yagebin commited on
Commit
a0cfce8
·
verified ·
1 Parent(s): 71f41e2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +99 -6
README.md CHANGED
@@ -1,6 +1,99 @@
1
- ---
2
- license: mit
3
- tags:
4
- - trl
5
- - sft
6
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - trl
5
+ - sft
6
+ ---
7
+
8
+ # Model Card for Chatbot-Smart-Home
9
+
10
+ Chatbot-Smart-Home
11
+
12
+ A fine-tuned **Mistral-7B-Instruct model** to create an intelligent chatbot for **smart home consultations**. This model helps users design a personalized smart home solution by interacting via scenario-based dialogue and recommending devices based on user preferences, property attributes, and budget.
13
+
14
+ ---
15
+
16
+ ## Model Details
17
+
18
+ ### Model Description
19
+
20
+ This model is tailored to simulate natural conversations for smart home planning. It gathers user preferences, property attributes, and demographic details to recommend smart home devices, calculate costs, and assess ecological ratings.
21
+
22
+ - **Developed by:** [Ruiqi Tan]
23
+ - **Funded by:** Self-funded
24
+ - **Shared by:** [Ruiqi Tan]
25
+ - **Model type:** Causal Language Model (Fine-tuned Mistral-7B)
26
+ - **Language(s) (NLP):** English
27
+ - **License:** MIT
28
+ - **Finetuned from model:** Mistral-7B-Instruct
29
+
30
+ ### Model Sources
31
+
32
+ - **Repository:** [yagebin/smart_home_chatbot]
33
+
34
+
35
+ ---
36
+
37
+ ## Uses
38
+
39
+ ### Direct Use
40
+
41
+ This model is designed for:
42
+ - Generating scenario-based dialogues to gather user preferences.
43
+ - Recommending smart home solutions (e.g., devices, installation metrics, cost).
44
+ - Simulating smart home consultations for businesses or personal use.
45
+
46
+ ### Downstream Use
47
+
48
+ This model can be integrated into:
49
+ - Smart home consultation platforms.
50
+ - Virtual assistants for smart home system design.
51
+ - Research on AI-driven ecological solutions.
52
+
53
+ ### Out-of-Scope Use
54
+
55
+ This model is not designed for:
56
+ - Applications requiring real-time control of smart home devices.
57
+ - Use in languages other than English.
58
+ - Situations demanding extensive general knowledge outside smart home domains.
59
+
60
+ ---
61
+
62
+ ## Bias, Risks, and Limitations
63
+
64
+ ### Bias
65
+ - The model relies on synthesized data, which may introduce biases.
66
+ - Limited to scenarios and devices represented in the training data.
67
+
68
+ ### Risks
69
+ - The model's responses are deterministic and depend heavily on user inputs, which might lead to inappropriate recommendations if inputs are inconsistent.
70
+
71
+ ### Limitations
72
+ - Does not account for regional or cultural differences in smart home preferences.
73
+ - Cannot dynamically update to reflect changes in smart device availability or pricing.
74
+
75
+ ### Recommendations
76
+ - Validate device recommendations and costs with real-world data.
77
+ - Use the model in combination with human oversight for critical use cases.
78
+
79
+ ---
80
+
81
+ ## How to Get Started with the Model
82
+
83
+ ```python
84
+ from transformers import AutoTokenizer, AutoModelForCausalLM
85
+
86
+ # Load the model and tokenizer
87
+ model_id = "your_username/chatbot-smart-home"
88
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
89
+ model = AutoModelForCausalLM.from_pretrained(model_id)
90
+
91
+ # Example input
92
+ input_text = "What smart lighting options can improve energy efficiency?"
93
+
94
+ # Generate a response
95
+ inputs = tokenizer(input_text, return_tensors="pt")
96
+ outputs = model.generate(**inputs, max_length=256)
97
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
98
+
99
+ print(response)