yadavom commited on
Commit
cd6b4c7
·
verified ·
1 Parent(s): 107dcdb

End of training

Browse files
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/layoutlm-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - funsd
8
+ model-index:
9
+ - name: layoutlm-funsd
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # layoutlm-funsd
17
+
18
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.7045
21
+ - Answer: {'precision': 0.7013274336283186, 'recall': 0.7836835599505563, 'f1': 0.7402218330414477, 'number': 809}
22
+ - Header: {'precision': 0.3111111111111111, 'recall': 0.35294117647058826, 'f1': 0.33070866141732286, 'number': 119}
23
+ - Question: {'precision': 0.773936170212766, 'recall': 0.819718309859155, 'f1': 0.796169630642955, 'number': 1065}
24
+ - Overall Precision: 0.7148
25
+ - Overall Recall: 0.7772
26
+ - Overall F1: 0.7447
27
+ - Overall Accuracy: 0.8045
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 3e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 8
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 15
53
+ - mixed_precision_training: Native AMP
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
+ | 1.8311 | 1.0 | 10 | 1.5893 | {'precision': 0.01643192488262911, 'recall': 0.0173053152039555, 'f1': 0.016857314870559904, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.23476005188067445, 'recall': 0.1699530516431925, 'f1': 0.19716775599128541, 'number': 1065} | 0.1201 | 0.0978 | 0.1079 | 0.3735 |
60
+ | 1.453 | 2.0 | 20 | 1.2320 | {'precision': 0.16265750286368844, 'recall': 0.17552533992583436, 'f1': 0.16884661117717004, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.43330980945659847, 'recall': 0.5765258215962441, 'f1': 0.49476228847703463, 'number': 1065} | 0.3301 | 0.3793 | 0.3530 | 0.5937 |
61
+ | 1.0885 | 3.0 | 30 | 0.9242 | {'precision': 0.4983991462113127, 'recall': 0.5772558714462299, 'f1': 0.5349369988545246, 'number': 809} | {'precision': 0.05263157894736842, 'recall': 0.008403361344537815, 'f1': 0.014492753623188406, 'number': 119} | {'precision': 0.556745182012848, 'recall': 0.7323943661971831, 'f1': 0.632603406326034, 'number': 1065} | 0.5295 | 0.6262 | 0.5738 | 0.7132 |
62
+ | 0.8351 | 4.0 | 40 | 0.7984 | {'precision': 0.5991902834008097, 'recall': 0.7317676143386898, 'f1': 0.6588759042849194, 'number': 809} | {'precision': 0.16, 'recall': 0.06722689075630252, 'f1': 0.09467455621301775, 'number': 119} | {'precision': 0.6562763268744735, 'recall': 0.7314553990610329, 'f1': 0.691829484902309, 'number': 1065} | 0.6198 | 0.6919 | 0.6539 | 0.7574 |
63
+ | 0.6746 | 5.0 | 50 | 0.7364 | {'precision': 0.6524663677130045, 'recall': 0.7194066749072929, 'f1': 0.6843033509700176, 'number': 809} | {'precision': 0.21951219512195122, 'recall': 0.15126050420168066, 'f1': 0.1791044776119403, 'number': 119} | {'precision': 0.6493212669683258, 'recall': 0.8084507042253521, 'f1': 0.7202007528230866, 'number': 1065} | 0.6352 | 0.7331 | 0.6806 | 0.7789 |
64
+ | 0.5833 | 6.0 | 60 | 0.7065 | {'precision': 0.6387487386478304, 'recall': 0.7824474660074165, 'f1': 0.7033333333333333, 'number': 809} | {'precision': 0.25333333333333335, 'recall': 0.15966386554621848, 'f1': 0.1958762886597938, 'number': 119} | {'precision': 0.7177489177489178, 'recall': 0.7784037558685446, 'f1': 0.7468468468468469, 'number': 1065} | 0.6668 | 0.7431 | 0.7029 | 0.7837 |
65
+ | 0.5101 | 7.0 | 70 | 0.6765 | {'precision': 0.6811751904243744, 'recall': 0.7737948084054388, 'f1': 0.724537037037037, 'number': 809} | {'precision': 0.2564102564102564, 'recall': 0.25210084033613445, 'f1': 0.2542372881355932, 'number': 119} | {'precision': 0.7319762510602206, 'recall': 0.8103286384976526, 'f1': 0.7691622103386809, 'number': 1065} | 0.6858 | 0.7622 | 0.7220 | 0.7972 |
66
+ | 0.4538 | 8.0 | 80 | 0.6643 | {'precision': 0.6775210084033614, 'recall': 0.7972805933250927, 'f1': 0.7325383304940376, 'number': 809} | {'precision': 0.23893805309734514, 'recall': 0.226890756302521, 'f1': 0.2327586206896552, 'number': 119} | {'precision': 0.7389830508474576, 'recall': 0.8187793427230047, 'f1': 0.7768374164810691, 'number': 1065} | 0.6878 | 0.7747 | 0.7286 | 0.8014 |
67
+ | 0.3958 | 9.0 | 90 | 0.6724 | {'precision': 0.7022222222222222, 'recall': 0.7812113720642769, 'f1': 0.7396138092451726, 'number': 809} | {'precision': 0.25757575757575757, 'recall': 0.2857142857142857, 'f1': 0.27091633466135456, 'number': 119} | {'precision': 0.7319932998324958, 'recall': 0.8206572769953052, 'f1': 0.7737937140327579, 'number': 1065} | 0.6918 | 0.7727 | 0.7300 | 0.7994 |
68
+ | 0.3902 | 10.0 | 100 | 0.6726 | {'precision': 0.6846071044133477, 'recall': 0.7861557478368356, 'f1': 0.7318757192174913, 'number': 809} | {'precision': 0.288135593220339, 'recall': 0.2857142857142857, 'f1': 0.2869198312236287, 'number': 119} | {'precision': 0.7652790079716564, 'recall': 0.8112676056338028, 'f1': 0.7876025524156791, 'number': 1065} | 0.7050 | 0.7697 | 0.7359 | 0.8080 |
69
+ | 0.3294 | 11.0 | 110 | 0.6827 | {'precision': 0.7018701870187019, 'recall': 0.788627935723115, 'f1': 0.7427240977881256, 'number': 809} | {'precision': 0.28888888888888886, 'recall': 0.3277310924369748, 'f1': 0.3070866141732283, 'number': 119} | {'precision': 0.7508561643835616, 'recall': 0.8234741784037559, 'f1': 0.7854903716972683, 'number': 1065} | 0.7025 | 0.7797 | 0.7391 | 0.8032 |
70
+ | 0.3124 | 12.0 | 120 | 0.6909 | {'precision': 0.6974697469746974, 'recall': 0.7836835599505563, 'f1': 0.7380675203725262, 'number': 809} | {'precision': 0.3125, 'recall': 0.33613445378151263, 'f1': 0.3238866396761134, 'number': 119} | {'precision': 0.771960958296362, 'recall': 0.8169014084507042, 'f1': 0.7937956204379562, 'number': 1065} | 0.7135 | 0.7747 | 0.7428 | 0.8047 |
71
+ | 0.2965 | 13.0 | 130 | 0.6986 | {'precision': 0.7002212389380531, 'recall': 0.7824474660074165, 'f1': 0.7390542907180385, 'number': 809} | {'precision': 0.3230769230769231, 'recall': 0.35294117647058826, 'f1': 0.3373493975903615, 'number': 119} | {'precision': 0.7712014134275619, 'recall': 0.819718309859155, 'f1': 0.7947200728265817, 'number': 1065} | 0.7147 | 0.7767 | 0.7444 | 0.8040 |
72
+ | 0.2676 | 14.0 | 140 | 0.7010 | {'precision': 0.7028824833702882, 'recall': 0.7836835599505563, 'f1': 0.7410870835768557, 'number': 809} | {'precision': 0.32575757575757575, 'recall': 0.36134453781512604, 'f1': 0.3426294820717131, 'number': 119} | {'precision': 0.7768888888888889, 'recall': 0.8206572769953052, 'f1': 0.7981735159817351, 'number': 1065} | 0.7184 | 0.7782 | 0.7471 | 0.8060 |
73
+ | 0.2747 | 15.0 | 150 | 0.7045 | {'precision': 0.7013274336283186, 'recall': 0.7836835599505563, 'f1': 0.7402218330414477, 'number': 809} | {'precision': 0.3111111111111111, 'recall': 0.35294117647058826, 'f1': 0.33070866141732286, 'number': 119} | {'precision': 0.773936170212766, 'recall': 0.819718309859155, 'f1': 0.796169630642955, 'number': 1065} | 0.7148 | 0.7772 | 0.7447 | 0.8045 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.41.2
79
+ - Pytorch 2.3.0+cu121
80
+ - Datasets 2.19.2
81
+ - Tokenizers 0.19.1
logs/events.out.tfevents.1718013889.4a153d784002.1470.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:85db09fefebbcd9c4dbec289b75f5436595c0ac57b659d3cd0257caac206b468
3
- size 14915
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1eba50279738ee8aabb9c981224233c895999f62b55d9c19f002aefadef0074
3
+ size 15984
preprocessor_config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_valid_processor_keys": [
3
+ "images",
4
+ "do_resize",
5
+ "size",
6
+ "resample",
7
+ "apply_ocr",
8
+ "ocr_lang",
9
+ "tesseract_config",
10
+ "return_tensors",
11
+ "data_format",
12
+ "input_data_format"
13
+ ],
14
+ "apply_ocr": true,
15
+ "do_resize": true,
16
+ "image_processor_type": "LayoutLMv2ImageProcessor",
17
+ "ocr_lang": null,
18
+ "processor_class": "LayoutLMv2Processor",
19
+ "resample": 2,
20
+ "size": {
21
+ "height": 224,
22
+ "width": 224
23
+ },
24
+ "tesseract_config": ""
25
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "mask_token": "[MASK]",
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "only_label_first_subword": true,
60
+ "pad_token": "[PAD]",
61
+ "pad_token_box": [
62
+ 0,
63
+ 0,
64
+ 0,
65
+ 0
66
+ ],
67
+ "pad_token_label": -100,
68
+ "processor_class": "LayoutLMv2Processor",
69
+ "sep_token": "[SEP]",
70
+ "sep_token_box": [
71
+ 1000,
72
+ 1000,
73
+ 1000,
74
+ 1000
75
+ ],
76
+ "strip_accents": null,
77
+ "tokenize_chinese_chars": true,
78
+ "tokenizer_class": "LayoutLMv2Tokenizer",
79
+ "unk_token": "[UNK]"
80
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff