Image-Text-to-Text
xtuner
LZHgrla commited on
Commit
dcd50b3
1 Parent(s): 772f69e

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +81 -0
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ datasets:
4
+ - liuhaotian/LLaVA-Pretrain
5
+ - liuhaotian/LLaVA-Instruct-150K
6
+ pipeline_tag: visual-question-answering
7
+ ---
8
+
9
+ <div align="center">
10
+ <img src="https://github.com/InternLM/lmdeploy/assets/36994684/0cf8d00f-e86b-40ba-9b54-dc8f1bc6c8d8" width="600"/>
11
+
12
+
13
+ [![Generic badge](https://img.shields.io/badge/GitHub-%20XTuner-black.svg)](https://github.com/InternLM/xtuner)
14
+
15
+
16
+ </div>
17
+
18
+ ## Model
19
+
20
+ llava-v1.5-7b-xtuner is a LLaVA model fine-tuned from [Vicuna-v1.5-7B](https://huggingface.co/lmsys/vicuna-7b-v1.5) and [CLIP-ViT-Large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) with [LLaVA-Pretrain](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain) and [LLaVA-Instruct](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K) by [XTuner](https://github.com/InternLM/xtuner).
21
+
22
+
23
+ ## Quickstart
24
+
25
+ ### Installation
26
+
27
+ ```shell
28
+ pip install -U 'xtuner[deepspeed]'
29
+ ```
30
+
31
+ ### Chat
32
+
33
+ ```shell
34
+ xtuner chat lmsys/vicuna-7b-v1.5 \
35
+ --visual-encoder openai/clip-vit-large-patch14 \
36
+ --llava xtuner/llava-v1.5-7b-xtuner \
37
+ --prompt-template vicuna \
38
+ --image $IMAGE_PATH
39
+ ```
40
+
41
+ ### Training
42
+
43
+ 1. Alignment module pretraining (saved by default in `./work_dirs/`)
44
+
45
+ ```shell
46
+ NPROC_PER_NODE=8 xtuner train llava_vicuna_v15_7b_clip_vit_large_p14_336_e1_gpu8_pretrain --deepspeed deepspeed_zero2
47
+ ```
48
+
49
+ 2. Instruction following fine-tuning (saved by default in `./work_dirs/`)
50
+
51
+ ```shell
52
+ NPROC_PER_NODE=8 xtuner train llava_vicuna_v15_7b_qlora_clip_vit_large_p14_336_lora_e1_gpu8_finetune --deepspeed deepspeed_zero2
53
+ ```
54
+
55
+
56
+ ### MMBench Evaluation
57
+
58
+ XTuner integrates the MMBench evaluation, and you can perform evaluations with the following command!
59
+
60
+ ```bash
61
+ xtuner mmbench lmsys/vicuna-7b-v1.5 \
62
+ --visual-encoder openai/clip-vit-large-patch14 \
63
+ --llava xtuner/llava-v1.5-7b-xtuner \
64
+ --prompt-template vicuna \
65
+ --data-path $MMBENCH_DATA_PATH \
66
+ --language en \
67
+ --work-dir $RESULT_PATH
68
+ ```
69
+
70
+ After the evaluation is completed, if it's a development set, it will directly print out the results; If it's a test set, you need to submit `mmbench_result.xlsx` to the official MMBench for final evaluation to obtain precision results!
71
+
72
+ ## Citation
73
+
74
+ ```bibtex
75
+ @misc{2023xtuner,
76
+ title={XTuner: A Toolkit for Efficiently Fine-tuning LLM},
77
+ author={XTuner Contributors},
78
+ howpublished = {\url{https://github.com/InternLM/xtuner}},
79
+ year={2023}
80
+ }
81
+ ```