full": 8.098183863851083e-06,
1986
+ "loss": 2.8683,
1987
+ "step": 182000,
1988
+ "training_step_in_ms": 1107.5391217172146
1989
+ },
1990
+ {
1991
+ "_prepare_inputs_in_ms": 4.1743567287921906,
1992
+ "compute_loss_in_ms": 285.2670620009303,
1993
+ "epoch": 75.65,
1994
+ "learning_rate/full": 7.236978126380823e-06,
1995
+ "loss": 2.864,
1996
+ "step": 183000,
1997
+ "training_step_in_ms": 1103.5778979249299
1998
+ },
1999
+ {
2000
+ "_prepare_inputs_in_ms": 4.20133513212204,
2001
+ "compute_loss_in_ms": 285.7320618443191,
2002
+ "epoch": 76.06,
2003
+ "learning_rate/full": 6.424124390450504e-06,
2004
+ "loss": 2.8696,
2005
+ "step": 184000,
2006
+ "training_step_in_ms": 1102.3650901168585
2007
+ },
2008
+ {
2009
+ "_prepare_inputs_in_ms": 4.1793825179338455,
2010
+ "compute_loss_in_ms": 285.5250694230199,
2011
+ "epoch": 76.48,
2012
+ "learning_rate/full": 5.657451579824824e-06,
2013
+ "loss": 2.8645,
2014
+ "step": 185000,
2015
+ "training_step_in_ms": 1106.2330449260771
2016
+ },
2017
+ {
2018
+ "epoch": 76.48,
2019
+ "eval_visual_genome-densecap-local-densecap-test_loss": 2.9790234565734863,
2020
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.2804143185850342,
2021
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 111.0093,
2022
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.207,
2023
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.225,
2024
+ "step": 185000
2025
+ },
2026
+ {
2027
+ "_prepare_inputs_in_ms": 4.18695215044952,
2028
+ "compute_loss_in_ms": 285.5290654525161,
2029
+ "epoch": 76.89,
2030
+ "learning_rate/full": 4.939520495279481e-06,
2031
+ "loss": 2.8657,
2032
+ "step": 186000,
2033
+ "training_step_in_ms": 1101.3268077746034
2034
+ },
2035
+ {
2036
+ "_prepare_inputs_in_ms": 4.185709021985531,
2037
+ "compute_loss_in_ms": 285.5161408223212,
2038
+ "epoch": 77.3,
2039
+ "learning_rate/full": 4.269717665299333e-06,
2040
+ "loss": 2.8633,
2041
+ "step": 187000,
2042
+ "training_step_in_ms": 1107.3937772586942
2043
+ },
2044
+ {
2045
+ "_prepare_inputs_in_ms": 4.219432931393385,
2046
+ "compute_loss_in_ms": 285.7696287557483,
2047
+ "epoch": 77.72,
2048
+ "learning_rate/full": 3.6476104696328672e-06,
2049
+ "loss": 2.8611,
2050
+ "step": 188000,
2051
+ "training_step_in_ms": 1103.4366898052394
2052
+ },
2053
+ {
2054
+ "_prepare_inputs_in_ms": 4.222444631159306,
2055
+ "compute_loss_in_ms": 285.7456459365785,
2056
+ "epoch": 78.13,
2057
+ "learning_rate/full": 3.0745965927555298e-06,
2058
+ "loss": 2.8682,
2059
+ "step": 189000,
2060
+ "training_step_in_ms": 1102.7803975529969
2061
+ },
2062
+ {
2063
+ "_prepare_inputs_in_ms": 4.181710965931416,
2064
+ "compute_loss_in_ms": 285.33873960748315,
2065
+ "epoch": 78.54,
2066
+ "learning_rate/full": 2.550171112510902e-06,
2067
+ "loss": 2.8619,
2068
+ "step": 190000,
2069
+ "training_step_in_ms": 1105.0700605846941
2070
+ },
2071
+ {
2072
+ "epoch": 78.54,
2073
+ "eval_visual_genome-densecap-local-densecap-test_loss": 2.979418992996216,
2074
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.28126194557201906,
2075
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 110.0926,
2076
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.267,
2077
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.227,
2078
+ "step": 190000
2079
+ },
2080
+ {
2081
+ "_prepare_inputs_in_ms": 4.1674747299857255,
2082
+ "compute_loss_in_ms": 285.1683004386723,
2083
+ "epoch": 78.96,
2084
+ "learning_rate/full": 2.07446342303903e-06,
2085
+ "loss": 2.8623,
2086
+ "step": 191000,
2087
+ "training_step_in_ms": 1101.7088311165571
2088
+ },
2089
+ {
2090
+ "_prepare_inputs_in_ms": 4.192074902355671,
2091
+ "compute_loss_in_ms": 285.65734274312854,
2092
+ "epoch": 79.37,
2093
+ "learning_rate/full": 1.6475908980941423e-06,
2094
+ "loss": 2.8592,
2095
+ "step": 192000,
2096
+ "training_step_in_ms": 1110.4893043078482
2097
+ },
2098
+ {
2099
+ "_prepare_inputs_in_ms": 4.188501738011837,
2100
+ "compute_loss_in_ms": 285.3913672603667,
2101
+ "epoch": 79.79,
2102
+ "learning_rate/full": 1.2693051031663184e-06,
2103
+ "loss": 2.8693,
2104
+ "step": 193000,
2105
+ "training_step_in_ms": 1105.3064069263637
2106
+ },
2107
+ {
2108
+ "_prepare_inputs_in_ms": 4.1890876069664955,
2109
+ "compute_loss_in_ms": 285.6683066636324,
2110
+ "epoch": 80.2,
2111
+ "learning_rate/full": 9.404559306640304e-07,
2112
+ "loss": 2.8679,
2113
+ "step": 194000,
2114
+ "training_step_in_ms": 1106.7661010883749
2115
+ },
2116
+ {
2117
+ "_prepare_inputs_in_ms": 4.195614516735077,
2118
+ "compute_loss_in_ms": 285.7047406025231,
2119
+ "epoch": 80.61,
2120
+ "learning_rate/full": 6.607217220689466e-07,
2121
+ "loss": 2.8595,
2122
+ "step": 195000,
2123
+ "training_step_in_ms": 1110.2134825922549
2124
+ },
2125
+ {
2126
+ "epoch": 80.61,
2127
+ "eval_visual_genome-densecap-local-densecap-test_loss": 2.9787235260009766,
2128
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.2807572494534342,
2129
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 109.6903,
2130
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.293,
2131
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.228,
2132
+ "step": 195000
2133
+ },
2134
+ {
2135
+ "_prepare_inputs_in_ms": 4.209323071125077,
2136
+ "compute_loss_in_ms": 285.70444655045867,
2137
+ "epoch": 81.03,
2138
+ "learning_rate/full": 4.301714976112869e-07,
2139
+ "loss": 2.8627,
2140
+ "step": 196000,
2141
+ "training_step_in_ms": 1106.642473962158
2142
+ },
2143
+ {
2144
+ "_prepare_inputs_in_ms": 4.216882940381765,
2145
+ "compute_loss_in_ms": 285.90086993202567,
2146
+ "epoch": 81.44,
2147
+ "learning_rate/full": 2.4870533697582963e-07,
2148
+ "loss": 2.861,
2149
+ "step": 197000,
2150
+ "training_step_in_ms": 1110.1682490482926
2151
+ },
2152
+ {
2153
+ "_prepare_inputs_in_ms": 4.208073288202286,
2154
+ "compute_loss_in_ms": 285.9070298522711,
2155
+ "epoch": 81.85,
2156
+ "learning_rate/full": 1.167309390885718e-07,
2157
+ "loss": 2.8634,
2158
+ "step": 198000,
2159
+ "training_step_in_ms": 1105.8664784356952
2160
+ },
2161
+ {
2162
+ "_prepare_inputs_in_ms": 4.220877002924681,
2163
+ "compute_loss_in_ms": 285.8088936395943,
2164
+ "epoch": 82.27,
2165
+ "learning_rate/full": 3.407474692453949e-08,
2166
+ "loss": 2.8649,
2167
+ "step": 199000,
2168
+ "training_step_in_ms": 1108.864688232541
2169
+ },
2170
+ {
2171
+ "_prepare_inputs_in_ms": 4.200665093958378,
2172
+ "compute_loss_in_ms": 285.4954933747649,
2173
+ "epoch": 82.68,
2174
+ "learning_rate/full": 7.485261950046507e-10,
2175
+ "loss": 2.8661,
2176
+ "step": 200000,
2177
+ "training_step_in_ms": 1107.0144655555487
2178
+ },
2179
+ {
2180
+ "epoch": 82.68,
2181
+ "eval_visual_genome-densecap-local-densecap-test_loss": 2.9789507389068604,
2182
+ "eval_visual_genome-densecap-local-densecap-test_meteor": 0.28079051577715114,
2183
+ "eval_visual_genome-densecap-local-densecap-test_runtime": 109.9761,
2184
+ "eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.274,
2185
+ "eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.227,
2186
+ "step": 200000
2187
+ }
2188
+ ],
2189
+ "max_steps": 200000,
2190
+ "num_train_epochs": 83,
2191
+ "total_flos": 4.81380362914756e+23,
2192
+ "trial_name": null,
2193
+ "trial_params": null
2194
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a4981a2c6d5212e3c5f9722334ed6160131dd453f8bc64be7b40cf8fa9ff105
3
+ size 5240
zero_to_fp32.py ADDED
@@ -0,0 +1,587 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
252
+ param_shapes = zero_model_states[0].param_shapes
253
+
254
+ # Reconstruction protocol:
255
+ #
256
+ # XXX: document this
257
+
258
+ if debug:
259
+ for i in range(world_size):
260
+ for j in range(len(fp32_flat_groups[0])):
261
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
262
+
263
+ # XXX: memory usage doubles here (zero2)
264
+ num_param_groups = len(fp32_flat_groups[0])
265
+ merged_single_partition_of_fp32_groups = []
266
+ for i in range(num_param_groups):
267
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
268
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
269
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
270
+ avail_numel = sum(
271
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
272
+
273
+ if debug:
274
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
275
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
276
+ # not asserting if there is a mismatch due to possible padding
277
+ print(f"Have {avail_numel} numels to process.")
278
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
279
+
280
+ # params
281
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
282
+ # out-of-core computing solution
283
+ total_numel = 0
284
+ total_params = 0
285
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
286
+ offset = 0
287
+ avail_numel = full_single_fp32_vector.numel()
288
+ for name, shape in shapes.items():
289
+
290
+ unpartitioned_numel = shape.numel()
291
+ total_numel += unpartitioned_numel
292
+ total_params += 1
293
+
294
+ if debug:
295
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
296
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
297
+ offset += unpartitioned_numel
298
+
299
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
300
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
301
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
302
+ # live optimizer object, so we are checking that the numbers are within the right range
303
+ align_to = 2 * world_size
304
+
305
+ def zero2_align(x):
306
+ return align_to * math.ceil(x / align_to)
307
+
308
+ if debug:
309
+ print(f"original offset={offset}, avail_numel={avail_numel}")
310
+
311
+ offset = zero2_align(offset)
312
+ avail_numel = zero2_align(avail_numel)
313
+
314
+ if debug:
315
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
316
+
317
+ # Sanity check
318
+ if offset != avail_numel:
319
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
320
+
321
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
322
+
323
+
324
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
325
+ state_dict = OrderedDict()
326
+
327
+ # buffers
328
+ buffers = zero_model_states[0].buffers
329
+ state_dict.update(buffers)
330
+ if debug:
331
+ print(f"added {len(buffers)} buffers")
332
+
333
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
334
+
335
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
336
+
337
+ # recover shared parameters
338
+ for pair in zero_model_states[0].shared_params:
339
+ if pair[1] in state_dict:
340
+ state_dict[pair[0]] = state_dict[pair[1]]
341
+
342
+ return state_dict
343
+
344
+
345
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
346
+ remainder = unpartitioned_numel % world_size
347
+ padding_numel = (world_size - remainder) if remainder else 0
348
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
349
+ return partitioned_numel, padding_numel
350
+
351
+
352
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
353
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
354
+ return
355
+
356
+ if debug:
357
+ for i in range(world_size):
358
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
359
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
360
+
361
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
362
+ wanted_params = len(frozen_param_shapes)
363
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
364
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
365
+ print(f'Frozen params: Have {avail_numel} numels to process.')
366
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
367
+
368
+ total_params = 0
369
+ total_numel = 0
370
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
371
+ total_params += 1
372
+ unpartitioned_numel = shape.numel()
373
+ total_numel += unpartitioned_numel
374
+
375
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
376
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
377
+
378
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
379
+
380
+ if debug:
381
+ print(
382
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
383
+ )
384
+
385
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
386
+
387
+
388
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
389
+ param_shapes = zero_model_states[0].param_shapes
390
+ avail_numel = fp32_flat_groups[0].numel() * world_size
391
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
392
+ # param, re-consolidating each param, while dealing with padding if any
393
+
394
+ # merge list of dicts, preserving order
395
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
396
+
397
+ if debug:
398
+ for i in range(world_size):
399
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
400
+
401
+ wanted_params = len(param_shapes)
402
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
403
+ # not asserting if there is a mismatch due to possible padding
404
+ avail_numel = fp32_flat_groups[0].numel() * world_size
405
+ print(f"Trainable params: Have {avail_numel} numels to process.")
406
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
407
+
408
+ # params
409
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
410
+ # out-of-core computing solution
411
+ offset = 0
412
+ total_numel = 0
413
+ total_params = 0
414
+ for name, shape in param_shapes.items():
415
+
416
+ unpartitioned_numel = shape.numel()
417
+ total_numel += unpartitioned_numel
418
+ total_params += 1
419
+
420
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
421
+
422
+ if debug:
423
+ print(
424
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
425
+ )
426
+
427
+ # XXX: memory usage doubles here
428
+ state_dict[name] = torch.cat(
429
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
430
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
431
+ offset += partitioned_numel
432
+
433
+ offset *= world_size
434
+
435
+ # Sanity check
436
+ if offset != avail_numel:
437
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
438
+
439
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
440
+
441
+
442
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
443
+ state_dict = OrderedDict()
444
+
445
+ # buffers
446
+ buffers = zero_model_states[0].buffers
447
+ state_dict.update(buffers)
448
+ if debug:
449
+ print(f"added {len(buffers)} buffers")
450
+
451
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
452
+
453
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
454
+
455
+ # recover shared parameters
456
+ for pair in zero_model_states[0].shared_params:
457
+ if pair[1] in state_dict:
458
+ state_dict[pair[0]] = state_dict[pair[1]]
459
+
460
+ return state_dict
461
+
462
+
463
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
464
+ """
465
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
466
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
467
+ via a model hub.
468
+
469
+ Args:
470
+ - ``checkpoint_dir``: path to the desired checkpoint folder
471
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
472
+
473
+ Returns:
474
+ - pytorch ``state_dict``
475
+
476
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
477
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
478
+ the checkpoint.
479
+
480
+ A typical usage might be ::
481
+
482
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
483
+ # do the training and checkpoint saving
484
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
485
+ model = model.cpu() # move to cpu
486
+ model.load_state_dict(state_dict)
487
+ # submit to model hub or save the model to share with others
488
+
489
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
490
+ application. i.e. you will need to re-initialize the deepspeed engine, since
491
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
492
+
493
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
494
+
495
+ """
496
+ if tag is None:
497
+ latest_path = os.path.join(checkpoint_dir, 'latest')
498
+ if os.path.isfile(latest_path):
499
+ with open(latest_path, 'r') as fd:
500
+ tag = fd.read().strip()
501
+ else:
502
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
503
+
504
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
505
+
506
+ if not os.path.isdir(ds_checkpoint_dir):
507
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
508
+
509
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
510
+
511
+
512
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
513
+ """
514
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
515
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
516
+
517
+ Args:
518
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
519
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
520
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
521
+ """
522
+
523
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
524
+ print(f"Saving fp32 state dict to {output_file}")
525
+ torch.save(state_dict, output_file)
526
+
527
+
528
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
529
+ """
530
+ 1. Put the provided model to cpu
531
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
532
+ 3. Load it into the provided model
533
+
534
+ Args:
535
+ - ``model``: the model object to update
536
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
537
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
538
+
539
+ Returns:
540
+ - ``model`: modified model
541
+
542
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
543
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
544
+ conveniently placed for you in the checkpoint folder.
545
+
546
+ A typical usage might be ::
547
+
548
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
549
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
550
+ # submit to model hub or save the model to share with others
551
+
552
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
553
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
554
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
555
+
556
+ """
557
+ logger.info(f"Extracting fp32 weights")
558
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
559
+
560
+ logger.info(f"Overwriting model with fp32 weights")
561
+ model = model.cpu()
562
+ model.load_state_dict(state_dict, strict=False)
563
+
564
+ return model
565
+
566
+
567
+ if __name__ == "__main__":
568
+
569
+ parser = argparse.ArgumentParser()
570
+ parser.add_argument("checkpoint_dir",
571
+ type=str,
572
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
573
+ parser.add_argument(
574
+ "output_file",
575
+ type=str,
576
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
577
+ parser.add_argument("-t",
578
+ "--tag",
579
+ type=str,
580
+ default=None,
581
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
582
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
583
+ args = parser.parse_args()
584
+
585
+ debug = args.debug
586
+
587
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)