onebitquantized
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -62,5 +62,20 @@ model = AutoGPTQForCausalLM.from_quantized(
|
|
62 |
outputs = model.generate(**inputs, do_sample=True, max_new_tokens=1024)
|
63 |
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
|
64 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
# Contact Us
|
66 |
For additional xMADified models, access to fine-tuning, and general questions, please contact us at [email protected] and join our waiting list.
|
|
|
62 |
outputs = model.generate(**inputs, do_sample=True, max_new_tokens=1024)
|
63 |
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
|
64 |
```
|
65 |
+
|
66 |
+
# Citation
|
67 |
+
|
68 |
+
If you found this model useful, please cite our research paper.
|
69 |
+
|
70 |
+
```
|
71 |
+
@article{zhang2024leanquant,
|
72 |
+
title={LeanQuant: Accurate and Scalable Large Language Model Quantization with Loss-error-aware Grid},
|
73 |
+
author={Zhang, Tianyi and Shrivastava, Anshumali},
|
74 |
+
journal={arXiv preprint arXiv:2407.10032},
|
75 |
+
year={2024},
|
76 |
+
url={https://arxiv.org/abs/2407.10032},
|
77 |
+
}
|
78 |
+
```
|
79 |
+
|
80 |
# Contact Us
|
81 |
For additional xMADified models, access to fine-tuning, and general questions, please contact us at [email protected] and join our waiting list.
|