--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_6_1 metrics: - wer model-index: - name: Whisper Small Frisian 10m results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 6.1 type: mozilla-foundation/common_voice_6_1 args: 'config: frisian, split: test' metrics: - name: Wer type: wer value: 62.548565318125114 --- # Whisper Small Frisian 10m This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 6.1 dataset. It achieves the following results on the evaluation set: - Loss: 1.5656 - Wer: 62.5486 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 300 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.8838 | 6.6667 | 100 | 1.6662 | 71.3171 | | 0.0976 | 13.3333 | 200 | 1.5559 | 63.6036 | | 0.023 | 20.0 | 300 | 1.5656 | 62.5486 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1