xk-huang
commited on
Commit
·
fa6d075
1
Parent(s):
ddcd863
[add] model
Browse files- config.json +332 -0
- latest +1 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +24 -0
- tokenizer.model +3 -0
- tokenizer_config.json +33 -0
- trainer_state.json +2194 -0
- training_args.bin +3 -0
- zero_to_fp32.py +587 -0
config.json
ADDED
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_commit_hash": null,
|
3 |
+
"_name_or_path": "facebook/sam-vit-huge",
|
4 |
+
"architectures": [
|
5 |
+
"ScaMultitaskV2Model"
|
6 |
+
],
|
7 |
+
"cache_dir": "/mnt/blob/weights/.model.cache/",
|
8 |
+
"initializer_range": 0.02,
|
9 |
+
"mask_caption_decoder_config": {
|
10 |
+
"_name_or_path": "",
|
11 |
+
"add_cross_attention": false,
|
12 |
+
"additional_num_hidden_layers": 12,
|
13 |
+
"architectures": null,
|
14 |
+
"attention_downsample_rate": 2,
|
15 |
+
"bad_words_ids": null,
|
16 |
+
"begin_suppress_tokens": null,
|
17 |
+
"bos_token_id": null,
|
18 |
+
"chunk_size_feed_forward": 0,
|
19 |
+
"cross_attention_hidden_size": null,
|
20 |
+
"decoder_start_token_id": null,
|
21 |
+
"diversity_penalty": 0.0,
|
22 |
+
"do_sample": false,
|
23 |
+
"early_stopping": false,
|
24 |
+
"encoder_no_repeat_ngram_size": 0,
|
25 |
+
"eos_token_id": null,
|
26 |
+
"exponential_decay_length_penalty": null,
|
27 |
+
"finetuning_task": null,
|
28 |
+
"forced_bos_token_id": null,
|
29 |
+
"forced_eos_token_id": null,
|
30 |
+
"hidden_act": "relu",
|
31 |
+
"hidden_size": 256,
|
32 |
+
"id2label": {
|
33 |
+
"0": "LABEL_0",
|
34 |
+
"1": "LABEL_1"
|
35 |
+
},
|
36 |
+
"iou_head_depth": 3,
|
37 |
+
"iou_head_hidden_dim": 256,
|
38 |
+
"is_decoder": false,
|
39 |
+
"is_encoder_decoder": false,
|
40 |
+
"label2id": {
|
41 |
+
"LABEL_0": 0,
|
42 |
+
"LABEL_1": 1
|
43 |
+
},
|
44 |
+
"layer_norm_eps": 1e-06,
|
45 |
+
"length_penalty": 1.0,
|
46 |
+
"max_length": 20,
|
47 |
+
"min_length": 0,
|
48 |
+
"mlp_dim": 2048,
|
49 |
+
"model_type": "",
|
50 |
+
"no_repeat_ngram_size": 0,
|
51 |
+
"num_attention_heads": 8,
|
52 |
+
"num_beam_groups": 1,
|
53 |
+
"num_beams": 1,
|
54 |
+
"num_caption_heads": 1,
|
55 |
+
"num_caption_tokens": 8,
|
56 |
+
"num_hidden_layers": 2,
|
57 |
+
"num_multimask_outputs": 3,
|
58 |
+
"num_return_sequences": 1,
|
59 |
+
"output_attentions": false,
|
60 |
+
"output_hidden_states": false,
|
61 |
+
"output_scores": false,
|
62 |
+
"pad_token_id": null,
|
63 |
+
"prefix": null,
|
64 |
+
"problem_type": null,
|
65 |
+
"pruned_heads": {},
|
66 |
+
"remove_invalid_values": false,
|
67 |
+
"repetition_penalty": 1.0,
|
68 |
+
"return_dict": true,
|
69 |
+
"return_dict_in_generate": false,
|
70 |
+
"sep_token_id": null,
|
71 |
+
"suppress_tokens": null,
|
72 |
+
"task_specific_params": null,
|
73 |
+
"temperature": 1.0,
|
74 |
+
"tf_legacy_loss": false,
|
75 |
+
"tie_encoder_decoder": false,
|
76 |
+
"tie_word_embeddings": true,
|
77 |
+
"tokenizer_class": null,
|
78 |
+
"top_k": 50,
|
79 |
+
"top_p": 1.0,
|
80 |
+
"torch_dtype": null,
|
81 |
+
"torchscript": false,
|
82 |
+
"transformers_version": "4.30.2",
|
83 |
+
"typical_p": 1.0,
|
84 |
+
"use_bfloat16": false
|
85 |
+
},
|
86 |
+
"model_type": "sca",
|
87 |
+
"num_task_tokens": 6,
|
88 |
+
"prompt_encoder_config": {
|
89 |
+
"_name_or_path": "",
|
90 |
+
"add_cross_attention": false,
|
91 |
+
"architectures": null,
|
92 |
+
"bad_words_ids": null,
|
93 |
+
"begin_suppress_tokens": null,
|
94 |
+
"bos_token_id": null,
|
95 |
+
"chunk_size_feed_forward": 0,
|
96 |
+
"cross_attention_hidden_size": null,
|
97 |
+
"decoder_start_token_id": null,
|
98 |
+
"diversity_penalty": 0.0,
|
99 |
+
"do_sample": false,
|
100 |
+
"early_stopping": false,
|
101 |
+
"encoder_no_repeat_ngram_size": 0,
|
102 |
+
"eos_token_id": null,
|
103 |
+
"exponential_decay_length_penalty": null,
|
104 |
+
"finetuning_task": null,
|
105 |
+
"forced_bos_token_id": null,
|
106 |
+
"forced_eos_token_id": null,
|
107 |
+
"hidden_act": "gelu",
|
108 |
+
"hidden_size": 256,
|
109 |
+
"id2label": {
|
110 |
+
"0": "LABEL_0",
|
111 |
+
"1": "LABEL_1"
|
112 |
+
},
|
113 |
+
"image_embedding_size": 64,
|
114 |
+
"image_size": 1024,
|
115 |
+
"is_decoder": false,
|
116 |
+
"is_encoder_decoder": false,
|
117 |
+
"label2id": {
|
118 |
+
"LABEL_0": 0,
|
119 |
+
"LABEL_1": 1
|
120 |
+
},
|
121 |
+
"layer_norm_eps": 1e-06,
|
122 |
+
"length_penalty": 1.0,
|
123 |
+
"mask_input_channels": 16,
|
124 |
+
"max_length": 20,
|
125 |
+
"min_length": 0,
|
126 |
+
"model_type": "",
|
127 |
+
"no_repeat_ngram_size": 0,
|
128 |
+
"num_beam_groups": 1,
|
129 |
+
"num_beams": 1,
|
130 |
+
"num_point_embeddings": 4,
|
131 |
+
"num_return_sequences": 1,
|
132 |
+
"output_attentions": false,
|
133 |
+
"output_hidden_states": false,
|
134 |
+
"output_scores": false,
|
135 |
+
"pad_token_id": null,
|
136 |
+
"patch_size": 16,
|
137 |
+
"prefix": null,
|
138 |
+
"problem_type": null,
|
139 |
+
"pruned_heads": {},
|
140 |
+
"remove_invalid_values": false,
|
141 |
+
"repetition_penalty": 1.0,
|
142 |
+
"return_dict": true,
|
143 |
+
"return_dict_in_generate": false,
|
144 |
+
"sep_token_id": null,
|
145 |
+
"suppress_tokens": null,
|
146 |
+
"task_specific_params": null,
|
147 |
+
"temperature": 1.0,
|
148 |
+
"tf_legacy_loss": false,
|
149 |
+
"tie_encoder_decoder": false,
|
150 |
+
"tie_word_embeddings": true,
|
151 |
+
"tokenizer_class": null,
|
152 |
+
"top_k": 50,
|
153 |
+
"top_p": 1.0,
|
154 |
+
"torch_dtype": null,
|
155 |
+
"torchscript": false,
|
156 |
+
"transformers_version": "4.30.2",
|
157 |
+
"typical_p": 1.0,
|
158 |
+
"use_bfloat16": false
|
159 |
+
},
|
160 |
+
"text_config": {
|
161 |
+
"_name_or_path": "openlm-research/open_llama_3b_v2",
|
162 |
+
"add_cross_attention": false,
|
163 |
+
"architectures": [
|
164 |
+
"LlamaForCausalLM"
|
165 |
+
],
|
166 |
+
"bad_words_ids": null,
|
167 |
+
"begin_suppress_tokens": null,
|
168 |
+
"bos_token_id": 1,
|
169 |
+
"chunk_size_feed_forward": 0,
|
170 |
+
"cross_attention_hidden_size": null,
|
171 |
+
"decoder_start_token_id": null,
|
172 |
+
"diversity_penalty": 0.0,
|
173 |
+
"do_sample": false,
|
174 |
+
"early_stopping": false,
|
175 |
+
"encoder_no_repeat_ngram_size": 0,
|
176 |
+
"eos_token_id": 2,
|
177 |
+
"exponential_decay_length_penalty": null,
|
178 |
+
"finetuning_task": null,
|
179 |
+
"forced_bos_token_id": null,
|
180 |
+
"forced_eos_token_id": null,
|
181 |
+
"hidden_act": "silu",
|
182 |
+
"hidden_size": 3200,
|
183 |
+
"id2label": {
|
184 |
+
"0": "LABEL_0",
|
185 |
+
"1": "LABEL_1"
|
186 |
+
},
|
187 |
+
"initializer_range": 0.02,
|
188 |
+
"intermediate_size": 8640,
|
189 |
+
"is_decoder": false,
|
190 |
+
"is_encoder_decoder": false,
|
191 |
+
"label2id": {
|
192 |
+
"LABEL_0": 0,
|
193 |
+
"LABEL_1": 1
|
194 |
+
},
|
195 |
+
"length_penalty": 1.0,
|
196 |
+
"max_length": 20,
|
197 |
+
"max_position_embeddings": 2048,
|
198 |
+
"min_length": 0,
|
199 |
+
"model_type": "llama",
|
200 |
+
"no_repeat_ngram_size": 0,
|
201 |
+
"num_attention_heads": 32,
|
202 |
+
"num_beam_groups": 1,
|
203 |
+
"num_beams": 1,
|
204 |
+
"num_hidden_layers": 26,
|
205 |
+
"num_return_sequences": 1,
|
206 |
+
"output_attentions": false,
|
207 |
+
"output_hidden_states": false,
|
208 |
+
"output_scores": false,
|
209 |
+
"pad_token_id": 0,
|
210 |
+
"prefix": null,
|
211 |
+
"problem_type": null,
|
212 |
+
"pruned_heads": {},
|
213 |
+
"remove_invalid_values": false,
|
214 |
+
"repetition_penalty": 1.0,
|
215 |
+
"return_dict": true,
|
216 |
+
"return_dict_in_generate": false,
|
217 |
+
"rms_norm_eps": 1e-06,
|
218 |
+
"sep_token_id": null,
|
219 |
+
"suppress_tokens": null,
|
220 |
+
"task_specific_params": null,
|
221 |
+
"temperature": 1.0,
|
222 |
+
"tf_legacy_loss": false,
|
223 |
+
"tie_encoder_decoder": false,
|
224 |
+
"tie_word_embeddings": false,
|
225 |
+
"tokenizer_class": null,
|
226 |
+
"top_k": 50,
|
227 |
+
"top_p": 1.0,
|
228 |
+
"torch_dtype": "float16",
|
229 |
+
"torchscript": false,
|
230 |
+
"transformers_version": "4.30.2",
|
231 |
+
"typical_p": 1.0,
|
232 |
+
"use_bfloat16": false,
|
233 |
+
"use_cache": true,
|
234 |
+
"vocab_size": 32000
|
235 |
+
},
|
236 |
+
"tie_word_embeddings": false,
|
237 |
+
"torch_dtype": "float16",
|
238 |
+
"transformers_version": null,
|
239 |
+
"use_decoder_only_language_model": true,
|
240 |
+
"vision_config": {
|
241 |
+
"_name_or_path": "",
|
242 |
+
"add_cross_attention": false,
|
243 |
+
"architectures": null,
|
244 |
+
"attention_dropout": 0.0,
|
245 |
+
"bad_words_ids": null,
|
246 |
+
"begin_suppress_tokens": null,
|
247 |
+
"bos_token_id": null,
|
248 |
+
"chunk_size_feed_forward": 0,
|
249 |
+
"cross_attention_hidden_size": null,
|
250 |
+
"decoder_start_token_id": null,
|
251 |
+
"diversity_penalty": 0.0,
|
252 |
+
"do_sample": false,
|
253 |
+
"dropout": 0.0,
|
254 |
+
"early_stopping": false,
|
255 |
+
"encoder_no_repeat_ngram_size": 0,
|
256 |
+
"eos_token_id": null,
|
257 |
+
"exponential_decay_length_penalty": null,
|
258 |
+
"finetuning_task": null,
|
259 |
+
"forced_bos_token_id": null,
|
260 |
+
"forced_eos_token_id": null,
|
261 |
+
"global_attn_indexes": [
|
262 |
+
7,
|
263 |
+
15,
|
264 |
+
23,
|
265 |
+
31
|
266 |
+
],
|
267 |
+
"hidden_act": "gelu",
|
268 |
+
"hidden_size": 1280,
|
269 |
+
"id2label": {
|
270 |
+
"0": "LABEL_0",
|
271 |
+
"1": "LABEL_1"
|
272 |
+
},
|
273 |
+
"image_size": 1024,
|
274 |
+
"initializer_factor": 1.0,
|
275 |
+
"initializer_range": 1e-10,
|
276 |
+
"intermediate_size": 6144,
|
277 |
+
"is_decoder": false,
|
278 |
+
"is_encoder_decoder": false,
|
279 |
+
"label2id": {
|
280 |
+
"LABEL_0": 0,
|
281 |
+
"LABEL_1": 1
|
282 |
+
},
|
283 |
+
"layer_norm_eps": 1e-06,
|
284 |
+
"length_penalty": 1.0,
|
285 |
+
"max_length": 20,
|
286 |
+
"min_length": 0,
|
287 |
+
"mlp_dim": 5120,
|
288 |
+
"mlp_ratio": 4.0,
|
289 |
+
"model_type": "",
|
290 |
+
"no_repeat_ngram_size": 0,
|
291 |
+
"num_attention_heads": 16,
|
292 |
+
"num_beam_groups": 1,
|
293 |
+
"num_beams": 1,
|
294 |
+
"num_channels": 3,
|
295 |
+
"num_hidden_layers": 32,
|
296 |
+
"num_pos_feats": 128,
|
297 |
+
"num_return_sequences": 1,
|
298 |
+
"output_attentions": false,
|
299 |
+
"output_channels": 256,
|
300 |
+
"output_hidden_states": false,
|
301 |
+
"output_scores": false,
|
302 |
+
"pad_token_id": null,
|
303 |
+
"patch_size": 16,
|
304 |
+
"prefix": null,
|
305 |
+
"problem_type": null,
|
306 |
+
"projection_dim": 512,
|
307 |
+
"pruned_heads": {},
|
308 |
+
"qkv_bias": true,
|
309 |
+
"remove_invalid_values": false,
|
310 |
+
"repetition_penalty": 1.0,
|
311 |
+
"return_dict": true,
|
312 |
+
"return_dict_in_generate": false,
|
313 |
+
"sep_token_id": null,
|
314 |
+
"suppress_tokens": null,
|
315 |
+
"task_specific_params": null,
|
316 |
+
"temperature": 1.0,
|
317 |
+
"tf_legacy_loss": false,
|
318 |
+
"tie_encoder_decoder": false,
|
319 |
+
"tie_word_embeddings": true,
|
320 |
+
"tokenizer_class": null,
|
321 |
+
"top_k": 50,
|
322 |
+
"top_p": 1.0,
|
323 |
+
"torch_dtype": null,
|
324 |
+
"torchscript": false,
|
325 |
+
"transformers_version": "4.30.2",
|
326 |
+
"typical_p": 1.0,
|
327 |
+
"use_abs_pos": true,
|
328 |
+
"use_bfloat16": false,
|
329 |
+
"use_rel_pos": true,
|
330 |
+
"window_size": 14
|
331 |
+
}
|
332 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step200000
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bf13798c876ccaa5889358468b0595fed1fa74febd499115f701c9bad80b9365
|
3 |
+
size 8175399446
|
special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "</s>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": true,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91b289e85fa20fd375d8b33dc12f77616f18abc6359804471d1fafcb425fecb8
|
3 |
+
size 511574
|
tokenizer_config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"bos_token": {
|
5 |
+
"__type": "AddedToken",
|
6 |
+
"content": "<s>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": true,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"clean_up_tokenization_spaces": false,
|
13 |
+
"eos_token": {
|
14 |
+
"__type": "AddedToken",
|
15 |
+
"content": "</s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": true,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"model_max_length": 20,
|
22 |
+
"pad_token": null,
|
23 |
+
"sp_model_kwargs": {},
|
24 |
+
"tokenizer_class": "LlamaTokenizer",
|
25 |
+
"unk_token": {
|
26 |
+
"__type": "AddedToken",
|
27 |
+
"content": "<unk>",
|
28 |
+
"lstrip": false,
|
29 |
+
"normalized": true,
|
30 |
+
"rstrip": false,
|
31 |
+
"single_word": false
|
32 |
+
}
|
33 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,2194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 2.9787235260009766,
|
3 |
+
"best_model_checkpoint": "/mnt/output/projects/sca-xiaoke-v3/amlt-results/7300886584.15971-e315970f-15b9-410a-b0a9-3912402cdf8b/checkpoint-195000",
|
4 |
+
"epoch": 82.67879288962381,
|
5 |
+
"global_step": 200000,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"_prepare_inputs_in_ms": 14.42616805434227,
|
12 |
+
"compute_loss_in_ms": 1299.8907640576363,
|
13 |
+
"epoch": 0.0,
|
14 |
+
"learning_rate/full": 0.0,
|
15 |
+
"loss": 9.016,
|
16 |
+
"step": 1,
|
17 |
+
"training_step_in_ms": 2032.6302126049995
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"epoch": 0.0,
|
21 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 9.1282958984375,
|
22 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.03355821582361717,
|
23 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 189.4348,
|
24 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 4.223,
|
25 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.132,
|
26 |
+
"step": 1
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"_prepare_inputs_in_ms": 4.084589669218985,
|
30 |
+
"compute_loss_in_ms": 284.03653898784466,
|
31 |
+
"epoch": 0.41,
|
32 |
+
"learning_rate/full": 0.00039998495845181817,
|
33 |
+
"loss": 3.8908,
|
34 |
+
"step": 1000,
|
35 |
+
"training_step_in_ms": 1082.7972516678535
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"_prepare_inputs_in_ms": 4.054305288940668,
|
39 |
+
"compute_loss_in_ms": 284.15025370568037,
|
40 |
+
"epoch": 0.83,
|
41 |
+
"learning_rate/full": 0.0003999216713877652,
|
42 |
+
"loss": 3.4805,
|
43 |
+
"step": 2000,
|
44 |
+
"training_step_in_ms": 1086.274579320103
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"_prepare_inputs_in_ms": 4.071794345974922,
|
48 |
+
"compute_loss_in_ms": 284.45942908525467,
|
49 |
+
"epoch": 1.24,
|
50 |
+
"learning_rate/full": 0.00039980895784128267,
|
51 |
+
"loss": 3.405,
|
52 |
+
"step": 3000,
|
53 |
+
"training_step_in_ms": 1119.1077427528799
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"_prepare_inputs_in_ms": 4.085798408836126,
|
57 |
+
"compute_loss_in_ms": 284.8285736106336,
|
58 |
+
"epoch": 1.65,
|
59 |
+
"learning_rate/full": 0.00039964684567845476,
|
60 |
+
"loss": 3.3537,
|
61 |
+
"step": 4000,
|
62 |
+
"training_step_in_ms": 1150.6125138737261
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"_prepare_inputs_in_ms": 4.0938322730362415,
|
66 |
+
"compute_loss_in_ms": 285.10985093563795,
|
67 |
+
"epoch": 2.07,
|
68 |
+
"learning_rate/full": 0.0003994358471466495,
|
69 |
+
"loss": 3.3218,
|
70 |
+
"step": 5000,
|
71 |
+
"training_step_in_ms": 1108.4499053694308
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"epoch": 2.07,
|
75 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 3.269989252090454,
|
76 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.21715476097311398,
|
77 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 111.5411,
|
78 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.172,
|
79 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.224,
|
80 |
+
"step": 5000
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"_prepare_inputs_in_ms": 4.128877357011888,
|
84 |
+
"compute_loss_in_ms": 285.1207774169743,
|
85 |
+
"epoch": 2.48,
|
86 |
+
"learning_rate/full": 0.0003991751687428334,
|
87 |
+
"loss": 3.2918,
|
88 |
+
"step": 6000,
|
89 |
+
"training_step_in_ms": 1120.3654654994607
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"_prepare_inputs_in_ms": 4.121768821030855,
|
93 |
+
"compute_loss_in_ms": 284.9130438826978,
|
94 |
+
"epoch": 2.89,
|
95 |
+
"learning_rate/full": 0.0003988659173490642,
|
96 |
+
"loss": 3.2675,
|
97 |
+
"step": 7000,
|
98 |
+
"training_step_in_ms": 1130.791154742241
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"_prepare_inputs_in_ms": 4.129346951842308,
|
102 |
+
"compute_loss_in_ms": 285.35304405912757,
|
103 |
+
"epoch": 3.31,
|
104 |
+
"learning_rate/full": 0.0003985069299623724,
|
105 |
+
"loss": 3.2451,
|
106 |
+
"step": 8000,
|
107 |
+
"training_step_in_ms": 1133.7338739708066
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"_prepare_inputs_in_ms": 4.133303381502628,
|
111 |
+
"compute_loss_in_ms": 285.2391963750124,
|
112 |
+
"epoch": 3.72,
|
113 |
+
"learning_rate/full": 0.0003980992984040504,
|
114 |
+
"loss": 3.2334,
|
115 |
+
"step": 9000,
|
116 |
+
"training_step_in_ms": 1086.6298492662609
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"_prepare_inputs_in_ms": 4.132662046700716,
|
120 |
+
"compute_loss_in_ms": 285.1939390525222,
|
121 |
+
"epoch": 4.13,
|
122 |
+
"learning_rate/full": 0.00039764230739017226,
|
123 |
+
"loss": 3.2122,
|
124 |
+
"step": 10000,
|
125 |
+
"training_step_in_ms": 1111.2217365466058
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"epoch": 4.13,
|
129 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 3.1718945503234863,
|
130 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.23451229725961228,
|
131 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 108.8619,
|
132 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.349,
|
133 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.23,
|
134 |
+
"step": 10000
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"_prepare_inputs_in_ms": 4.151588522079514,
|
138 |
+
"compute_loss_in_ms": 285.39055866748095,
|
139 |
+
"epoch": 4.55,
|
140 |
+
"learning_rate/full": 0.00039713751381134497,
|
141 |
+
"loss": 3.1979,
|
142 |
+
"step": 11000,
|
143 |
+
"training_step_in_ms": 1089.2837468609214
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"_prepare_inputs_in_ms": 4.139887526631355,
|
147 |
+
"compute_loss_in_ms": 285.3860225379467,
|
148 |
+
"epoch": 4.96,
|
149 |
+
"learning_rate/full": 0.000396583019288311,
|
150 |
+
"loss": 3.1933,
|
151 |
+
"step": 12000,
|
152 |
+
"training_step_in_ms": 1084.1714271605015
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"_prepare_inputs_in_ms": 4.176147662103176,
|
156 |
+
"compute_loss_in_ms": 285.6273371577263,
|
157 |
+
"epoch": 5.37,
|
158 |
+
"learning_rate/full": 0.0003959805510184613,
|
159 |
+
"loss": 3.1765,
|
160 |
+
"step": 13000,
|
161 |
+
"training_step_in_ms": 1089.3080548346043
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"_prepare_inputs_in_ms": 4.1766685508191586,
|
165 |
+
"compute_loss_in_ms": 285.3720509596169,
|
166 |
+
"epoch": 5.79,
|
167 |
+
"learning_rate/full": 0.00039532972748016767,
|
168 |
+
"loss": 3.1727,
|
169 |
+
"step": 14000,
|
170 |
+
"training_step_in_ms": 1091.7199603579938
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"_prepare_inputs_in_ms": 4.191178072243929,
|
174 |
+
"compute_loss_in_ms": 285.4580160602927,
|
175 |
+
"epoch": 6.2,
|
176 |
+
"learning_rate/full": 0.0003946307092543998,
|
177 |
+
"loss": 3.1591,
|
178 |
+
"step": 15000,
|
179 |
+
"training_step_in_ms": 1090.6033144891262
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"epoch": 6.2,
|
183 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 3.1219239234924316,
|
184 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.24624792238728155,
|
185 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 108.8497,
|
186 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.35,
|
187 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.23,
|
188 |
+
"step": 15000
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"_prepare_inputs_in_ms": 4.180258305334464,
|
192 |
+
"compute_loss_in_ms": 285.4601420760155,
|
193 |
+
"epoch": 6.61,
|
194 |
+
"learning_rate/full": 0.0003938828970266217,
|
195 |
+
"loss": 3.1562,
|
196 |
+
"step": 16000,
|
197 |
+
"training_step_in_ms": 1084.842809855938
|
198 |
+
},
|
199 |
+
{
|
200 |
+
"_prepare_inputs_in_ms": 4.194100107997656,
|
201 |
+
"compute_loss_in_ms": 285.48905945569277,
|
202 |
+
"epoch": 7.03,
|
203 |
+
"learning_rate/full": 0.00039308797090204444,
|
204 |
+
"loss": 3.1508,
|
205 |
+
"step": 17000,
|
206 |
+
"training_step_in_ms": 1085.5392471551895
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"_prepare_inputs_in_ms": 4.201232250779867,
|
210 |
+
"compute_loss_in_ms": 285.61364733427763,
|
211 |
+
"epoch": 7.44,
|
212 |
+
"learning_rate/full": 0.0003922445359987763,
|
213 |
+
"loss": 3.1333,
|
214 |
+
"step": 18000,
|
215 |
+
"training_step_in_ms": 1091.4973263852298
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"_prepare_inputs_in_ms": 4.189023811370134,
|
219 |
+
"compute_loss_in_ms": 285.4624082148075,
|
220 |
+
"epoch": 7.85,
|
221 |
+
"learning_rate/full": 0.0003913554018411121,
|
222 |
+
"loss": 3.1351,
|
223 |
+
"step": 19000,
|
224 |
+
"training_step_in_ms": 1095.9623138792813
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"_prepare_inputs_in_ms": 4.215472485870123,
|
228 |
+
"compute_loss_in_ms": 285.6230415776372,
|
229 |
+
"epoch": 8.27,
|
230 |
+
"learning_rate/full": 0.00039041818639024787,
|
231 |
+
"loss": 3.1297,
|
232 |
+
"step": 20000,
|
233 |
+
"training_step_in_ms": 1185.9847482070327
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 8.27,
|
237 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 3.094672918319702,
|
238 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.24975866124736495,
|
239 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 108.4566,
|
240 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.376,
|
241 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.231,
|
242 |
+
"step": 20000
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"_prepare_inputs_in_ms": 4.1831618874538234,
|
246 |
+
"compute_loss_in_ms": 285.3183429725468,
|
247 |
+
"epoch": 8.68,
|
248 |
+
"learning_rate/full": 0.00038943398810118026,
|
249 |
+
"loss": 3.119,
|
250 |
+
"step": 21000,
|
251 |
+
"training_step_in_ms": 1082.7558356113732
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"_prepare_inputs_in_ms": 4.174146838486195,
|
255 |
+
"compute_loss_in_ms": 285.4058397859335,
|
256 |
+
"epoch": 9.09,
|
257 |
+
"learning_rate/full": 0.0003884019945070803,
|
258 |
+
"loss": 3.1178,
|
259 |
+
"step": 22000,
|
260 |
+
"training_step_in_ms": 1087.0350129008293
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"_prepare_inputs_in_ms": 4.204949229955673,
|
264 |
+
"compute_loss_in_ms": 285.3504670076072,
|
265 |
+
"epoch": 9.51,
|
266 |
+
"learning_rate/full": 0.00038732452418171673,
|
267 |
+
"loss": 3.1093,
|
268 |
+
"step": 23000,
|
269 |
+
"training_step_in_ms": 1090.7997342124581
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"_prepare_inputs_in_ms": 4.196985870599747,
|
273 |
+
"compute_loss_in_ms": 285.4016271494329,
|
274 |
+
"epoch": 9.92,
|
275 |
+
"learning_rate/full": 0.0003862008343330083,
|
276 |
+
"loss": 3.1062,
|
277 |
+
"step": 24000,
|
278 |
+
"training_step_in_ms": 1090.5269000642002
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"_prepare_inputs_in_ms": 4.206760194152594,
|
282 |
+
"compute_loss_in_ms": 285.6653628349304,
|
283 |
+
"epoch": 10.33,
|
284 |
+
"learning_rate/full": 0.00038503000849003844,
|
285 |
+
"loss": 3.0972,
|
286 |
+
"step": 25000,
|
287 |
+
"training_step_in_ms": 1090.913136728108
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"epoch": 10.33,
|
291 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 3.075335741043091,
|
292 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.25707208633373096,
|
293 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 108.472,
|
294 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.375,
|
295 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.23,
|
296 |
+
"step": 25000
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"_prepare_inputs_in_ms": 4.204354642367944,
|
300 |
+
"compute_loss_in_ms": 285.44070146232843,
|
301 |
+
"epoch": 10.75,
|
302 |
+
"learning_rate/full": 0.0003838159164157488,
|
303 |
+
"loss": 3.097,
|
304 |
+
"step": 26000,
|
305 |
+
"training_step_in_ms": 1085.0929874032736
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"_prepare_inputs_in_ms": 4.202797457575798,
|
309 |
+
"compute_loss_in_ms": 285.55905482545495,
|
310 |
+
"epoch": 11.16,
|
311 |
+
"learning_rate/full": 0.00038255527679000744,
|
312 |
+
"loss": 3.0903,
|
313 |
+
"step": 27000,
|
314 |
+
"training_step_in_ms": 1089.4926370121539
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"_prepare_inputs_in_ms": 4.2012519761919975,
|
318 |
+
"compute_loss_in_ms": 285.71758703514934,
|
319 |
+
"epoch": 11.58,
|
320 |
+
"learning_rate/full": 0.0003812482649321827,
|
321 |
+
"loss": 3.0892,
|
322 |
+
"step": 28000,
|
323 |
+
"training_step_in_ms": 1090.198759533465
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"_prepare_inputs_in_ms": 4.220829274505377,
|
327 |
+
"compute_loss_in_ms": 285.5986107811332,
|
328 |
+
"epoch": 11.99,
|
329 |
+
"learning_rate/full": 0.0003798978172979138,
|
330 |
+
"loss": 3.0889,
|
331 |
+
"step": 29000,
|
332 |
+
"training_step_in_ms": 1085.0686310827732
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"_prepare_inputs_in_ms": 4.217640113085508,
|
336 |
+
"compute_loss_in_ms": 285.6399230584502,
|
337 |
+
"epoch": 12.4,
|
338 |
+
"learning_rate/full": 0.0003785029825690954,
|
339 |
+
"loss": 3.0749,
|
340 |
+
"step": 30000,
|
341 |
+
"training_step_in_ms": 1087.9900991134346
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"epoch": 12.4,
|
345 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 3.058861017227173,
|
346 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.25600252799309026,
|
347 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 109.6245,
|
348 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.298,
|
349 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.228,
|
350 |
+
"step": 30000
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"_prepare_inputs_in_ms": 4.224213841484814,
|
354 |
+
"compute_loss_in_ms": 285.3009058833122,
|
355 |
+
"epoch": 12.82,
|
356 |
+
"learning_rate/full": 0.00037706410490032555,
|
357 |
+
"loss": 3.0794,
|
358 |
+
"step": 31000,
|
359 |
+
"training_step_in_ms": 1087.378763064742
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"_prepare_inputs_in_ms": 4.233129996806383,
|
363 |
+
"compute_loss_in_ms": 285.4745088033378,
|
364 |
+
"epoch": 13.23,
|
365 |
+
"learning_rate/full": 0.0003755815393131386,
|
366 |
+
"loss": 3.074,
|
367 |
+
"step": 32000,
|
368 |
+
"training_step_in_ms": 1091.7205754183233
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"_prepare_inputs_in_ms": 4.223707340657711,
|
372 |
+
"compute_loss_in_ms": 285.1553194858134,
|
373 |
+
"epoch": 13.64,
|
374 |
+
"learning_rate/full": 0.0003740556516084091,
|
375 |
+
"loss": 3.0686,
|
376 |
+
"step": 33000,
|
377 |
+
"training_step_in_ms": 1087.8120190612972
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"_prepare_inputs_in_ms": 4.245889626443386,
|
381 |
+
"compute_loss_in_ms": 285.67459550127387,
|
382 |
+
"epoch": 14.06,
|
383 |
+
"learning_rate/full": 0.0003724852264850082,
|
384 |
+
"loss": 3.0733,
|
385 |
+
"step": 34000,
|
386 |
+
"training_step_in_ms": 1086.3751963675022
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"_prepare_inputs_in_ms": 4.233293745666742,
|
390 |
+
"compute_loss_in_ms": 285.4981838874519,
|
391 |
+
"epoch": 14.47,
|
392 |
+
"learning_rate/full": 0.00037087542640234865,
|
393 |
+
"loss": 3.064,
|
394 |
+
"step": 35000,
|
395 |
+
"training_step_in_ms": 1089.8129360377789
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 14.47,
|
399 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 3.052946090698242,
|
400 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.2584196718918565,
|
401 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 108.4779,
|
402 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.375,
|
403 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.23,
|
404 |
+
"step": 35000
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"_prepare_inputs_in_ms": 4.194417025257901,
|
408 |
+
"compute_loss_in_ms": 285.25339871644974,
|
409 |
+
"epoch": 14.88,
|
410 |
+
"learning_rate/full": 0.00036922019737873653,
|
411 |
+
"loss": 3.064,
|
412 |
+
"step": 36000,
|
413 |
+
"training_step_in_ms": 1084.3368335030973
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"_prepare_inputs_in_ms": 4.225800335407257,
|
417 |
+
"compute_loss_in_ms": 285.52921985834837,
|
418 |
+
"epoch": 15.3,
|
419 |
+
"learning_rate/full": 0.00036752484999829976,
|
420 |
+
"loss": 3.0581,
|
421 |
+
"step": 37000,
|
422 |
+
"training_step_in_ms": 1090.5179475583136
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"_prepare_inputs_in_ms": 4.208773214370012,
|
426 |
+
"compute_loss_in_ms": 285.2426546551287,
|
427 |
+
"epoch": 15.71,
|
428 |
+
"learning_rate/full": 0.0003657881683678541,
|
429 |
+
"loss": 3.0581,
|
430 |
+
"step": 38000,
|
431 |
+
"training_step_in_ms": 1089.0830878019333
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"_prepare_inputs_in_ms": 4.219740275293589,
|
435 |
+
"compute_loss_in_ms": 285.45426247641444,
|
436 |
+
"epoch": 16.12,
|
437 |
+
"learning_rate/full": 0.00036401058098760525,
|
438 |
+
"loss": 3.0534,
|
439 |
+
"step": 39000,
|
440 |
+
"training_step_in_ms": 1088.1995187923312
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"_prepare_inputs_in_ms": 4.224584739655256,
|
444 |
+
"compute_loss_in_ms": 285.29780930280685,
|
445 |
+
"epoch": 16.54,
|
446 |
+
"learning_rate/full": 0.00036219068645119566,
|
447 |
+
"loss": 3.0525,
|
448 |
+
"step": 40000,
|
449 |
+
"training_step_in_ms": 1088.9517585895956
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"epoch": 16.54,
|
453 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 3.0416412353515625,
|
454 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.26328806809020683,
|
455 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 110.03,
|
456 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.271,
|
457 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.227,
|
458 |
+
"step": 40000
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"_prepare_inputs_in_ms": 4.210097938776016,
|
462 |
+
"compute_loss_in_ms": 285.2052926979959,
|
463 |
+
"epoch": 16.95,
|
464 |
+
"learning_rate/full": 0.0003603344533347134,
|
465 |
+
"loss": 3.0483,
|
466 |
+
"step": 41000,
|
467 |
+
"training_step_in_ms": 1085.6118382960558
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"_prepare_inputs_in_ms": 4.248851552605629,
|
471 |
+
"compute_loss_in_ms": 285.6537539064884,
|
472 |
+
"epoch": 17.36,
|
473 |
+
"learning_rate/full": 0.00035843490089475537,
|
474 |
+
"loss": 3.0399,
|
475 |
+
"step": 42000,
|
476 |
+
"training_step_in_ms": 1091.6559825353324
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"_prepare_inputs_in_ms": 4.214634284377098,
|
480 |
+
"compute_loss_in_ms": 285.3575124628842,
|
481 |
+
"epoch": 17.78,
|
482 |
+
"learning_rate/full": 0.0003564981368437495,
|
483 |
+
"loss": 3.0455,
|
484 |
+
"step": 43000,
|
485 |
+
"training_step_in_ms": 1088.8244492001832
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"_prepare_inputs_in_ms": 4.242138650268316,
|
489 |
+
"compute_loss_in_ms": 285.5602181442082,
|
490 |
+
"epoch": 18.19,
|
491 |
+
"learning_rate/full": 0.00035452076268085417,
|
492 |
+
"loss": 3.0397,
|
493 |
+
"step": 44000,
|
494 |
+
"training_step_in_ms": 1087.6106830611825
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"_prepare_inputs_in_ms": 4.231096193194389,
|
498 |
+
"compute_loss_in_ms": 285.38128500804305,
|
499 |
+
"epoch": 18.6,
|
500 |
+
"learning_rate/full": 0.0003525072209606466,
|
501 |
+
"loss": 3.0366,
|
502 |
+
"step": 45000,
|
503 |
+
"training_step_in_ms": 1090.0634618513286
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"epoch": 18.6,
|
507 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 3.0333669185638428,
|
508 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.262616571295984,
|
509 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 108.2623,
|
510 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.389,
|
511 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.231,
|
512 |
+
"step": 45000
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"_prepare_inputs_in_ms": 4.224474132061005,
|
516 |
+
"compute_loss_in_ms": 285.69229750707746,
|
517 |
+
"epoch": 19.02,
|
518 |
+
"learning_rate/full": 0.00035045605036568154,
|
519 |
+
"loss": 3.0403,
|
520 |
+
"step": 46000,
|
521 |
+
"training_step_in_ms": 1087.4972796961665
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"_prepare_inputs_in_ms": 4.218343399465084,
|
525 |
+
"compute_loss_in_ms": 285.2950618080795,
|
526 |
+
"epoch": 19.43,
|
527 |
+
"learning_rate/full": 0.0003483677569916109,
|
528 |
+
"loss": 3.0296,
|
529 |
+
"step": 47000,
|
530 |
+
"training_step_in_ms": 1088.6641021184623
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"_prepare_inputs_in_ms": 4.212014690041542,
|
534 |
+
"compute_loss_in_ms": 285.24483662098646,
|
535 |
+
"epoch": 19.84,
|
536 |
+
"learning_rate/full": 0.0003462450012513184,
|
537 |
+
"loss": 3.0351,
|
538 |
+
"step": 48000,
|
539 |
+
"training_step_in_ms": 1086.902916610241
|
540 |
+
},
|
541 |
+
{
|
542 |
+
"_prepare_inputs_in_ms": 4.228286672383547,
|
543 |
+
"compute_loss_in_ms": 285.4265847504139,
|
544 |
+
"epoch": 20.26,
|
545 |
+
"learning_rate/full": 0.0003440818719590809,
|
546 |
+
"loss": 3.0301,
|
547 |
+
"step": 49000,
|
548 |
+
"training_step_in_ms": 1089.4173335321248
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"_prepare_inputs_in_ms": 4.209285493940115,
|
552 |
+
"compute_loss_in_ms": 285.17769135162234,
|
553 |
+
"epoch": 20.67,
|
554 |
+
"learning_rate/full": 0.0003418853377786221,
|
555 |
+
"loss": 3.0266,
|
556 |
+
"step": 50000,
|
557 |
+
"training_step_in_ms": 1092.610530115664
|
558 |
+
},
|
559 |
+
{
|
560 |
+
"epoch": 20.67,
|
561 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 3.026047468185425,
|
562 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.26601445767420673,
|
563 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 111.3497,
|
564 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.185,
|
565 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.225,
|
566 |
+
"step": 50000
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"_prepare_inputs_in_ms": 4.215818756237263,
|
570 |
+
"compute_loss_in_ms": 285.3216738887131,
|
571 |
+
"epoch": 21.08,
|
572 |
+
"learning_rate/full": 0.00033965379551414244,
|
573 |
+
"loss": 3.0364,
|
574 |
+
"step": 51000,
|
575 |
+
"training_step_in_ms": 1090.6509163863957
|
576 |
+
},
|
577 |
+
{
|
578 |
+
"_prepare_inputs_in_ms": 4.2158047296106815,
|
579 |
+
"compute_loss_in_ms": 285.3607781082392,
|
580 |
+
"epoch": 21.5,
|
581 |
+
"learning_rate/full": 0.00033738779576530426,
|
582 |
+
"loss": 3.0221,
|
583 |
+
"step": 52000,
|
584 |
+
"training_step_in_ms": 1089.9412010349333
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"_prepare_inputs_in_ms": 4.225385930389166,
|
588 |
+
"compute_loss_in_ms": 285.4064598791301,
|
589 |
+
"epoch": 21.91,
|
590 |
+
"learning_rate/full": 0.0003350878976336386,
|
591 |
+
"loss": 3.0233,
|
592 |
+
"step": 53000,
|
593 |
+
"training_step_in_ms": 1086.4266870431602
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"_prepare_inputs_in_ms": 4.2348253689706326,
|
597 |
+
"compute_loss_in_ms": 285.5650148577988,
|
598 |
+
"epoch": 22.32,
|
599 |
+
"learning_rate/full": 0.0003327546685845955,
|
600 |
+
"loss": 3.0177,
|
601 |
+
"step": 54000,
|
602 |
+
"training_step_in_ms": 1090.5466065071523
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"_prepare_inputs_in_ms": 4.244904510676861,
|
606 |
+
"compute_loss_in_ms": 285.4943734779954,
|
607 |
+
"epoch": 22.74,
|
608 |
+
"learning_rate/full": 0.00033038868430752995,
|
609 |
+
"loss": 3.0227,
|
610 |
+
"step": 55000,
|
611 |
+
"training_step_in_ms": 1089.5386388339102
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 22.74,
|
615 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 3.0213677883148193,
|
616 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.26657402454724916,
|
617 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 109.863,
|
618 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.282,
|
619 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.228,
|
620 |
+
"step": 55000
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"_prepare_inputs_in_ms": 4.222077999900027,
|
624 |
+
"compute_loss_in_ms": 285.3860865868628,
|
625 |
+
"epoch": 23.15,
|
626 |
+
"learning_rate/full": 0.00032798811209649607,
|
627 |
+
"loss": 3.0201,
|
628 |
+
"step": 56000,
|
629 |
+
"training_step_in_ms": 1089.8713997229934
|
630 |
+
},
|
631 |
+
{
|
632 |
+
"_prepare_inputs_in_ms": 4.218684710562229,
|
633 |
+
"compute_loss_in_ms": 285.196179587394,
|
634 |
+
"epoch": 23.56,
|
635 |
+
"learning_rate/full": 0.0003255583453025672,
|
636 |
+
"loss": 3.0133,
|
637 |
+
"step": 57000,
|
638 |
+
"training_step_in_ms": 1088.3847643770278
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"_prepare_inputs_in_ms": 4.225137319415808,
|
642 |
+
"compute_loss_in_ms": 285.31357542052865,
|
643 |
+
"epoch": 23.98,
|
644 |
+
"learning_rate/full": 0.0003231000773635045,
|
645 |
+
"loss": 3.0174,
|
646 |
+
"step": 58000,
|
647 |
+
"training_step_in_ms": 1086.5370167195797
|
648 |
+
},
|
649 |
+
{
|
650 |
+
"_prepare_inputs_in_ms": 4.230918549001217,
|
651 |
+
"compute_loss_in_ms": 285.4190446138382,
|
652 |
+
"epoch": 24.39,
|
653 |
+
"learning_rate/full": 0.0003206140056326384,
|
654 |
+
"loss": 3.0116,
|
655 |
+
"step": 59000,
|
656 |
+
"training_step_in_ms": 1090.3938182927668
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"_prepare_inputs_in_ms": 4.227691676467657,
|
660 |
+
"compute_loss_in_ms": 285.3117839321494,
|
661 |
+
"epoch": 24.8,
|
662 |
+
"learning_rate/full": 0.000318090679282307,
|
663 |
+
"loss": 3.0123,
|
664 |
+
"step": 60000,
|
665 |
+
"training_step_in_ms": 1090.3038867227733
|
666 |
+
},
|
667 |
+
{
|
668 |
+
"epoch": 24.8,
|
669 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 3.0163190364837646,
|
670 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.2694944095513101,
|
671 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 109.5302,
|
672 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.304,
|
673 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.228,
|
674 |
+
"step": 60000
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"_prepare_inputs_in_ms": 4.2251157578898635,
|
678 |
+
"compute_loss_in_ms": 285.44914393499494,
|
679 |
+
"epoch": 25.22,
|
680 |
+
"learning_rate/full": 0.0003155381574633497,
|
681 |
+
"loss": 3.0074,
|
682 |
+
"step": 61000,
|
683 |
+
"training_step_in_ms": 1087.7947441898286
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"_prepare_inputs_in_ms": 4.233858399093151,
|
687 |
+
"compute_loss_in_ms": 285.5572083890438,
|
688 |
+
"epoch": 25.63,
|
689 |
+
"learning_rate/full": 0.0003129570712337902,
|
690 |
+
"loss": 3.0038,
|
691 |
+
"step": 62000,
|
692 |
+
"training_step_in_ms": 1091.406288355589
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"_prepare_inputs_in_ms": 4.241201400756836,
|
696 |
+
"compute_loss_in_ms": 285.4022887274623,
|
697 |
+
"epoch": 26.04,
|
698 |
+
"learning_rate/full": 0.00031035068146119334,
|
699 |
+
"loss": 3.0069,
|
700 |
+
"step": 63000,
|
701 |
+
"training_step_in_ms": 1089.0374966450036
|
702 |
+
},
|
703 |
+
{
|
704 |
+
"_prepare_inputs_in_ms": 4.214517045766115,
|
705 |
+
"compute_loss_in_ms": 285.32751731202006,
|
706 |
+
"epoch": 26.46,
|
707 |
+
"learning_rate/full": 0.0003077170643091587,
|
708 |
+
"loss": 3.0004,
|
709 |
+
"step": 64000,
|
710 |
+
"training_step_in_ms": 1089.311513543129
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"_prepare_inputs_in_ms": 4.223439604043961,
|
714 |
+
"compute_loss_in_ms": 285.6179902665317,
|
715 |
+
"epoch": 26.87,
|
716 |
+
"learning_rate/full": 0.00030505419362911944,
|
717 |
+
"loss": 3.0048,
|
718 |
+
"step": 65000,
|
719 |
+
"training_step_in_ms": 1088.4543421529233
|
720 |
+
},
|
721 |
+
{
|
722 |
+
"epoch": 26.87,
|
723 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 3.012563705444336,
|
724 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.26603180141607496,
|
725 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 108.7667,
|
726 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.355,
|
727 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.23,
|
728 |
+
"step": 65000
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"_prepare_inputs_in_ms": 4.235190596522354,
|
732 |
+
"compute_loss_in_ms": 285.59519398212433,
|
733 |
+
"epoch": 27.28,
|
734 |
+
"learning_rate/full": 0.0003023680520765336,
|
735 |
+
"loss": 2.9934,
|
736 |
+
"step": 66000,
|
737 |
+
"training_step_in_ms": 1088.0777766555548
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"_prepare_inputs_in_ms": 4.217139046639204,
|
741 |
+
"compute_loss_in_ms": 285.50919711589813,
|
742 |
+
"epoch": 27.7,
|
743 |
+
"learning_rate/full": 0.0002996566527388639,
|
744 |
+
"loss": 2.9982,
|
745 |
+
"step": 67000,
|
746 |
+
"training_step_in_ms": 1091.6493426598608
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"_prepare_inputs_in_ms": 4.244372218847275,
|
750 |
+
"compute_loss_in_ms": 285.5752951391041,
|
751 |
+
"epoch": 28.11,
|
752 |
+
"learning_rate/full": 0.0002969206646133254,
|
753 |
+
"loss": 2.9969,
|
754 |
+
"step": 68000,
|
755 |
+
"training_step_in_ms": 1088.2136982679367
|
756 |
+
},
|
757 |
+
{
|
758 |
+
"_prepare_inputs_in_ms": 4.213636931031942,
|
759 |
+
"compute_loss_in_ms": 285.255677562207,
|
760 |
+
"epoch": 28.52,
|
761 |
+
"learning_rate/full": 0.0002941607627640486,
|
762 |
+
"loss": 2.9923,
|
763 |
+
"step": 69000,
|
764 |
+
"training_step_in_ms": 1088.9643149748445
|
765 |
+
},
|
766 |
+
{
|
767 |
+
"_prepare_inputs_in_ms": 4.2318920604884624,
|
768 |
+
"compute_loss_in_ms": 285.6222639977932,
|
769 |
+
"epoch": 28.94,
|
770 |
+
"learning_rate/full": 0.0002913748308243434,
|
771 |
+
"loss": 2.9912,
|
772 |
+
"step": 70000,
|
773 |
+
"training_step_in_ms": 1086.640508864075
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"epoch": 28.94,
|
777 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 3.01218318939209,
|
778 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.2704365100152127,
|
779 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 109.8069,
|
780 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.286,
|
781 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.228,
|
782 |
+
"step": 70000
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"_prepare_inputs_in_ms": 4.22964243627176,
|
786 |
+
"compute_loss_in_ms": 285.81058219075203,
|
787 |
+
"epoch": 29.35,
|
788 |
+
"learning_rate/full": 0.00028856630835486283,
|
789 |
+
"loss": 2.9907,
|
790 |
+
"step": 71000,
|
791 |
+
"training_step_in_ms": 1089.0001546032727
|
792 |
+
},
|
793 |
+
{
|
794 |
+
"_prepare_inputs_in_ms": 4.219989389181137,
|
795 |
+
"compute_loss_in_ms": 285.4850408025086,
|
796 |
+
"epoch": 29.76,
|
797 |
+
"learning_rate/full": 0.00028574157192993993,
|
798 |
+
"loss": 2.9922,
|
799 |
+
"step": 72000,
|
800 |
+
"training_step_in_ms": 1112.2257943935692
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"_prepare_inputs_in_ms": 4.236269619315863,
|
804 |
+
"compute_loss_in_ms": 285.3517268039286,
|
805 |
+
"epoch": 30.18,
|
806 |
+
"learning_rate/full": 0.0002828899985518552,
|
807 |
+
"loss": 2.9829,
|
808 |
+
"step": 73000,
|
809 |
+
"training_step_in_ms": 1115.709298092872
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"_prepare_inputs_in_ms": 4.212801028043032,
|
813 |
+
"compute_loss_in_ms": 285.1435379870236,
|
814 |
+
"epoch": 30.59,
|
815 |
+
"learning_rate/full": 0.0002800179323426103,
|
816 |
+
"loss": 2.9854,
|
817 |
+
"step": 74000,
|
818 |
+
"training_step_in_ms": 1112.750349264592
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"_prepare_inputs_in_ms": 4.226626381278038,
|
822 |
+
"compute_loss_in_ms": 285.37043143063784,
|
823 |
+
"epoch": 31.0,
|
824 |
+
"learning_rate/full": 0.0002771289848538608,
|
825 |
+
"loss": 2.9928,
|
826 |
+
"step": 75000,
|
827 |
+
"training_step_in_ms": 1113.63447811082
|
828 |
+
},
|
829 |
+
{
|
830 |
+
"epoch": 31.0,
|
831 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 3.00150203704834,
|
832 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.27227553064507803,
|
833 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 110.2006,
|
834 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.259,
|
835 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.227,
|
836 |
+
"step": 75000
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"_prepare_inputs_in_ms": 4.221666444365571,
|
840 |
+
"compute_loss_in_ms": 285.4123991020024,
|
841 |
+
"epoch": 31.42,
|
842 |
+
"learning_rate/full": 0.00027422392710754273,
|
843 |
+
"loss": 2.9787,
|
844 |
+
"step": 76000,
|
845 |
+
"training_step_in_ms": 1110.9835148528218
|
846 |
+
},
|
847 |
+
{
|
848 |
+
"_prepare_inputs_in_ms": 4.2181270979344845,
|
849 |
+
"compute_loss_in_ms": 285.3203030079603,
|
850 |
+
"epoch": 31.83,
|
851 |
+
"learning_rate/full": 0.0002712947161076778,
|
852 |
+
"loss": 2.9822,
|
853 |
+
"step": 77000,
|
854 |
+
"training_step_in_ms": 1113.9973731786013
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"_prepare_inputs_in_ms": 4.2350912764668465,
|
858 |
+
"compute_loss_in_ms": 285.4480539858341,
|
859 |
+
"epoch": 32.24,
|
860 |
+
"learning_rate/full": 0.00026835083436875734,
|
861 |
+
"loss": 2.9765,
|
862 |
+
"step": 78000,
|
863 |
+
"training_step_in_ms": 1115.4474330842495
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"_prepare_inputs_in_ms": 4.229009635746479,
|
867 |
+
"compute_loss_in_ms": 285.5191092900932,
|
868 |
+
"epoch": 32.66,
|
869 |
+
"learning_rate/full": 0.0002653871161688328,
|
870 |
+
"loss": 2.9801,
|
871 |
+
"step": 79000,
|
872 |
+
"training_step_in_ms": 1113.7964499779046
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"_prepare_inputs_in_ms": 4.2362766563892365,
|
876 |
+
"compute_loss_in_ms": 285.7597692273557,
|
877 |
+
"epoch": 33.07,
|
878 |
+
"learning_rate/full": 0.00026241022007566643,
|
879 |
+
"loss": 2.9807,
|
880 |
+
"step": 80000,
|
881 |
+
"training_step_in_ms": 1115.4754909984767
|
882 |
+
},
|
883 |
+
{
|
884 |
+
"epoch": 33.07,
|
885 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 3.000786781311035,
|
886 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.2716794971860456,
|
887 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 108.7776,
|
888 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.354,
|
889 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.23,
|
890 |
+
"step": 80000
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"_prepare_inputs_in_ms": 4.232099074416045,
|
894 |
+
"compute_loss_in_ms": 285.50172889232635,
|
895 |
+
"epoch": 33.48,
|
896 |
+
"learning_rate/full": 0.0002594179251945605,
|
897 |
+
"loss": 2.9739,
|
898 |
+
"step": 81000,
|
899 |
+
"training_step_in_ms": 1110.9056022837758
|
900 |
+
},
|
901 |
+
{
|
902 |
+
"_prepare_inputs_in_ms": 4.237273696810007,
|
903 |
+
"compute_loss_in_ms": 285.7116014882922,
|
904 |
+
"epoch": 33.9,
|
905 |
+
"learning_rate/full": 0.00025641096982950234,
|
906 |
+
"loss": 2.9746,
|
907 |
+
"step": 82000,
|
908 |
+
"training_step_in_ms": 1110.9737426675856
|
909 |
+
},
|
910 |
+
{
|
911 |
+
"_prepare_inputs_in_ms": 4.237969063222408,
|
912 |
+
"compute_loss_in_ms": 285.6498990356922,
|
913 |
+
"epoch": 34.31,
|
914 |
+
"learning_rate/full": 0.00025339009590173424,
|
915 |
+
"loss": 2.9727,
|
916 |
+
"step": 83000,
|
917 |
+
"training_step_in_ms": 1117.3185790739954
|
918 |
+
},
|
919 |
+
{
|
920 |
+
"_prepare_inputs_in_ms": 4.234774090349674,
|
921 |
+
"compute_loss_in_ms": 285.5246250964701,
|
922 |
+
"epoch": 34.73,
|
923 |
+
"learning_rate/full": 0.00025035604876669546,
|
924 |
+
"loss": 2.9709,
|
925 |
+
"step": 84000,
|
926 |
+
"training_step_in_ms": 1111.8130441047251
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"_prepare_inputs_in_ms": 4.248618151992559,
|
930 |
+
"compute_loss_in_ms": 285.6561874523759,
|
931 |
+
"epoch": 35.14,
|
932 |
+
"learning_rate/full": 0.00024731263251348453,
|
933 |
+
"loss": 2.969,
|
934 |
+
"step": 85000,
|
935 |
+
"training_step_in_ms": 1112.8755748830736
|
936 |
+
},
|
937 |
+
{
|
938 |
+
"epoch": 35.14,
|
939 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 2.9980032444000244,
|
940 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.2741870945987276,
|
941 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 110.6613,
|
942 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.229,
|
943 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.226,
|
944 |
+
"step": 85000
|
945 |
+
},
|
946 |
+
{
|
947 |
+
"_prepare_inputs_in_ms": 4.240446417796902,
|
948 |
+
"compute_loss_in_ms": 285.5394543148577,
|
949 |
+
"epoch": 35.55,
|
950 |
+
"learning_rate/full": 0.00024425143236331536,
|
951 |
+
"loss": 2.9639,
|
952 |
+
"step": 86000,
|
953 |
+
"training_step_in_ms": 1110.7865899279714
|
954 |
+
},
|
955 |
+
{
|
956 |
+
"_prepare_inputs_in_ms": 4.2231163419783115,
|
957 |
+
"compute_loss_in_ms": 285.532758615911,
|
958 |
+
"epoch": 35.97,
|
959 |
+
"learning_rate/full": 0.000241179291965253,
|
960 |
+
"loss": 2.971,
|
961 |
+
"step": 87000,
|
962 |
+
"training_step_in_ms": 1113.825252827257
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"_prepare_inputs_in_ms": 4.229363452643156,
|
966 |
+
"compute_loss_in_ms": 285.72211230918765,
|
967 |
+
"epoch": 36.38,
|
968 |
+
"learning_rate/full": 0.0002381000579951894,
|
969 |
+
"loss": 2.9636,
|
970 |
+
"step": 88000,
|
971 |
+
"training_step_in_ms": 1118.3622099086642
|
972 |
+
},
|
973 |
+
{
|
974 |
+
"_prepare_inputs_in_ms": 4.2257860116660595,
|
975 |
+
"compute_loss_in_ms": 285.5116978622973,
|
976 |
+
"epoch": 36.79,
|
977 |
+
"learning_rate/full": 0.00023501142340591894,
|
978 |
+
"loss": 2.9656,
|
979 |
+
"step": 89000,
|
980 |
+
"training_step_in_ms": 1111.638593826443
|
981 |
+
},
|
982 |
+
{
|
983 |
+
"_prepare_inputs_in_ms": 4.221606273204088,
|
984 |
+
"compute_loss_in_ms": 285.61226362735033,
|
985 |
+
"epoch": 37.21,
|
986 |
+
"learning_rate/full": 0.00023191415027181022,
|
987 |
+
"loss": 2.9615,
|
988 |
+
"step": 90000,
|
989 |
+
"training_step_in_ms": 1116.2303377054632
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 37.21,
|
993 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 2.996258020401001,
|
994 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.27303322222107285,
|
995 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 108.8741,
|
996 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.348,
|
997 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.23,
|
998 |
+
"step": 90000
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"_prepare_inputs_in_ms": 4.207164986831386,
|
1002 |
+
"compute_loss_in_ms": 285.1755935549736,
|
1003 |
+
"epoch": 37.62,
|
1004 |
+
"learning_rate/full": 0.00022881211473645583,
|
1005 |
+
"loss": 2.963,
|
1006 |
+
"step": 91000,
|
1007 |
+
"training_step_in_ms": 1110.297369044274
|
1008 |
+
},
|
1009 |
+
{
|
1010 |
+
"_prepare_inputs_in_ms": 4.222084645181894,
|
1011 |
+
"compute_loss_in_ms": 285.53527039662004,
|
1012 |
+
"epoch": 38.03,
|
1013 |
+
"learning_rate/full": 0.00022570298446764845,
|
1014 |
+
"loss": 2.9633,
|
1015 |
+
"step": 92000,
|
1016 |
+
"training_step_in_ms": 1112.9915070161223
|
1017 |
+
},
|
1018 |
+
{
|
1019 |
+
"_prepare_inputs_in_ms": 4.232885275036097,
|
1020 |
+
"compute_loss_in_ms": 285.5158912166953,
|
1021 |
+
"epoch": 38.45,
|
1022 |
+
"learning_rate/full": 0.00022258127581536945,
|
1023 |
+
"loss": 2.9538,
|
1024 |
+
"step": 93000,
|
1025 |
+
"training_step_in_ms": 1114.245859079063
|
1026 |
+
},
|
1027 |
+
{
|
1028 |
+
"_prepare_inputs_in_ms": 4.250343676656485,
|
1029 |
+
"compute_loss_in_ms": 285.64605471119285,
|
1030 |
+
"epoch": 38.86,
|
1031 |
+
"learning_rate/full": 0.00021945398441148287,
|
1032 |
+
"loss": 2.9572,
|
1033 |
+
"step": 94000,
|
1034 |
+
"training_step_in_ms": 1112.7353053241968
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"_prepare_inputs_in_ms": 4.230448927730322,
|
1038 |
+
"compute_loss_in_ms": 285.5413333699107,
|
1039 |
+
"epoch": 39.27,
|
1040 |
+
"learning_rate/full": 0.00021632501765960936,
|
1041 |
+
"loss": 2.958,
|
1042 |
+
"step": 95000,
|
1043 |
+
"training_step_in_ms": 1112.5333589836955
|
1044 |
+
},
|
1045 |
+
{
|
1046 |
+
"epoch": 39.27,
|
1047 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 2.993772506713867,
|
1048 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.27348855682421375,
|
1049 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 108.9695,
|
1050 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.342,
|
1051 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.229,
|
1052 |
+
"step": 95000
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"_prepare_inputs_in_ms": 4.215012745159428,
|
1056 |
+
"compute_loss_in_ms": 285.35930648073554,
|
1057 |
+
"epoch": 39.69,
|
1058 |
+
"learning_rate/full": 0.0002131920229539048,
|
1059 |
+
"loss": 2.9558,
|
1060 |
+
"step": 96000,
|
1061 |
+
"training_step_in_ms": 1111.498819194734
|
1062 |
+
},
|
1063 |
+
{
|
1064 |
+
"_prepare_inputs_in_ms": 4.221161104738712,
|
1065 |
+
"compute_loss_in_ms": 285.453462138772,
|
1066 |
+
"epoch": 40.1,
|
1067 |
+
"learning_rate/full": 0.00021005263255270636,
|
1068 |
+
"loss": 2.9559,
|
1069 |
+
"step": 97000,
|
1070 |
+
"training_step_in_ms": 1114.1434171833098
|
1071 |
+
},
|
1072 |
+
{
|
1073 |
+
"_prepare_inputs_in_ms": 4.220512144267559,
|
1074 |
+
"compute_loss_in_ms": 285.53688745573163,
|
1075 |
+
"epoch": 40.51,
|
1076 |
+
"learning_rate/full": 0.0002069107568468244,
|
1077 |
+
"loss": 2.9525,
|
1078 |
+
"step": 98000,
|
1079 |
+
"training_step_in_ms": 1116.582923579961
|
1080 |
+
},
|
1081 |
+
{
|
1082 |
+
"_prepare_inputs_in_ms": 4.22445010766387,
|
1083 |
+
"compute_loss_in_ms": 285.29584189876914,
|
1084 |
+
"epoch": 40.93,
|
1085 |
+
"learning_rate/full": 0.00020377031677881017,
|
1086 |
+
"loss": 2.9509,
|
1087 |
+
"step": 99000,
|
1088 |
+
"training_step_in_ms": 1112.9648886173964
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"_prepare_inputs_in_ms": 4.237125843763351,
|
1092 |
+
"compute_loss_in_ms": 285.87847367301583,
|
1093 |
+
"epoch": 41.34,
|
1094 |
+
"learning_rate/full": 0.00020062580171962844,
|
1095 |
+
"loss": 2.9397,
|
1096 |
+
"step": 100000,
|
1097 |
+
"training_step_in_ms": 1119.0427548959851
|
1098 |
+
},
|
1099 |
+
{
|
1100 |
+
"epoch": 41.34,
|
1101 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 2.9917938709259033,
|
1102 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.27402243679815436,
|
1103 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 108.6022,
|
1104 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.366,
|
1105 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.23,
|
1106 |
+
"step": 100000
|
1107 |
+
},
|
1108 |
+
{
|
1109 |
+
"_prepare_inputs_in_ms": 4.220401306704777,
|
1110 |
+
"compute_loss_in_ms": 285.4624089188874,
|
1111 |
+
"epoch": 41.75,
|
1112 |
+
"learning_rate/full": 0.00019748427643225179,
|
1113 |
+
"loss": 2.9497,
|
1114 |
+
"step": 101000,
|
1115 |
+
"training_step_in_ms": 1113.234252423048
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"_prepare_inputs_in_ms": 4.218052037060261,
|
1119 |
+
"compute_loss_in_ms": 285.50472677126527,
|
1120 |
+
"epoch": 42.17,
|
1121 |
+
"learning_rate/full": 0.0001943402283833764,
|
1122 |
+
"loss": 2.9442,
|
1123 |
+
"step": 102000,
|
1124 |
+
"training_step_in_ms": 1114.7688954658806
|
1125 |
+
},
|
1126 |
+
{
|
1127 |
+
"_prepare_inputs_in_ms": 4.22609718888998,
|
1128 |
+
"compute_loss_in_ms": 285.6670557744801,
|
1129 |
+
"epoch": 42.58,
|
1130 |
+
"learning_rate/full": 0.0001911975795955237,
|
1131 |
+
"loss": 2.938,
|
1132 |
+
"step": 103000,
|
1133 |
+
"training_step_in_ms": 1114.2966277077794
|
1134 |
+
},
|
1135 |
+
{
|
1136 |
+
"_prepare_inputs_in_ms": 4.231020983308554,
|
1137 |
+
"compute_loss_in_ms": 285.41950649395585,
|
1138 |
+
"epoch": 42.99,
|
1139 |
+
"learning_rate/full": 0.00018806024615043859,
|
1140 |
+
"loss": 2.9429,
|
1141 |
+
"step": 104000,
|
1142 |
+
"training_step_in_ms": 1112.3123243488371
|
1143 |
+
},
|
1144 |
+
{
|
1145 |
+
"_prepare_inputs_in_ms": 4.231835335493088,
|
1146 |
+
"compute_loss_in_ms": 285.55181711539626,
|
1147 |
+
"epoch": 43.41,
|
1148 |
+
"learning_rate/full": 0.0001849258586609575,
|
1149 |
+
"loss": 2.9355,
|
1150 |
+
"step": 105000,
|
1151 |
+
"training_step_in_ms": 1116.4177654609084
|
1152 |
+
},
|
1153 |
+
{
|
1154 |
+
"epoch": 43.41,
|
1155 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 2.9879465103149414,
|
1156 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.275499690988243,
|
1157 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 109.1682,
|
1158 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.328,
|
1159 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.229,
|
1160 |
+
"step": 105000
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"_prepare_inputs_in_ms": 4.192932469815743,
|
1164 |
+
"compute_loss_in_ms": 285.3939059227705,
|
1165 |
+
"epoch": 43.82,
|
1166 |
+
"learning_rate/full": 0.0001817951904902926,
|
1167 |
+
"loss": 2.9411,
|
1168 |
+
"step": 106000,
|
1169 |
+
"training_step_in_ms": 1111.0442412495613
|
1170 |
+
},
|
1171 |
+
{
|
1172 |
+
"_prepare_inputs_in_ms": 4.18786546587944,
|
1173 |
+
"compute_loss_in_ms": 285.60110822692513,
|
1174 |
+
"epoch": 44.23,
|
1175 |
+
"learning_rate/full": 0.00017866588728649688,
|
1176 |
+
"loss": 2.9389,
|
1177 |
+
"step": 107000,
|
1178 |
+
"training_step_in_ms": 1114.2360820770264
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"_prepare_inputs_in_ms": 4.191282417625189,
|
1182 |
+
"compute_loss_in_ms": 285.483426745981,
|
1183 |
+
"epoch": 44.65,
|
1184 |
+
"learning_rate/full": 0.00017554497963615946,
|
1185 |
+
"loss": 2.9396,
|
1186 |
+
"step": 108000,
|
1187 |
+
"training_step_in_ms": 1113.102070134133
|
1188 |
+
},
|
1189 |
+
{
|
1190 |
+
"_prepare_inputs_in_ms": 4.215992953628302,
|
1191 |
+
"compute_loss_in_ms": 285.87069864198565,
|
1192 |
+
"epoch": 45.06,
|
1193 |
+
"learning_rate/full": 0.00017243010589616854,
|
1194 |
+
"loss": 2.9398,
|
1195 |
+
"step": 109000,
|
1196 |
+
"training_step_in_ms": 1115.9531138837337
|
1197 |
+
},
|
1198 |
+
{
|
1199 |
+
"_prepare_inputs_in_ms": 4.180787291377783,
|
1200 |
+
"compute_loss_in_ms": 285.6199772916734,
|
1201 |
+
"epoch": 45.47,
|
1202 |
+
"learning_rate/full": 0.00016932203461501055,
|
1203 |
+
"loss": 2.9354,
|
1204 |
+
"step": 110000,
|
1205 |
+
"training_step_in_ms": 1112.3631411641836
|
1206 |
+
},
|
1207 |
+
{
|
1208 |
+
"epoch": 45.47,
|
1209 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 2.9866650104522705,
|
1210 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.27461185232552654,
|
1211 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 108.9151,
|
1212 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.345,
|
1213 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.23,
|
1214 |
+
"step": 110000
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"_prepare_inputs_in_ms": 4.1715224159926905,
|
1218 |
+
"compute_loss_in_ms": 285.4828831627965,
|
1219 |
+
"epoch": 45.89,
|
1220 |
+
"learning_rate/full": 0.00016622153266276704,
|
1221 |
+
"loss": 2.9325,
|
1222 |
+
"step": 111000,
|
1223 |
+
"training_step_in_ms": 1110.1254166848958
|
1224 |
+
},
|
1225 |
+
{
|
1226 |
+
"_prepare_inputs_in_ms": 4.183446723967791,
|
1227 |
+
"compute_loss_in_ms": 285.5392692387104,
|
1228 |
+
"epoch": 46.3,
|
1229 |
+
"learning_rate/full": 0.00016312936504190095,
|
1230 |
+
"loss": 2.9271,
|
1231 |
+
"step": 112000,
|
1232 |
+
"training_step_in_ms": 1116.0438286960125
|
1233 |
+
},
|
1234 |
+
{
|
1235 |
+
"_prepare_inputs_in_ms": 4.181461203843355,
|
1236 |
+
"compute_loss_in_ms": 285.49605195596814,
|
1237 |
+
"epoch": 46.71,
|
1238 |
+
"learning_rate/full": 0.00016004321335415234,
|
1239 |
+
"loss": 2.9338,
|
1240 |
+
"step": 113000,
|
1241 |
+
"training_step_in_ms": 1114.0362310223281
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"_prepare_inputs_in_ms": 4.20052033662796,
|
1245 |
+
"compute_loss_in_ms": 285.6174496598542,
|
1246 |
+
"epoch": 47.13,
|
1247 |
+
"learning_rate/full": 0.00015696694015230966,
|
1248 |
+
"loss": 2.93,
|
1249 |
+
"step": 114000,
|
1250 |
+
"training_step_in_ms": 1112.158472020179
|
1251 |
+
},
|
1252 |
+
{
|
1253 |
+
"_prepare_inputs_in_ms": 4.184404268860817,
|
1254 |
+
"compute_loss_in_ms": 285.52299703657627,
|
1255 |
+
"epoch": 47.54,
|
1256 |
+
"learning_rate/full": 0.00015390436604853944,
|
1257 |
+
"loss": 2.9265,
|
1258 |
+
"step": 115000,
|
1259 |
+
"training_step_in_ms": 1114.8844772167504
|
1260 |
+
},
|
1261 |
+
{
|
1262 |
+
"epoch": 47.54,
|
1263 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 2.985903263092041,
|
1264 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.2781795787221218,
|
1265 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 109.8815,
|
1266 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.281,
|
1267 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.228,
|
1268 |
+
"step": 115000
|
1269 |
+
},
|
1270 |
+
{
|
1271 |
+
"_prepare_inputs_in_ms": 4.152440788542352,
|
1272 |
+
"compute_loss_in_ms": 285.35162526741624,
|
1273 |
+
"epoch": 47.95,
|
1274 |
+
"learning_rate/full": 0.00015085316535270307,
|
1275 |
+
"loss": 2.9288,
|
1276 |
+
"step": 116000,
|
1277 |
+
"training_step_in_ms": 1108.712267011404
|
1278 |
+
},
|
1279 |
+
{
|
1280 |
+
"_prepare_inputs_in_ms": 4.172631837427616,
|
1281 |
+
"compute_loss_in_ms": 285.6740382388234,
|
1282 |
+
"epoch": 48.37,
|
1283 |
+
"learning_rate/full": 0.0001478110551124508,
|
1284 |
+
"loss": 2.9217,
|
1285 |
+
"step": 117000,
|
1286 |
+
"training_step_in_ms": 1119.9308814108372
|
1287 |
+
},
|
1288 |
+
{
|
1289 |
+
"_prepare_inputs_in_ms": 4.173140484839678,
|
1290 |
+
"compute_loss_in_ms": 285.33917328342795,
|
1291 |
+
"epoch": 48.78,
|
1292 |
+
"learning_rate/full": 0.0001447878925453241,
|
1293 |
+
"loss": 2.9189,
|
1294 |
+
"step": 118000,
|
1295 |
+
"training_step_in_ms": 1114.4561827853322
|
1296 |
+
},
|
1297 |
+
{
|
1298 |
+
"_prepare_inputs_in_ms": 4.208178836852312,
|
1299 |
+
"compute_loss_in_ms": 285.7572955302894,
|
1300 |
+
"epoch": 49.19,
|
1301 |
+
"learning_rate/full": 0.00014177531694909012,
|
1302 |
+
"loss": 2.9234,
|
1303 |
+
"step": 119000,
|
1304 |
+
"training_step_in_ms": 1117.5116944983602
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"_prepare_inputs_in_ms": 4.171714887022972,
|
1308 |
+
"compute_loss_in_ms": 285.51325725764036,
|
1309 |
+
"epoch": 49.61,
|
1310 |
+
"learning_rate/full": 0.00013877411365635932,
|
1311 |
+
"loss": 2.919,
|
1312 |
+
"step": 120000,
|
1313 |
+
"training_step_in_ms": 1114.4923375099897
|
1314 |
+
},
|
1315 |
+
{
|
1316 |
+
"epoch": 49.61,
|
1317 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 2.984545946121216,
|
1318 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.27571246372317004,
|
1319 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 107.5626,
|
1320 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.438,
|
1321 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.232,
|
1322 |
+
"step": 120000
|
1323 |
+
},
|
1324 |
+
{
|
1325 |
+
"_prepare_inputs_in_ms": 4.169439662520478,
|
1326 |
+
"compute_loss_in_ms": 285.2081711217761,
|
1327 |
+
"epoch": 50.02,
|
1328 |
+
"learning_rate/full": 0.00013579102545242515,
|
1329 |
+
"loss": 2.9214,
|
1330 |
+
"step": 121000,
|
1331 |
+
"training_step_in_ms": 1117.0064120963216
|
1332 |
+
},
|
1333 |
+
{
|
1334 |
+
"_prepare_inputs_in_ms": 4.175419889390469,
|
1335 |
+
"compute_loss_in_ms": 285.44106700643897,
|
1336 |
+
"epoch": 50.43,
|
1337 |
+
"learning_rate/full": 0.00013282377985218108,
|
1338 |
+
"loss": 2.9123,
|
1339 |
+
"step": 122000,
|
1340 |
+
"training_step_in_ms": 1117.1209677942097
|
1341 |
+
},
|
1342 |
+
{
|
1343 |
+
"_prepare_inputs_in_ms": 4.1646773256361485,
|
1344 |
+
"compute_loss_in_ms": 285.5908838920295,
|
1345 |
+
"epoch": 50.85,
|
1346 |
+
"learning_rate/full": 0.0001298731089790791,
|
1347 |
+
"loss": 2.9181,
|
1348 |
+
"step": 123000,
|
1349 |
+
"training_step_in_ms": 1114.7672307156026
|
1350 |
+
},
|
1351 |
+
{
|
1352 |
+
"_prepare_inputs_in_ms": 4.172112949192524,
|
1353 |
+
"compute_loss_in_ms": 285.507780585438,
|
1354 |
+
"epoch": 51.26,
|
1355 |
+
"learning_rate/full": 0.0001269397408670054,
|
1356 |
+
"loss": 2.9124,
|
1357 |
+
"step": 124000,
|
1358 |
+
"training_step_in_ms": 1116.1798403412104
|
1359 |
+
},
|
1360 |
+
{
|
1361 |
+
"_prepare_inputs_in_ms": 4.171217355877161,
|
1362 |
+
"compute_loss_in_ms": 285.5308585166931,
|
1363 |
+
"epoch": 51.67,
|
1364 |
+
"learning_rate/full": 0.0001240214902928718,
|
1365 |
+
"loss": 2.9169,
|
1366 |
+
"step": 125000,
|
1367 |
+
"training_step_in_ms": 1119.0364625044167
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 51.67,
|
1371 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 2.9826271533966064,
|
1372 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.27485379257600506,
|
1373 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 109.595,
|
1374 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.3,
|
1375 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.228,
|
1376 |
+
"step": 125000
|
1377 |
+
},
|
1378 |
+
{
|
1379 |
+
"_prepare_inputs_in_ms": 4.1942793857760545,
|
1380 |
+
"compute_loss_in_ms": 285.4048260115087,
|
1381 |
+
"epoch": 52.09,
|
1382 |
+
"learning_rate/full": 0.00012112491367260039,
|
1383 |
+
"loss": 2.9117,
|
1384 |
+
"step": 126000,
|
1385 |
+
"training_step_in_ms": 1113.5866565182805
|
1386 |
+
},
|
1387 |
+
{
|
1388 |
+
"_prepare_inputs_in_ms": 4.165726162493229,
|
1389 |
+
"compute_loss_in_ms": 285.52386473864317,
|
1390 |
+
"epoch": 52.5,
|
1391 |
+
"learning_rate/full": 0.0001182477982996471,
|
1392 |
+
"loss": 2.9123,
|
1393 |
+
"step": 127000,
|
1394 |
+
"training_step_in_ms": 1115.4936682023108
|
1395 |
+
},
|
1396 |
+
{
|
1397 |
+
"_prepare_inputs_in_ms": 4.165291707962751,
|
1398 |
+
"compute_loss_in_ms": 285.37697672098875,
|
1399 |
+
"epoch": 52.91,
|
1400 |
+
"learning_rate/full": 0.00011539085405917883,
|
1401 |
+
"loss": 2.9127,
|
1402 |
+
"step": 128000,
|
1403 |
+
"training_step_in_ms": 1112.6525225900114
|
1404 |
+
},
|
1405 |
+
{
|
1406 |
+
"_prepare_inputs_in_ms": 4.205962881445885,
|
1407 |
+
"compute_loss_in_ms": 285.6344051398337,
|
1408 |
+
"epoch": 53.33,
|
1409 |
+
"learning_rate/full": 0.00011255195764553374,
|
1410 |
+
"loss": 2.9072,
|
1411 |
+
"step": 129000,
|
1412 |
+
"training_step_in_ms": 1114.8041105866432
|
1413 |
+
},
|
1414 |
+
{
|
1415 |
+
"_prepare_inputs_in_ms": 4.192876800894737,
|
1416 |
+
"compute_loss_in_ms": 285.6524411961436,
|
1417 |
+
"epoch": 53.74,
|
1418 |
+
"learning_rate/full": 0.00010973748719012139,
|
1419 |
+
"loss": 2.9105,
|
1420 |
+
"step": 130000,
|
1421 |
+
"training_step_in_ms": 1113.7267719507217
|
1422 |
+
},
|
1423 |
+
{
|
1424 |
+
"epoch": 53.74,
|
1425 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 2.983597993850708,
|
1426 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.2789962669075427,
|
1427 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 109.5326,
|
1428 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.304,
|
1429 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.228,
|
1430 |
+
"step": 130000
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"_prepare_inputs_in_ms": 4.207222261806813,
|
1434 |
+
"compute_loss_in_ms": 285.5676299482584,
|
1435 |
+
"epoch": 54.15,
|
1436 |
+
"learning_rate/full": 0.0001069452876591179,
|
1437 |
+
"loss": 2.9063,
|
1438 |
+
"step": 131000,
|
1439 |
+
"training_step_in_ms": 1114.3601090423763
|
1440 |
+
},
|
1441 |
+
{
|
1442 |
+
"_prepare_inputs_in_ms": 4.189547453075647,
|
1443 |
+
"compute_loss_in_ms": 285.45121479034424,
|
1444 |
+
"epoch": 54.57,
|
1445 |
+
"learning_rate/full": 0.00010417604798597693,
|
1446 |
+
"loss": 2.9068,
|
1447 |
+
"step": 132000,
|
1448 |
+
"training_step_in_ms": 1116.6341638937593
|
1449 |
+
},
|
1450 |
+
{
|
1451 |
+
"_prepare_inputs_in_ms": 4.203598700463772,
|
1452 |
+
"compute_loss_in_ms": 285.4171659834683,
|
1453 |
+
"epoch": 54.98,
|
1454 |
+
"learning_rate/full": 0.00010142771516637335,
|
1455 |
+
"loss": 2.8989,
|
1456 |
+
"step": 133000,
|
1457 |
+
"training_step_in_ms": 1110.624721519649
|
1458 |
+
},
|
1459 |
+
{
|
1460 |
+
"_prepare_inputs_in_ms": 4.217664018273354,
|
1461 |
+
"compute_loss_in_ms": 285.5546323284507,
|
1462 |
+
"epoch": 55.39,
|
1463 |
+
"learning_rate/full": 9.870646386303746e-05,
|
1464 |
+
"loss": 2.8974,
|
1465 |
+
"step": 134000,
|
1466 |
+
"training_step_in_ms": 1115.4996632412076
|
1467 |
+
},
|
1468 |
+
{
|
1469 |
+
"_prepare_inputs_in_ms": 4.18796281516552,
|
1470 |
+
"compute_loss_in_ms": 285.3805873543024,
|
1471 |
+
"epoch": 55.81,
|
1472 |
+
"learning_rate/full": 9.601020522405566e-05,
|
1473 |
+
"loss": 2.8997,
|
1474 |
+
"step": 135000,
|
1475 |
+
"training_step_in_ms": 1114.3139710351825
|
1476 |
+
},
|
1477 |
+
{
|
1478 |
+
"epoch": 55.81,
|
1479 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 2.9829113483428955,
|
1480 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.2781282773190371,
|
1481 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 109.4066,
|
1482 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.312,
|
1483 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.229,
|
1484 |
+
"step": 135000
|
1485 |
+
},
|
1486 |
+
{
|
1487 |
+
"_prepare_inputs_in_ms": 4.179593571802465,
|
1488 |
+
"compute_loss_in_ms": 285.6101936176419,
|
1489 |
+
"epoch": 56.22,
|
1490 |
+
"learning_rate/full": 9.333960451090202e-05,
|
1491 |
+
"loss": 2.9042,
|
1492 |
+
"step": 136000,
|
1493 |
+
"training_step_in_ms": 1112.9348441772163
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"_prepare_inputs_in_ms": 4.178862765431404,
|
1497 |
+
"compute_loss_in_ms": 285.4050006046891,
|
1498 |
+
"epoch": 56.63,
|
1499 |
+
"learning_rate/full": 9.069532065434167e-05,
|
1500 |
+
"loss": 2.8997,
|
1501 |
+
"step": 137000,
|
1502 |
+
"training_step_in_ms": 1110.1743725985289
|
1503 |
+
},
|
1504 |
+
{
|
1505 |
+
"_prepare_inputs_in_ms": 4.17331463098526,
|
1506 |
+
"compute_loss_in_ms": 285.60341618955135,
|
1507 |
+
"epoch": 57.05,
|
1508 |
+
"learning_rate/full": 8.807539988537217e-05,
|
1509 |
+
"loss": 2.8999,
|
1510 |
+
"step": 138000,
|
1511 |
+
"training_step_in_ms": 1112.455148395151
|
1512 |
+
},
|
1513 |
+
{
|
1514 |
+
"_prepare_inputs_in_ms": 4.164013888686895,
|
1515 |
+
"compute_loss_in_ms": 285.4794158451259,
|
1516 |
+
"epoch": 57.46,
|
1517 |
+
"learning_rate/full": 8.54857283641461e-05,
|
1518 |
+
"loss": 2.9008,
|
1519 |
+
"step": 139000,
|
1520 |
+
"training_step_in_ms": 1112.6597697511315
|
1521 |
+
},
|
1522 |
+
{
|
1523 |
+
"_prepare_inputs_in_ms": 4.174750838428736,
|
1524 |
+
"compute_loss_in_ms": 285.3338685967028,
|
1525 |
+
"epoch": 57.88,
|
1526 |
+
"learning_rate/full": 8.292176191253292e-05,
|
1527 |
+
"loss": 2.9003,
|
1528 |
+
"step": 140000,
|
1529 |
+
"training_step_in_ms": 1112.5756445713341
|
1530 |
+
},
|
1531 |
+
{
|
1532 |
+
"epoch": 57.88,
|
1533 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 2.983377456665039,
|
1534 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.2765083682413393,
|
1535 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 109.2039,
|
1536 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.326,
|
1537 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.229,
|
1538 |
+
"step": 140000
|
1539 |
+
},
|
1540 |
+
{
|
1541 |
+
"_prepare_inputs_in_ms": 4.186901926267438,
|
1542 |
+
"compute_loss_in_ms": 285.5366085804999,
|
1543 |
+
"epoch": 58.29,
|
1544 |
+
"learning_rate/full": 8.038926097845864e-05,
|
1545 |
+
"loss": 2.89,
|
1546 |
+
"step": 141000,
|
1547 |
+
"training_step_in_ms": 1111.180388186127
|
1548 |
+
},
|
1549 |
+
{
|
1550 |
+
"_prepare_inputs_in_ms": 4.166560925543308,
|
1551 |
+
"compute_loss_in_ms": 285.2483623623848,
|
1552 |
+
"epoch": 58.7,
|
1553 |
+
"learning_rate/full": 7.788627220446403e-05,
|
1554 |
+
"loss": 2.8908,
|
1555 |
+
"step": 142000,
|
1556 |
+
"training_step_in_ms": 1112.5438826270401
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"_prepare_inputs_in_ms": 4.172076798975468,
|
1560 |
+
"compute_loss_in_ms": 285.31228306889534,
|
1561 |
+
"epoch": 59.12,
|
1562 |
+
"learning_rate/full": 7.541341316557602e-05,
|
1563 |
+
"loss": 2.888,
|
1564 |
+
"step": 143000,
|
1565 |
+
"training_step_in_ms": 1114.1774371489882
|
1566 |
+
},
|
1567 |
+
{
|
1568 |
+
"_prepare_inputs_in_ms": 4.1760097071528435,
|
1569 |
+
"compute_loss_in_ms": 285.51259553432465,
|
1570 |
+
"epoch": 59.53,
|
1571 |
+
"learning_rate/full": 7.29712940027603e-05,
|
1572 |
+
"loss": 2.8933,
|
1573 |
+
"step": 144000,
|
1574 |
+
"training_step_in_ms": 1113.300205629319
|
1575 |
+
},
|
1576 |
+
{
|
1577 |
+
"_prepare_inputs_in_ms": 4.171927604824305,
|
1578 |
+
"compute_loss_in_ms": 285.47950995340943,
|
1579 |
+
"epoch": 59.94,
|
1580 |
+
"learning_rate/full": 7.0560517272378e-05,
|
1581 |
+
"loss": 2.8946,
|
1582 |
+
"step": 145000,
|
1583 |
+
"training_step_in_ms": 1110.925380833447
|
1584 |
+
},
|
1585 |
+
{
|
1586 |
+
"epoch": 59.94,
|
1587 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 2.9790754318237305,
|
1588 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.27903548274273476,
|
1589 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 108.6903,
|
1590 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.36,
|
1591 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.23,
|
1592 |
+
"step": 145000
|
1593 |
+
},
|
1594 |
+
{
|
1595 |
+
"_prepare_inputs_in_ms": 4.179818335829712,
|
1596 |
+
"compute_loss_in_ms": 285.67399540916085,
|
1597 |
+
"epoch": 60.36,
|
1598 |
+
"learning_rate/full": 6.818167779751427e-05,
|
1599 |
+
"loss": 2.8868,
|
1600 |
+
"step": 146000,
|
1601 |
+
"training_step_in_ms": 1113.526238951832
|
1602 |
+
},
|
1603 |
+
{
|
1604 |
+
"_prepare_inputs_in_ms": 4.174669615924358,
|
1605 |
+
"compute_loss_in_ms": 285.47526767477393,
|
1606 |
+
"epoch": 60.77,
|
1607 |
+
"learning_rate/full": 6.58353625212141e-05,
|
1608 |
+
"loss": 2.8908,
|
1609 |
+
"step": 147000,
|
1610 |
+
"training_step_in_ms": 1112.4517313353717
|
1611 |
+
},
|
1612 |
+
{
|
1613 |
+
"_prepare_inputs_in_ms": 4.206293076276779,
|
1614 |
+
"compute_loss_in_ms": 285.6568570397794,
|
1615 |
+
"epoch": 61.18,
|
1616 |
+
"learning_rate/full": 6.351985161010259e-05,
|
1617 |
+
"loss": 2.886,
|
1618 |
+
"step": 148000,
|
1619 |
+
"training_step_in_ms": 1114.374936837703
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"_prepare_inputs_in_ms": 4.173767436295748,
|
1623 |
+
"compute_loss_in_ms": 285.36785116791725,
|
1624 |
+
"epoch": 61.6,
|
1625 |
+
"learning_rate/full": 6.124034730854495e-05,
|
1626 |
+
"loss": 2.8877,
|
1627 |
+
"step": 149000,
|
1628 |
+
"training_step_in_ms": 1113.2941167131066
|
1629 |
+
},
|
1630 |
+
{
|
1631 |
+
"_prepare_inputs_in_ms": 4.186146479099989,
|
1632 |
+
"compute_loss_in_ms": 285.7034795098007,
|
1633 |
+
"epoch": 62.01,
|
1634 |
+
"learning_rate/full": 5.8995079874983696e-05,
|
1635 |
+
"loss": 2.887,
|
1636 |
+
"step": 150000,
|
1637 |
+
"training_step_in_ms": 1114.685032505542
|
1638 |
+
},
|
1639 |
+
{
|
1640 |
+
"epoch": 62.01,
|
1641 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 2.9789364337921143,
|
1642 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.2814554306931564,
|
1643 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 110.1484,
|
1644 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.263,
|
1645 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.227,
|
1646 |
+
"step": 150000
|
1647 |
+
},
|
1648 |
+
{
|
1649 |
+
"_prepare_inputs_in_ms": 4.176326023369301,
|
1650 |
+
"compute_loss_in_ms": 285.46767780929804,
|
1651 |
+
"epoch": 62.42,
|
1652 |
+
"learning_rate/full": 5.678240821954202e-05,
|
1653 |
+
"loss": 2.8806,
|
1654 |
+
"step": 151000,
|
1655 |
+
"training_step_in_ms": 1111.9945207312703
|
1656 |
+
},
|
1657 |
+
{
|
1658 |
+
"_prepare_inputs_in_ms": 4.179010454565287,
|
1659 |
+
"compute_loss_in_ms": 285.4651117064059,
|
1660 |
+
"epoch": 62.84,
|
1661 |
+
"learning_rate/full": 5.460730353825116e-05,
|
1662 |
+
"loss": 2.8834,
|
1663 |
+
"step": 152000,
|
1664 |
+
"training_step_in_ms": 1110.2052029296756
|
1665 |
+
},
|
1666 |
+
{
|
1667 |
+
"_prepare_inputs_in_ms": 4.173945639282465,
|
1668 |
+
"compute_loss_in_ms": 285.60662161558867,
|
1669 |
+
"epoch": 63.25,
|
1670 |
+
"learning_rate/full": 5.246594910646354e-05,
|
1671 |
+
"loss": 2.8816,
|
1672 |
+
"step": 153000,
|
1673 |
+
"training_step_in_ms": 1115.5096570029855
|
1674 |
+
},
|
1675 |
+
{
|
1676 |
+
"_prepare_inputs_in_ms": 4.187856215983629,
|
1677 |
+
"compute_loss_in_ms": 285.6514365822077,
|
1678 |
+
"epoch": 63.66,
|
1679 |
+
"learning_rate/full": 5.0363155892235236e-05,
|
1680 |
+
"loss": 2.8866,
|
1681 |
+
"step": 154000,
|
1682 |
+
"training_step_in_ms": 1113.550076983869
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"_prepare_inputs_in_ms": 4.191848460584879,
|
1686 |
+
"compute_loss_in_ms": 285.825974162668,
|
1687 |
+
"epoch": 64.08,
|
1688 |
+
"learning_rate/full": 4.8297283330226226e-05,
|
1689 |
+
"loss": 2.8812,
|
1690 |
+
"step": 155000,
|
1691 |
+
"training_step_in_ms": 1113.2165458351374
|
1692 |
+
},
|
1693 |
+
{
|
1694 |
+
"epoch": 64.08,
|
1695 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 2.9803640842437744,
|
1696 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.28091860195000073,
|
1697 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 110.2234,
|
1698 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.258,
|
1699 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.227,
|
1700 |
+
"step": 155000
|
1701 |
+
},
|
1702 |
+
{
|
1703 |
+
"_prepare_inputs_in_ms": 4.170489263970677,
|
1704 |
+
"compute_loss_in_ms": 285.33177894353867,
|
1705 |
+
"epoch": 64.49,
|
1706 |
+
"learning_rate/full": 4.626682959161812e-05,
|
1707 |
+
"loss": 2.8769,
|
1708 |
+
"step": 156000,
|
1709 |
+
"training_step_in_ms": 1107.8080112151802
|
1710 |
+
},
|
1711 |
+
{
|
1712 |
+
"_prepare_inputs_in_ms": 4.165396176278591,
|
1713 |
+
"compute_loss_in_ms": 285.30143217742443,
|
1714 |
+
"epoch": 64.9,
|
1715 |
+
"learning_rate/full": 4.427635648454991e-05,
|
1716 |
+
"loss": 2.8775,
|
1717 |
+
"step": 157000,
|
1718 |
+
"training_step_in_ms": 1111.1020593941212
|
1719 |
+
},
|
1720 |
+
{
|
1721 |
+
"_prepare_inputs_in_ms": 4.1787227392196655,
|
1722 |
+
"compute_loss_in_ms": 285.6033191792667,
|
1723 |
+
"epoch": 65.32,
|
1724 |
+
"learning_rate/full": 4.2324305856376166e-05,
|
1725 |
+
"loss": 2.8824,
|
1726 |
+
"step": 158000,
|
1727 |
+
"training_step_in_ms": 1114.8409751541913
|
1728 |
+
},
|
1729 |
+
{
|
1730 |
+
"_prepare_inputs_in_ms": 4.168594349175692,
|
1731 |
+
"compute_loss_in_ms": 285.385168325156,
|
1732 |
+
"epoch": 65.73,
|
1733 |
+
"learning_rate/full": 4.040926393437829e-05,
|
1734 |
+
"loss": 2.8742,
|
1735 |
+
"step": 159000,
|
1736 |
+
"training_step_in_ms": 1112.1875176765025
|
1737 |
+
},
|
1738 |
+
{
|
1739 |
+
"_prepare_inputs_in_ms": 4.188820585608482,
|
1740 |
+
"compute_loss_in_ms": 285.74348379299045,
|
1741 |
+
"epoch": 66.14,
|
1742 |
+
"learning_rate/full": 3.853553323166454e-05,
|
1743 |
+
"loss": 2.874,
|
1744 |
+
"step": 160000,
|
1745 |
+
"training_step_in_ms": 1114.071101732552
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"epoch": 66.14,
|
1749 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 2.980635404586792,
|
1750 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.2805308037735457,
|
1751 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 109.2483,
|
1752 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.323,
|
1753 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.229,
|
1754 |
+
"step": 160000
|
1755 |
+
},
|
1756 |
+
{
|
1757 |
+
"_prepare_inputs_in_ms": 4.17639887550982,
|
1758 |
+
"compute_loss_in_ms": 285.54739573970437,
|
1759 |
+
"epoch": 66.56,
|
1760 |
+
"learning_rate/full": 3.6703457126541777e-05,
|
1761 |
+
"loss": 2.8751,
|
1762 |
+
"step": 161000,
|
1763 |
+
"training_step_in_ms": 1101.9119679294527
|
1764 |
+
},
|
1765 |
+
{
|
1766 |
+
"_prepare_inputs_in_ms": 4.183506786823273,
|
1767 |
+
"compute_loss_in_ms": 285.5607514716685,
|
1768 |
+
"epoch": 66.97,
|
1769 |
+
"learning_rate/full": 3.4908041134979454e-05,
|
1770 |
+
"loss": 2.8781,
|
1771 |
+
"step": 162000,
|
1772 |
+
"training_step_in_ms": 1103.5643678978086
|
1773 |
+
},
|
1774 |
+
{
|
1775 |
+
"_prepare_inputs_in_ms": 4.188889868557453,
|
1776 |
+
"compute_loss_in_ms": 285.67521207407117,
|
1777 |
+
"epoch": 67.38,
|
1778 |
+
"learning_rate/full": 3.315517477040358e-05,
|
1779 |
+
"loss": 2.878,
|
1780 |
+
"step": 163000,
|
1781 |
+
"training_step_in_ms": 1105.4489219635725
|
1782 |
+
},
|
1783 |
+
{
|
1784 |
+
"_prepare_inputs_in_ms": 4.175573732703924,
|
1785 |
+
"compute_loss_in_ms": 285.59245705604553,
|
1786 |
+
"epoch": 67.8,
|
1787 |
+
"learning_rate/full": 3.14417822230312e-05,
|
1788 |
+
"loss": 2.8757,
|
1789 |
+
"step": 164000,
|
1790 |
+
"training_step_in_ms": 1105.2035297378898
|
1791 |
+
},
|
1792 |
+
{
|
1793 |
+
"_prepare_inputs_in_ms": 4.187327720224857,
|
1794 |
+
"compute_loss_in_ms": 285.88794915005565,
|
1795 |
+
"epoch": 68.21,
|
1796 |
+
"learning_rate/full": 2.9771712961539955e-05,
|
1797 |
+
"loss": 2.8763,
|
1798 |
+
"step": 165000,
|
1799 |
+
"training_step_in_ms": 1105.2709091752768
|
1800 |
+
},
|
1801 |
+
{
|
1802 |
+
"epoch": 68.21,
|
1803 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 2.9800891876220703,
|
1804 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.2802985242098701,
|
1805 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 110.8323,
|
1806 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.218,
|
1807 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.226,
|
1808 |
+
"step": 165000
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"_prepare_inputs_in_ms": 4.207263810605538,
|
1812 |
+
"compute_loss_in_ms": 285.7474652826786,
|
1813 |
+
"epoch": 68.62,
|
1814 |
+
"learning_rate/full": 2.8143644982694906e-05,
|
1815 |
+
"loss": 2.8761,
|
1816 |
+
"step": 166000,
|
1817 |
+
"training_step_in_ms": 1100.3973172418773
|
1818 |
+
},
|
1819 |
+
{
|
1820 |
+
"_prepare_inputs_in_ms": 4.210827711969614,
|
1821 |
+
"compute_loss_in_ms": 285.5911776944995,
|
1822 |
+
"epoch": 69.04,
|
1823 |
+
"learning_rate/full": 2.65579799879085e-05,
|
1824 |
+
"loss": 2.8751,
|
1825 |
+
"step": 167000,
|
1826 |
+
"training_step_in_ms": 1104.1183153651655
|
1827 |
+
},
|
1828 |
+
{
|
1829 |
+
"_prepare_inputs_in_ms": 4.198013573884964,
|
1830 |
+
"compute_loss_in_ms": 285.68624898046255,
|
1831 |
+
"epoch": 69.45,
|
1832 |
+
"learning_rate/full": 2.5015109216291467e-05,
|
1833 |
+
"loss": 2.8722,
|
1834 |
+
"step": 168000,
|
1835 |
+
"training_step_in_ms": 1105.6054084450006
|
1836 |
+
},
|
1837 |
+
{
|
1838 |
+
"_prepare_inputs_in_ms": 4.18689937889576,
|
1839 |
+
"compute_loss_in_ms": 285.61638662964106,
|
1840 |
+
"epoch": 69.86,
|
1841 |
+
"learning_rate/full": 2.3515413348120198e-05,
|
1842 |
+
"loss": 2.8743,
|
1843 |
+
"step": 169000,
|
1844 |
+
"training_step_in_ms": 1102.9215082861483
|
1845 |
+
},
|
1846 |
+
{
|
1847 |
+
"_prepare_inputs_in_ms": 4.210809834301472,
|
1848 |
+
"compute_loss_in_ms": 285.83876856043935,
|
1849 |
+
"epoch": 70.28,
|
1850 |
+
"learning_rate/full": 2.20592624109097e-05,
|
1851 |
+
"loss": 2.8696,
|
1852 |
+
"step": 170000,
|
1853 |
+
"training_step_in_ms": 1106.3744595497847
|
1854 |
+
},
|
1855 |
+
{
|
1856 |
+
"epoch": 70.28,
|
1857 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 2.979834794998169,
|
1858 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.28091535007381413,
|
1859 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 109.6944,
|
1860 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.293,
|
1861 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.228,
|
1862 |
+
"step": 170000
|
1863 |
+
},
|
1864 |
+
{
|
1865 |
+
"_prepare_inputs_in_ms": 4.173562210507509,
|
1866 |
+
"compute_loss_in_ms": 285.2328538559377,
|
1867 |
+
"epoch": 70.69,
|
1868 |
+
"learning_rate/full": 2.064562414115867e-05,
|
1869 |
+
"loss": 2.8723,
|
1870 |
+
"step": 171000,
|
1871 |
+
"training_step_in_ms": 1101.5736067220569
|
1872 |
+
},
|
1873 |
+
{
|
1874 |
+
"_prepare_inputs_in_ms": 4.184829708188772,
|
1875 |
+
"compute_loss_in_ms": 285.7893420346081,
|
1876 |
+
"epoch": 71.1,
|
1877 |
+
"learning_rate/full": 1.9277674551421355e-05,
|
1878 |
+
"loss": 2.8712,
|
1879 |
+
"step": 172000,
|
1880 |
+
"training_step_in_ms": 1104.9391337744892
|
1881 |
+
},
|
1882 |
+
{
|
1883 |
+
"_prepare_inputs_in_ms": 4.175479732453823,
|
1884 |
+
"compute_loss_in_ms": 285.58204352483153,
|
1885 |
+
"epoch": 71.52,
|
1886 |
+
"learning_rate/full": 1.7954315491282236e-05,
|
1887 |
+
"loss": 2.868,
|
1888 |
+
"step": 173000,
|
1889 |
+
"training_step_in_ms": 1106.567913543433
|
1890 |
+
},
|
1891 |
+
{
|
1892 |
+
"_prepare_inputs_in_ms": 4.216715902090073,
|
1893 |
+
"compute_loss_in_ms": 285.6606830134988,
|
1894 |
+
"epoch": 71.93,
|
1895 |
+
"learning_rate/full": 1.6674616367900976e-05,
|
1896 |
+
"loss": 2.8675,
|
1897 |
+
"step": 174000,
|
1898 |
+
"training_step_in_ms": 1104.7934159226716
|
1899 |
+
},
|
1900 |
+
{
|
1901 |
+
"_prepare_inputs_in_ms": 4.171092137694359,
|
1902 |
+
"compute_loss_in_ms": 285.4122787192464,
|
1903 |
+
"epoch": 72.34,
|
1904 |
+
"learning_rate/full": 1.5441452273561308e-05,
|
1905 |
+
"loss": 2.8671,
|
1906 |
+
"step": 175000,
|
1907 |
+
"training_step_in_ms": 1106.7299974374473
|
1908 |
+
},
|
1909 |
+
{
|
1910 |
+
"epoch": 72.34,
|
1911 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 2.9793758392333984,
|
1912 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.281087276669587,
|
1913 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 110.0629,
|
1914 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.269,
|
1915 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.227,
|
1916 |
+
"step": 175000
|
1917 |
+
},
|
1918 |
+
{
|
1919 |
+
"_prepare_inputs_in_ms": 4.168345641072204,
|
1920 |
+
"compute_loss_in_ms": 285.7807895615697,
|
1921 |
+
"epoch": 72.76,
|
1922 |
+
"learning_rate/full": 1.4253825239264306e-05,
|
1923 |
+
"loss": 2.8714,
|
1924 |
+
"step": 176000,
|
1925 |
+
"training_step_in_ms": 1101.577396351844
|
1926 |
+
},
|
1927 |
+
{
|
1928 |
+
"_prepare_inputs_in_ms": 4.185015048831701,
|
1929 |
+
"compute_loss_in_ms": 285.48355446383357,
|
1930 |
+
"epoch": 73.17,
|
1931 |
+
"learning_rate/full": 1.3110908410358026e-05,
|
1932 |
+
"loss": 2.8674,
|
1933 |
+
"step": 177000,
|
1934 |
+
"training_step_in_ms": 1106.790641155094
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"_prepare_inputs_in_ms": 4.181742530316114,
|
1938 |
+
"compute_loss_in_ms": 285.46897569671273,
|
1939 |
+
"epoch": 73.58,
|
1940 |
+
"learning_rate/full": 1.2015269571172228e-05,
|
1941 |
+
"loss": 2.8685,
|
1942 |
+
"step": 178000,
|
1943 |
+
"training_step_in_ms": 1105.456206858158
|
1944 |
+
},
|
1945 |
+
{
|
1946 |
+
"_prepare_inputs_in_ms": 4.189217183738947,
|
1947 |
+
"compute_loss_in_ms": 285.7022790014744,
|
1948 |
+
"epoch": 74.0,
|
1949 |
+
"learning_rate/full": 1.0966013151343868e-05,
|
1950 |
+
"loss": 2.8703,
|
1951 |
+
"step": 179000,
|
1952 |
+
"training_step_in_ms": 1103.0243016816676
|
1953 |
+
},
|
1954 |
+
{
|
1955 |
+
"_prepare_inputs_in_ms": 4.1993721053004265,
|
1956 |
+
"compute_loss_in_ms": 285.9701578617096,
|
1957 |
+
"epoch": 74.41,
|
1958 |
+
"learning_rate/full": 9.962417871458617e-06,
|
1959 |
+
"loss": 2.8679,
|
1960 |
+
"step": 180000,
|
1961 |
+
"training_step_in_ms": 1108.1376051008701
|
1962 |
+
},
|
1963 |
+
{
|
1964 |
+
"epoch": 74.41,
|
1965 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 2.978816032409668,
|
1966 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.28102599122389305,
|
1967 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 110.271,
|
1968 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.255,
|
1969 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.227,
|
1970 |
+
"step": 180000
|
1971 |
+
},
|
1972 |
+
{
|
1973 |
+
"_prepare_inputs_in_ms": 4.160367134140759,
|
1974 |
+
"compute_loss_in_ms": 285.407042812556,
|
1975 |
+
"epoch": 74.82,
|
1976 |
+
"learning_rate/full": 9.006738502964407e-06,
|
1977 |
+
"loss": 2.8643,
|
1978 |
+
"step": 181000,
|
1979 |
+
"training_step_in_ms": 1101.3521456047893
|
1980 |
+
},
|
1981 |
+
{
|
1982 |
+
"_prepare_inputs_in_ms": 4.180663630366325,
|
1983 |
+
"compute_loss_in_ms": 285.55450112745166,
|
1984 |
+
"epoch": 75.24,
|
1985 |
+
"learning_rate/full": 8.098183863851083e-06,
|
1986 |
+
"loss": 2.8683,
|
1987 |
+
"step": 182000,
|
1988 |
+
"training_step_in_ms": 1107.5391217172146
|
1989 |
+
},
|
1990 |
+
{
|
1991 |
+
"_prepare_inputs_in_ms": 4.1743567287921906,
|
1992 |
+
"compute_loss_in_ms": 285.2670620009303,
|
1993 |
+
"epoch": 75.65,
|
1994 |
+
"learning_rate/full": 7.236978126380823e-06,
|
1995 |
+
"loss": 2.864,
|
1996 |
+
"step": 183000,
|
1997 |
+
"training_step_in_ms": 1103.5778979249299
|
1998 |
+
},
|
1999 |
+
{
|
2000 |
+
"_prepare_inputs_in_ms": 4.20133513212204,
|
2001 |
+
"compute_loss_in_ms": 285.7320618443191,
|
2002 |
+
"epoch": 76.06,
|
2003 |
+
"learning_rate/full": 6.424124390450504e-06,
|
2004 |
+
"loss": 2.8696,
|
2005 |
+
"step": 184000,
|
2006 |
+
"training_step_in_ms": 1102.3650901168585
|
2007 |
+
},
|
2008 |
+
{
|
2009 |
+
"_prepare_inputs_in_ms": 4.1793825179338455,
|
2010 |
+
"compute_loss_in_ms": 285.5250694230199,
|
2011 |
+
"epoch": 76.48,
|
2012 |
+
"learning_rate/full": 5.657451579824824e-06,
|
2013 |
+
"loss": 2.8645,
|
2014 |
+
"step": 185000,
|
2015 |
+
"training_step_in_ms": 1106.2330449260771
|
2016 |
+
},
|
2017 |
+
{
|
2018 |
+
"epoch": 76.48,
|
2019 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 2.9790234565734863,
|
2020 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.2804143185850342,
|
2021 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 111.0093,
|
2022 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.207,
|
2023 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.225,
|
2024 |
+
"step": 185000
|
2025 |
+
},
|
2026 |
+
{
|
2027 |
+
"_prepare_inputs_in_ms": 4.18695215044952,
|
2028 |
+
"compute_loss_in_ms": 285.5290654525161,
|
2029 |
+
"epoch": 76.89,
|
2030 |
+
"learning_rate/full": 4.939520495279481e-06,
|
2031 |
+
"loss": 2.8657,
|
2032 |
+
"step": 186000,
|
2033 |
+
"training_step_in_ms": 1101.3268077746034
|
2034 |
+
},
|
2035 |
+
{
|
2036 |
+
"_prepare_inputs_in_ms": 4.185709021985531,
|
2037 |
+
"compute_loss_in_ms": 285.5161408223212,
|
2038 |
+
"epoch": 77.3,
|
2039 |
+
"learning_rate/full": 4.269717665299333e-06,
|
2040 |
+
"loss": 2.8633,
|
2041 |
+
"step": 187000,
|
2042 |
+
"training_step_in_ms": 1107.3937772586942
|
2043 |
+
},
|
2044 |
+
{
|
2045 |
+
"_prepare_inputs_in_ms": 4.219432931393385,
|
2046 |
+
"compute_loss_in_ms": 285.7696287557483,
|
2047 |
+
"epoch": 77.72,
|
2048 |
+
"learning_rate/full": 3.6476104696328672e-06,
|
2049 |
+
"loss": 2.8611,
|
2050 |
+
"step": 188000,
|
2051 |
+
"training_step_in_ms": 1103.4366898052394
|
2052 |
+
},
|
2053 |
+
{
|
2054 |
+
"_prepare_inputs_in_ms": 4.222444631159306,
|
2055 |
+
"compute_loss_in_ms": 285.7456459365785,
|
2056 |
+
"epoch": 78.13,
|
2057 |
+
"learning_rate/full": 3.0745965927555298e-06,
|
2058 |
+
"loss": 2.8682,
|
2059 |
+
"step": 189000,
|
2060 |
+
"training_step_in_ms": 1102.7803975529969
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"_prepare_inputs_in_ms": 4.181710965931416,
|
2064 |
+
"compute_loss_in_ms": 285.33873960748315,
|
2065 |
+
"epoch": 78.54,
|
2066 |
+
"learning_rate/full": 2.550171112510902e-06,
|
2067 |
+
"loss": 2.8619,
|
2068 |
+
"step": 190000,
|
2069 |
+
"training_step_in_ms": 1105.0700605846941
|
2070 |
+
},
|
2071 |
+
{
|
2072 |
+
"epoch": 78.54,
|
2073 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 2.979418992996216,
|
2074 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.28126194557201906,
|
2075 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 110.0926,
|
2076 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.267,
|
2077 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.227,
|
2078 |
+
"step": 190000
|
2079 |
+
},
|
2080 |
+
{
|
2081 |
+
"_prepare_inputs_in_ms": 4.1674747299857255,
|
2082 |
+
"compute_loss_in_ms": 285.1683004386723,
|
2083 |
+
"epoch": 78.96,
|
2084 |
+
"learning_rate/full": 2.07446342303903e-06,
|
2085 |
+
"loss": 2.8623,
|
2086 |
+
"step": 191000,
|
2087 |
+
"training_step_in_ms": 1101.7088311165571
|
2088 |
+
},
|
2089 |
+
{
|
2090 |
+
"_prepare_inputs_in_ms": 4.192074902355671,
|
2091 |
+
"compute_loss_in_ms": 285.65734274312854,
|
2092 |
+
"epoch": 79.37,
|
2093 |
+
"learning_rate/full": 1.6475908980941423e-06,
|
2094 |
+
"loss": 2.8592,
|
2095 |
+
"step": 192000,
|
2096 |
+
"training_step_in_ms": 1110.4893043078482
|
2097 |
+
},
|
2098 |
+
{
|
2099 |
+
"_prepare_inputs_in_ms": 4.188501738011837,
|
2100 |
+
"compute_loss_in_ms": 285.3913672603667,
|
2101 |
+
"epoch": 79.79,
|
2102 |
+
"learning_rate/full": 1.2693051031663184e-06,
|
2103 |
+
"loss": 2.8693,
|
2104 |
+
"step": 193000,
|
2105 |
+
"training_step_in_ms": 1105.3064069263637
|
2106 |
+
},
|
2107 |
+
{
|
2108 |
+
"_prepare_inputs_in_ms": 4.1890876069664955,
|
2109 |
+
"compute_loss_in_ms": 285.6683066636324,
|
2110 |
+
"epoch": 80.2,
|
2111 |
+
"learning_rate/full": 9.404559306640304e-07,
|
2112 |
+
"loss": 2.8679,
|
2113 |
+
"step": 194000,
|
2114 |
+
"training_step_in_ms": 1106.7661010883749
|
2115 |
+
},
|
2116 |
+
{
|
2117 |
+
"_prepare_inputs_in_ms": 4.195614516735077,
|
2118 |
+
"compute_loss_in_ms": 285.7047406025231,
|
2119 |
+
"epoch": 80.61,
|
2120 |
+
"learning_rate/full": 6.607217220689466e-07,
|
2121 |
+
"loss": 2.8595,
|
2122 |
+
"step": 195000,
|
2123 |
+
"training_step_in_ms": 1110.2134825922549
|
2124 |
+
},
|
2125 |
+
{
|
2126 |
+
"epoch": 80.61,
|
2127 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 2.9787235260009766,
|
2128 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.2807572494534342,
|
2129 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 109.6903,
|
2130 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.293,
|
2131 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.228,
|
2132 |
+
"step": 195000
|
2133 |
+
},
|
2134 |
+
{
|
2135 |
+
"_prepare_inputs_in_ms": 4.209323071125077,
|
2136 |
+
"compute_loss_in_ms": 285.70444655045867,
|
2137 |
+
"epoch": 81.03,
|
2138 |
+
"learning_rate/full": 4.301714976112869e-07,
|
2139 |
+
"loss": 2.8627,
|
2140 |
+
"step": 196000,
|
2141 |
+
"training_step_in_ms": 1106.642473962158
|
2142 |
+
},
|
2143 |
+
{
|
2144 |
+
"_prepare_inputs_in_ms": 4.216882940381765,
|
2145 |
+
"compute_loss_in_ms": 285.90086993202567,
|
2146 |
+
"epoch": 81.44,
|
2147 |
+
"learning_rate/full": 2.4870533697582963e-07,
|
2148 |
+
"loss": 2.861,
|
2149 |
+
"step": 197000,
|
2150 |
+
"training_step_in_ms": 1110.1682490482926
|
2151 |
+
},
|
2152 |
+
{
|
2153 |
+
"_prepare_inputs_in_ms": 4.208073288202286,
|
2154 |
+
"compute_loss_in_ms": 285.9070298522711,
|
2155 |
+
"epoch": 81.85,
|
2156 |
+
"learning_rate/full": 1.167309390885718e-07,
|
2157 |
+
"loss": 2.8634,
|
2158 |
+
"step": 198000,
|
2159 |
+
"training_step_in_ms": 1105.8664784356952
|
2160 |
+
},
|
2161 |
+
{
|
2162 |
+
"_prepare_inputs_in_ms": 4.220877002924681,
|
2163 |
+
"compute_loss_in_ms": 285.8088936395943,
|
2164 |
+
"epoch": 82.27,
|
2165 |
+
"learning_rate/full": 3.407474692453949e-08,
|
2166 |
+
"loss": 2.8649,
|
2167 |
+
"step": 199000,
|
2168 |
+
"training_step_in_ms": 1108.864688232541
|
2169 |
+
},
|
2170 |
+
{
|
2171 |
+
"_prepare_inputs_in_ms": 4.200665093958378,
|
2172 |
+
"compute_loss_in_ms": 285.4954933747649,
|
2173 |
+
"epoch": 82.68,
|
2174 |
+
"learning_rate/full": 7.485261950046507e-10,
|
2175 |
+
"loss": 2.8661,
|
2176 |
+
"step": 200000,
|
2177 |
+
"training_step_in_ms": 1107.0144655555487
|
2178 |
+
},
|
2179 |
+
{
|
2180 |
+
"epoch": 82.68,
|
2181 |
+
"eval_visual_genome-densecap-local-densecap-test_loss": 2.9789507389068604,
|
2182 |
+
"eval_visual_genome-densecap-local-densecap-test_meteor": 0.28079051577715114,
|
2183 |
+
"eval_visual_genome-densecap-local-densecap-test_runtime": 109.9761,
|
2184 |
+
"eval_visual_genome-densecap-local-densecap-test_samples_per_second": 7.274,
|
2185 |
+
"eval_visual_genome-densecap-local-densecap-test_steps_per_second": 0.227,
|
2186 |
+
"step": 200000
|
2187 |
+
}
|
2188 |
+
],
|
2189 |
+
"max_steps": 200000,
|
2190 |
+
"num_train_epochs": 83,
|
2191 |
+
"total_flos": 4.81380362914756e+23,
|
2192 |
+
"trial_name": null,
|
2193 |
+
"trial_params": null
|
2194 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a4981a2c6d5212e3c5f9722334ed6160131dd453f8bc64be7b40cf8fa9ff105
|
3 |
+
size 5240
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
252 |
+
param_shapes = zero_model_states[0].param_shapes
|
253 |
+
|
254 |
+
# Reconstruction protocol:
|
255 |
+
#
|
256 |
+
# XXX: document this
|
257 |
+
|
258 |
+
if debug:
|
259 |
+
for i in range(world_size):
|
260 |
+
for j in range(len(fp32_flat_groups[0])):
|
261 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
262 |
+
|
263 |
+
# XXX: memory usage doubles here (zero2)
|
264 |
+
num_param_groups = len(fp32_flat_groups[0])
|
265 |
+
merged_single_partition_of_fp32_groups = []
|
266 |
+
for i in range(num_param_groups):
|
267 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
268 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
269 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
270 |
+
avail_numel = sum(
|
271 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
272 |
+
|
273 |
+
if debug:
|
274 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
275 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
276 |
+
# not asserting if there is a mismatch due to possible padding
|
277 |
+
print(f"Have {avail_numel} numels to process.")
|
278 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
279 |
+
|
280 |
+
# params
|
281 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
282 |
+
# out-of-core computing solution
|
283 |
+
total_numel = 0
|
284 |
+
total_params = 0
|
285 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
286 |
+
offset = 0
|
287 |
+
avail_numel = full_single_fp32_vector.numel()
|
288 |
+
for name, shape in shapes.items():
|
289 |
+
|
290 |
+
unpartitioned_numel = shape.numel()
|
291 |
+
total_numel += unpartitioned_numel
|
292 |
+
total_params += 1
|
293 |
+
|
294 |
+
if debug:
|
295 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
296 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
297 |
+
offset += unpartitioned_numel
|
298 |
+
|
299 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
300 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
301 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
302 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
303 |
+
align_to = 2 * world_size
|
304 |
+
|
305 |
+
def zero2_align(x):
|
306 |
+
return align_to * math.ceil(x / align_to)
|
307 |
+
|
308 |
+
if debug:
|
309 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
310 |
+
|
311 |
+
offset = zero2_align(offset)
|
312 |
+
avail_numel = zero2_align(avail_numel)
|
313 |
+
|
314 |
+
if debug:
|
315 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
316 |
+
|
317 |
+
# Sanity check
|
318 |
+
if offset != avail_numel:
|
319 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
320 |
+
|
321 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
322 |
+
|
323 |
+
|
324 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
325 |
+
state_dict = OrderedDict()
|
326 |
+
|
327 |
+
# buffers
|
328 |
+
buffers = zero_model_states[0].buffers
|
329 |
+
state_dict.update(buffers)
|
330 |
+
if debug:
|
331 |
+
print(f"added {len(buffers)} buffers")
|
332 |
+
|
333 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
334 |
+
|
335 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
336 |
+
|
337 |
+
# recover shared parameters
|
338 |
+
for pair in zero_model_states[0].shared_params:
|
339 |
+
if pair[1] in state_dict:
|
340 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
341 |
+
|
342 |
+
return state_dict
|
343 |
+
|
344 |
+
|
345 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
346 |
+
remainder = unpartitioned_numel % world_size
|
347 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
348 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
349 |
+
return partitioned_numel, padding_numel
|
350 |
+
|
351 |
+
|
352 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
353 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
354 |
+
return
|
355 |
+
|
356 |
+
if debug:
|
357 |
+
for i in range(world_size):
|
358 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
359 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
360 |
+
|
361 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
362 |
+
wanted_params = len(frozen_param_shapes)
|
363 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
364 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
365 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
366 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
367 |
+
|
368 |
+
total_params = 0
|
369 |
+
total_numel = 0
|
370 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
371 |
+
total_params += 1
|
372 |
+
unpartitioned_numel = shape.numel()
|
373 |
+
total_numel += unpartitioned_numel
|
374 |
+
|
375 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
376 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
377 |
+
|
378 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
379 |
+
|
380 |
+
if debug:
|
381 |
+
print(
|
382 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
383 |
+
)
|
384 |
+
|
385 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
386 |
+
|
387 |
+
|
388 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
389 |
+
param_shapes = zero_model_states[0].param_shapes
|
390 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
391 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
392 |
+
# param, re-consolidating each param, while dealing with padding if any
|
393 |
+
|
394 |
+
# merge list of dicts, preserving order
|
395 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
396 |
+
|
397 |
+
if debug:
|
398 |
+
for i in range(world_size):
|
399 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
400 |
+
|
401 |
+
wanted_params = len(param_shapes)
|
402 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
403 |
+
# not asserting if there is a mismatch due to possible padding
|
404 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
405 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
406 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
407 |
+
|
408 |
+
# params
|
409 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
410 |
+
# out-of-core computing solution
|
411 |
+
offset = 0
|
412 |
+
total_numel = 0
|
413 |
+
total_params = 0
|
414 |
+
for name, shape in param_shapes.items():
|
415 |
+
|
416 |
+
unpartitioned_numel = shape.numel()
|
417 |
+
total_numel += unpartitioned_numel
|
418 |
+
total_params += 1
|
419 |
+
|
420 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
421 |
+
|
422 |
+
if debug:
|
423 |
+
print(
|
424 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
425 |
+
)
|
426 |
+
|
427 |
+
# XXX: memory usage doubles here
|
428 |
+
state_dict[name] = torch.cat(
|
429 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
430 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
431 |
+
offset += partitioned_numel
|
432 |
+
|
433 |
+
offset *= world_size
|
434 |
+
|
435 |
+
# Sanity check
|
436 |
+
if offset != avail_numel:
|
437 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
438 |
+
|
439 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
440 |
+
|
441 |
+
|
442 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
443 |
+
state_dict = OrderedDict()
|
444 |
+
|
445 |
+
# buffers
|
446 |
+
buffers = zero_model_states[0].buffers
|
447 |
+
state_dict.update(buffers)
|
448 |
+
if debug:
|
449 |
+
print(f"added {len(buffers)} buffers")
|
450 |
+
|
451 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
452 |
+
|
453 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
454 |
+
|
455 |
+
# recover shared parameters
|
456 |
+
for pair in zero_model_states[0].shared_params:
|
457 |
+
if pair[1] in state_dict:
|
458 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
459 |
+
|
460 |
+
return state_dict
|
461 |
+
|
462 |
+
|
463 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
464 |
+
"""
|
465 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
466 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
467 |
+
via a model hub.
|
468 |
+
|
469 |
+
Args:
|
470 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
471 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
472 |
+
|
473 |
+
Returns:
|
474 |
+
- pytorch ``state_dict``
|
475 |
+
|
476 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
477 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
478 |
+
the checkpoint.
|
479 |
+
|
480 |
+
A typical usage might be ::
|
481 |
+
|
482 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
483 |
+
# do the training and checkpoint saving
|
484 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
485 |
+
model = model.cpu() # move to cpu
|
486 |
+
model.load_state_dict(state_dict)
|
487 |
+
# submit to model hub or save the model to share with others
|
488 |
+
|
489 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
490 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
491 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
492 |
+
|
493 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
494 |
+
|
495 |
+
"""
|
496 |
+
if tag is None:
|
497 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
498 |
+
if os.path.isfile(latest_path):
|
499 |
+
with open(latest_path, 'r') as fd:
|
500 |
+
tag = fd.read().strip()
|
501 |
+
else:
|
502 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
503 |
+
|
504 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
505 |
+
|
506 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
507 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
508 |
+
|
509 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
510 |
+
|
511 |
+
|
512 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
513 |
+
"""
|
514 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
515 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
516 |
+
|
517 |
+
Args:
|
518 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
519 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
520 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
521 |
+
"""
|
522 |
+
|
523 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
524 |
+
print(f"Saving fp32 state dict to {output_file}")
|
525 |
+
torch.save(state_dict, output_file)
|
526 |
+
|
527 |
+
|
528 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
529 |
+
"""
|
530 |
+
1. Put the provided model to cpu
|
531 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
532 |
+
3. Load it into the provided model
|
533 |
+
|
534 |
+
Args:
|
535 |
+
- ``model``: the model object to update
|
536 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
537 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
538 |
+
|
539 |
+
Returns:
|
540 |
+
- ``model`: modified model
|
541 |
+
|
542 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
543 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
544 |
+
conveniently placed for you in the checkpoint folder.
|
545 |
+
|
546 |
+
A typical usage might be ::
|
547 |
+
|
548 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
549 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
550 |
+
# submit to model hub or save the model to share with others
|
551 |
+
|
552 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
553 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
554 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
555 |
+
|
556 |
+
"""
|
557 |
+
logger.info(f"Extracting fp32 weights")
|
558 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
559 |
+
|
560 |
+
logger.info(f"Overwriting model with fp32 weights")
|
561 |
+
model = model.cpu()
|
562 |
+
model.load_state_dict(state_dict, strict=False)
|
563 |
+
|
564 |
+
return model
|
565 |
+
|
566 |
+
|
567 |
+
if __name__ == "__main__":
|
568 |
+
|
569 |
+
parser = argparse.ArgumentParser()
|
570 |
+
parser.add_argument("checkpoint_dir",
|
571 |
+
type=str,
|
572 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
573 |
+
parser.add_argument(
|
574 |
+
"output_file",
|
575 |
+
type=str,
|
576 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
577 |
+
parser.add_argument("-t",
|
578 |
+
"--tag",
|
579 |
+
type=str,
|
580 |
+
default=None,
|
581 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
582 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
583 |
+
args = parser.parse_args()
|
584 |
+
|
585 |
+
debug = args.debug
|
586 |
+
|
587 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|