---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:44668
- loss:CosineSimilarityLoss
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
widget:
- source_sentence: 'Ringkasan data ekonomi bulan Desember '
sentences:
- 'Indikator Ekonomi Mei '
- Indikator Konstruksi Triwulanan III-
- 'Direktori Perusahaan Pertanian, Peternakan '
- source_sentence: 'Data kesejahteraan rakyat Indonesia '
sentences:
- 'Statistik Tanaman Hias Indonesia '
- 'Direktori Usaha/Perusahaan Menengah Besar Penyediaan Akomodasi dan Penyediaan
Makan Minum Sensus Ekonomi '
- Produk Domestik Regional Bruto Provinsi-Provinsi di Indonesia menurut Pengeluaran, -
- source_sentence: 'Buku direktori kontraktor Indonesia bagian barat '
sentences:
- Statistik Perdagangan Luar Negeri Indonesia Ekspor, , Jilid I
- 'Hasil Survei Kualitas Air di Daerah Istimewa Yogyakarta '
- 'Direktori Perusahaan Konstruksi , Buku II: Pulau Jawa, Bali, Nusa Tenggara, dan
Kepulauan Maluku'
- source_sentence: 'Direktori Perusahaan Jasa kesehatan Buku II Hasil SE '
sentences:
- 'Direktori Perusahaan Jasa kesehatan Buku II Hasil SE '
- 'Statistik Transportasi '
- 'Statistik Produksi Kehutanan '
- source_sentence: Sistem neraca lingkungan dan ekonomi Indonesia, -
sentences:
- 'Distribusi Perdagangan Komoditas Minyak Goreng Indonesia '
- Sistem Terintegrasi Neraca Lingkungan dan Ekonomi Indonesia -
- 'Statistik Tanaman Biofarmaka dan Obat-obatan '
datasets:
- yahyaabd/bps-query-publication-similarity-pairs
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: allstat semantic dev
type: allstat-semantic-dev
metrics:
- type: pearson_cosine
value: 0.9671548110817865
name: Pearson Cosine
- type: spearman_cosine
value: 0.8713936346864137
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: allstat semantic test
type: allstat-semantic-test
metrics:
- type: pearson_cosine
value: 0.9643539430966529
name: Pearson Cosine
- type: spearman_cosine
value: 0.8571860451909368
name: Spearman Cosine
---
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) on the [bps-query-publication-similarity-pairs](https://huggingface.co/datasets/yahyaabd/bps-query-publication-similarity-pairs) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2)
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [bps-query-publication-similarity-pairs](https://huggingface.co/datasets/yahyaabd/bps-query-publication-similarity-pairs)
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstat-semantic-search-mpnet-base-v3-sts")
# Run inference
sentences = [
'Sistem neraca lingkungan dan ekonomi Indonesia, -',
'Sistem Terintegrasi Neraca Lingkungan dan Ekonomi Indonesia -',
'Distribusi Perdagangan Komoditas Minyak Goreng Indonesia ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Datasets: `allstat-semantic-dev` and `allstat-semantic-test`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | allstat-semantic-dev | allstat-semantic-test |
|:--------------------|:---------------------|:----------------------|
| pearson_cosine | 0.9672 | 0.9644 |
| **spearman_cosine** | **0.8714** | **0.8572** |
## Training Details
### Training Dataset
#### bps-query-publication-similarity-pairs
* Dataset: [bps-query-publication-similarity-pairs](https://huggingface.co/datasets/yahyaabd/bps-query-publication-similarity-pairs) at [cf2836e](https://huggingface.co/datasets/yahyaabd/bps-query-publication-similarity-pairs/tree/cf2836e364b4ca465c3b32e19e754c77f0b90c26)
* Size: 44,668 training samples
* Columns: query
, doc_title
, and score
* Approximate statistics based on the first 1000 samples:
| | query | doc_title | score |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details |
Tren bisnis perikanan di Indonesia
| Statistik Perusahaan Perikanan
| 0.88
|
| Statistik APBDes
| Statistik Perusahaan Peternakan Ternak Besar dan Kecil
| 0.29
|
| Laporan Indikator Konstruksi semester 1
| Statistik Air Bersih -
| 0.25
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Evaluation Dataset
#### bps-query-publication-similarity-pairs
* Dataset: [bps-query-publication-similarity-pairs](https://huggingface.co/datasets/yahyaabd/bps-query-publication-similarity-pairs) at [cf2836e](https://huggingface.co/datasets/yahyaabd/bps-query-publication-similarity-pairs/tree/cf2836e364b4ca465c3b32e19e754c77f0b90c26)
* Size: 2,482 evaluation samples
* Columns: query
, doc_title
, and score
* Approximate statistics based on the first 1000 samples:
| | query | doc_title | score |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | Dampak COVID-19 pada usaha mikro kecil
| Statistik Penyedia Makan Minum
| 0.2
|
| Sektor konstruksi Aceh, data UMKM
| Profil Usaha Konstruksi Perorangan Provinsi Aceh,
| 0.88
|
| SP2010: Statistik lansia Sumatera Selatan
| Statistik Penduduk Lanjut Usia Provinsi Sumatera Selatan -Hasil Sensus Penduduk
| 0.81
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 4
- `warmup_ratio`: 0.1
- `fp16`: True
#### All Hyperparameters