yahyaabd commited on
Commit
7aa32c7
·
verified ·
1 Parent(s): 535d37e

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
2_Dense/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"in_features": 1024, "out_features": 256, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
2_Dense/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b1a384d35ab4568d4825456f7cbc4ea54b2167953a3115b22b968b58cbbf9dd
3
+ size 1049760
README.md ADDED
@@ -0,0 +1,483 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:2602
8
+ - loss:ContrastiveLoss
9
+ base_model: denaya/indoSBERT-large
10
+ widget:
11
+ - source_sentence: Data triwulanan GDS, investasi non-fin, pinjaman neto pemerintah
12
+ (triliun) 2010
13
+ sentences:
14
+ - 'Nilai Ekspor Menurut Pelabuhan Utama (Nilai FOB: juta US$) 2000-2023'
15
+ - Suhu Minimum, Rata-Rata, dan Maksimum di Stasiun Pengamatan BMKG (oC), 2011-2015
16
+ - 'Nilai Ekspor Menurut Negara Tujuan Utama (Nilai FOB: juta US$), 2000-2023'
17
+ - source_sentence: Data triwulanan GDS, investasi non-fin, pinjaman neto pemerintah
18
+ (triliun) 2010
19
+ sentences:
20
+ - Tabungan Bruto, Investasi Nonfinansial, dan Pinjaman Neto Triwulanan Sektor Pemerintahan
21
+ Umum (triliun rupiah), 2009-2015
22
+ - Produksi Perikanan Budidaya Menurut Provinsi dan Jenis Budidaya, 2000-2020
23
+ - Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Kelompok Umur
24
+ (ribu rupiah), 2017
25
+ - source_sentence: Gaji bersih vs kelompok umur dan lapangan pekerjaan, 2023
26
+ sentences:
27
+ - Investasi Nonfinansial Menurut Sektor (triliun rupiah), 2008-2014
28
+ - Posisi Kredit Usaha Mikro, Kecil, dan Menengah (UMKM) 1 pada Bank Umum (miliar
29
+ rupiah), 2012-2016
30
+ - Ringkasan Neraca Arus Dana, Triwulan I, 2013*), (Miliar Rupiah)
31
+ - source_sentence: Data utang luar negeri Indonesia (pemerintah dan BI), detail kreditor
32
+ dan syarat, tahun 2010
33
+ sentences:
34
+ - Angka Partisipasi Sekolah (APS) Penduduk Umur 7-18 Tahun Menurut Klasifikasi Desa,
35
+ Jenis Kelamin, dan Kelompok Umur, 2009-2023
36
+ - Indeks Integritas Ujian Nasional
37
+ - Rekapitulasi Luas Penutupan Lahan Hutan dan Non Hutan Menurut Provinsi Tahun 2014-2022
38
+ (Ribu Ha)
39
+ - source_sentence: Laporan keuangan perusahaan asuransi wajib & BPJS akhir 2015
40
+ sentences:
41
+ - Indeks Harga Konsumen Menurut Kelompok Pengeluaran, 2020-2023
42
+ - Ringkasan Neraca Arus Dana, Triwulan I, 2013*), (Miliar Rupiah)
43
+ - Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan
44
+ dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Jawa Timur, 2018-2023
45
+ datasets:
46
+ - yahyaabd/bps-statictable-query-title-pairs
47
+ pipeline_tag: sentence-similarity
48
+ library_name: sentence-transformers
49
+ metrics:
50
+ - pearson_cosine
51
+ - spearman_cosine
52
+ model-index:
53
+ - name: SentenceTransformer based on denaya/indoSBERT-large
54
+ results:
55
+ - task:
56
+ type: semantic-similarity
57
+ name: Semantic Similarity
58
+ dataset:
59
+ name: allstats semantic base v1 eval
60
+ type: allstats-semantic-base-v1-eval
61
+ metrics:
62
+ - type: pearson_cosine
63
+ value: 0.902671671573215
64
+ name: Pearson Cosine
65
+ - type: spearman_cosine
66
+ value: 0.7797277576994545
67
+ name: Spearman Cosine
68
+ - task:
69
+ type: semantic-similarity
70
+ name: Semantic Similarity
71
+ dataset:
72
+ name: allstat semantic base v1 test
73
+ type: allstat-semantic-base-v1-test
74
+ metrics:
75
+ - type: pearson_cosine
76
+ value: 0.9166324050239434
77
+ name: Pearson Cosine
78
+ - type: spearman_cosine
79
+ value: 0.8089661156615633
80
+ name: Spearman Cosine
81
+ ---
82
+
83
+ # SentenceTransformer based on denaya/indoSBERT-large
84
+
85
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [denaya/indoSBERT-large](https://huggingface.co/denaya/indoSBERT-large) on the [bps-statictable-query-title-pairs](https://huggingface.co/datasets/yahyaabd/bps-statictable-query-title-pairs) dataset. It maps sentences & paragraphs to a 256-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
86
+
87
+ ## Model Details
88
+
89
+ ### Model Description
90
+ - **Model Type:** Sentence Transformer
91
+ - **Base model:** [denaya/indoSBERT-large](https://huggingface.co/denaya/indoSBERT-large) <!-- at revision 5c64d43f07f7054dfbf33d226b3066414b6ebc4a -->
92
+ - **Maximum Sequence Length:** 256 tokens
93
+ - **Output Dimensionality:** 256 dimensions
94
+ - **Similarity Function:** Cosine Similarity
95
+ - **Training Dataset:**
96
+ - [bps-statictable-query-title-pairs](https://huggingface.co/datasets/yahyaabd/bps-statictable-query-title-pairs)
97
+ <!-- - **Language:** Unknown -->
98
+ <!-- - **License:** Unknown -->
99
+
100
+ ### Model Sources
101
+
102
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
103
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
104
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
105
+
106
+ ### Full Model Architecture
107
+
108
+ ```
109
+ SentenceTransformer(
110
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
111
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
112
+ (2): Dense({'in_features': 1024, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
113
+ )
114
+ ```
115
+
116
+ ## Usage
117
+
118
+ ### Direct Usage (Sentence Transformers)
119
+
120
+ First install the Sentence Transformers library:
121
+
122
+ ```bash
123
+ pip install -U sentence-transformers
124
+ ```
125
+
126
+ Then you can load this model and run inference.
127
+ ```python
128
+ from sentence_transformers import SentenceTransformer
129
+
130
+ # Download from the 🤗 Hub
131
+ model = SentenceTransformer("yahyaabd/allstats-ir-indoSBERT-large-v1")
132
+ # Run inference
133
+ sentences = [
134
+ 'Laporan keuangan perusahaan asuransi wajib & BPJS akhir 2015',
135
+ 'Ringkasan Neraca Arus Dana, Triwulan I, 2013*), (Miliar Rupiah)',
136
+ 'Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Jawa Timur, 2018-2023',
137
+ ]
138
+ embeddings = model.encode(sentences)
139
+ print(embeddings.shape)
140
+ # [3, 256]
141
+
142
+ # Get the similarity scores for the embeddings
143
+ similarities = model.similarity(embeddings, embeddings)
144
+ print(similarities.shape)
145
+ # [3, 3]
146
+ ```
147
+
148
+ <!--
149
+ ### Direct Usage (Transformers)
150
+
151
+ <details><summary>Click to see the direct usage in Transformers</summary>
152
+
153
+ </details>
154
+ -->
155
+
156
+ <!--
157
+ ### Downstream Usage (Sentence Transformers)
158
+
159
+ You can finetune this model on your own dataset.
160
+
161
+ <details><summary>Click to expand</summary>
162
+
163
+ </details>
164
+ -->
165
+
166
+ <!--
167
+ ### Out-of-Scope Use
168
+
169
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
170
+ -->
171
+
172
+ ## Evaluation
173
+
174
+ ### Metrics
175
+
176
+ #### Semantic Similarity
177
+
178
+ * Datasets: `allstats-semantic-base-v1-eval` and `allstat-semantic-base-v1-test`
179
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
180
+
181
+ | Metric | allstats-semantic-base-v1-eval | allstat-semantic-base-v1-test |
182
+ |:--------------------|:-------------------------------|:------------------------------|
183
+ | pearson_cosine | 0.9027 | 0.9166 |
184
+ | **spearman_cosine** | **0.7797** | **0.809** |
185
+
186
+ <!--
187
+ ## Bias, Risks and Limitations
188
+
189
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
190
+ -->
191
+
192
+ <!--
193
+ ### Recommendations
194
+
195
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
196
+ -->
197
+
198
+ ## Training Details
199
+
200
+ ### Training Dataset
201
+
202
+ #### bps-statictable-query-title-pairs
203
+
204
+ * Dataset: [bps-statictable-query-title-pairs](https://huggingface.co/datasets/yahyaabd/bps-statictable-query-title-pairs) at [c7df38f](https://huggingface.co/datasets/yahyaabd/bps-statictable-query-title-pairs/tree/c7df38f8b228efe13b1589b94c78fc7b57f02b58)
205
+ * Size: 2,602 training samples
206
+ * Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
207
+ * Approximate statistics based on the first 1000 samples:
208
+ | | query | doc | label |
209
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
210
+ | type | string | string | int |
211
+ | details | <ul><li>min: 4 tokens</li><li>mean: 16.78 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 21.01 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>0: ~66.50%</li><li>1: ~33.50%</li></ul> |
212
+ * Samples:
213
+ | query | doc | label |
214
+ |:-----------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------|:---------------|
215
+ | <code>Pertumbuhan populasi provinsi di Indonesia 1971-2024</code> | <code>Kecepatan Angin dan Kelembaban di Stasiun Pengamatan BMKG, 2000-2010</code> | <code>0</code> |
216
+ | <code>Perbandingan upah nominal dan riil pekerja pertanian di Indonesia (tahun dasar 2012), periode 2017.</code> | <code>Upah Nominal dan Riil Buruh Tani di Indonesia (Rupiah), 2009-2019 (2012=100)</code> | <code>1</code> |
217
+ | <code>Laporan singkat cash flow statement Q4/2005</code> | <code>Nilai Produksi dan Biaya Produksi per Hektar Usaha Tanaman Bawang Merah dan Cabai Merah, 2014</code> | <code>0</code> |
218
+ * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
219
+ ```json
220
+ {
221
+ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
222
+ "margin": 0.5,
223
+ "size_average": true
224
+ }
225
+ ```
226
+
227
+ ### Evaluation Dataset
228
+
229
+ #### bps-statictable-query-title-pairs
230
+
231
+ * Dataset: [bps-statictable-query-title-pairs](https://huggingface.co/datasets/yahyaabd/bps-statictable-query-title-pairs) at [c7df38f](https://huggingface.co/datasets/yahyaabd/bps-statictable-query-title-pairs/tree/c7df38f8b228efe13b1589b94c78fc7b57f02b58)
232
+ * Size: 558 evaluation samples
233
+ * Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
234
+ * Approximate statistics based on the first 558 samples:
235
+ | | query | doc | label |
236
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
237
+ | type | string | string | int |
238
+ | details | <ul><li>min: 3 tokens</li><li>mean: 16.82 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 21.13 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>0: ~70.97%</li><li>1: ~29.03%</li></ul> |
239
+ * Samples:
240
+ | query | doc | label |
241
+ |:------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
242
+ | <code>Data pengeluaran makanan rata-rata warga Sulteng per minggu di tahun 2022, berdasarkan kelompok pendapatan</code> | <code>Sistem Neraca Sosial Ekonomi Indonesia Tahun 2022 (84 x 84)</code> | <code>0</code> |
243
+ | <code>Konsumsi & belanja makanan per orang di NTB, beda kelompok pengeluaran, 2021</code> | <code>Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Nusa Tenggara Barat, 2018-2023</code> | <code>1</code> |
244
+ | <code>Bagaimana perbandingan PNS pria dan wanita di berbagai golongan tahun 2014?</code> | <code>Penduduk Berumur 15 Tahun Ke Atas Menurut Provinsi dan Jenis Kegiatan Selama Seminggu yang Lalu, 2008 - 2024</code> | <code>0</code> |
245
+ * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
246
+ ```json
247
+ {
248
+ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
249
+ "margin": 0.5,
250
+ "size_average": true
251
+ }
252
+ ```
253
+
254
+ ### Training Hyperparameters
255
+ #### Non-Default Hyperparameters
256
+
257
+ - `eval_strategy`: steps
258
+ - `per_device_train_batch_size`: 32
259
+ - `per_device_eval_batch_size`: 32
260
+ - `num_train_epochs`: 4
261
+ - `warmup_ratio`: 0.1
262
+ - `fp16`: True
263
+ - `load_best_model_at_end`: True
264
+ - `eval_on_start`: True
265
+
266
+ #### All Hyperparameters
267
+ <details><summary>Click to expand</summary>
268
+
269
+ - `overwrite_output_dir`: False
270
+ - `do_predict`: False
271
+ - `eval_strategy`: steps
272
+ - `prediction_loss_only`: True
273
+ - `per_device_train_batch_size`: 32
274
+ - `per_device_eval_batch_size`: 32
275
+ - `per_gpu_train_batch_size`: None
276
+ - `per_gpu_eval_batch_size`: None
277
+ - `gradient_accumulation_steps`: 1
278
+ - `eval_accumulation_steps`: None
279
+ - `torch_empty_cache_steps`: None
280
+ - `learning_rate`: 5e-05
281
+ - `weight_decay`: 0.0
282
+ - `adam_beta1`: 0.9
283
+ - `adam_beta2`: 0.999
284
+ - `adam_epsilon`: 1e-08
285
+ - `max_grad_norm`: 1.0
286
+ - `num_train_epochs`: 4
287
+ - `max_steps`: -1
288
+ - `lr_scheduler_type`: linear
289
+ - `lr_scheduler_kwargs`: {}
290
+ - `warmup_ratio`: 0.1
291
+ - `warmup_steps`: 0
292
+ - `log_level`: passive
293
+ - `log_level_replica`: warning
294
+ - `log_on_each_node`: True
295
+ - `logging_nan_inf_filter`: True
296
+ - `save_safetensors`: True
297
+ - `save_on_each_node`: False
298
+ - `save_only_model`: False
299
+ - `restore_callback_states_from_checkpoint`: False
300
+ - `no_cuda`: False
301
+ - `use_cpu`: False
302
+ - `use_mps_device`: False
303
+ - `seed`: 42
304
+ - `data_seed`: None
305
+ - `jit_mode_eval`: False
306
+ - `use_ipex`: False
307
+ - `bf16`: False
308
+ - `fp16`: True
309
+ - `fp16_opt_level`: O1
310
+ - `half_precision_backend`: auto
311
+ - `bf16_full_eval`: False
312
+ - `fp16_full_eval`: False
313
+ - `tf32`: None
314
+ - `local_rank`: 0
315
+ - `ddp_backend`: None
316
+ - `tpu_num_cores`: None
317
+ - `tpu_metrics_debug`: False
318
+ - `debug`: []
319
+ - `dataloader_drop_last`: False
320
+ - `dataloader_num_workers`: 0
321
+ - `dataloader_prefetch_factor`: None
322
+ - `past_index`: -1
323
+ - `disable_tqdm`: False
324
+ - `remove_unused_columns`: True
325
+ - `label_names`: None
326
+ - `load_best_model_at_end`: True
327
+ - `ignore_data_skip`: False
328
+ - `fsdp`: []
329
+ - `fsdp_min_num_params`: 0
330
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
331
+ - `fsdp_transformer_layer_cls_to_wrap`: None
332
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
333
+ - `deepspeed`: None
334
+ - `label_smoothing_factor`: 0.0
335
+ - `optim`: adamw_torch
336
+ - `optim_args`: None
337
+ - `adafactor`: False
338
+ - `group_by_length`: False
339
+ - `length_column_name`: length
340
+ - `ddp_find_unused_parameters`: None
341
+ - `ddp_bucket_cap_mb`: None
342
+ - `ddp_broadcast_buffers`: False
343
+ - `dataloader_pin_memory`: True
344
+ - `dataloader_persistent_workers`: False
345
+ - `skip_memory_metrics`: True
346
+ - `use_legacy_prediction_loop`: False
347
+ - `push_to_hub`: False
348
+ - `resume_from_checkpoint`: None
349
+ - `hub_model_id`: None
350
+ - `hub_strategy`: every_save
351
+ - `hub_private_repo`: None
352
+ - `hub_always_push`: False
353
+ - `gradient_checkpointing`: False
354
+ - `gradient_checkpointing_kwargs`: None
355
+ - `include_inputs_for_metrics`: False
356
+ - `include_for_metrics`: []
357
+ - `eval_do_concat_batches`: True
358
+ - `fp16_backend`: auto
359
+ - `push_to_hub_model_id`: None
360
+ - `push_to_hub_organization`: None
361
+ - `mp_parameters`:
362
+ - `auto_find_batch_size`: False
363
+ - `full_determinism`: False
364
+ - `torchdynamo`: None
365
+ - `ray_scope`: last
366
+ - `ddp_timeout`: 1800
367
+ - `torch_compile`: False
368
+ - `torch_compile_backend`: None
369
+ - `torch_compile_mode`: None
370
+ - `dispatch_batches`: None
371
+ - `split_batches`: None
372
+ - `include_tokens_per_second`: False
373
+ - `include_num_input_tokens_seen`: False
374
+ - `neftune_noise_alpha`: None
375
+ - `optim_target_modules`: None
376
+ - `batch_eval_metrics`: False
377
+ - `eval_on_start`: True
378
+ - `use_liger_kernel`: False
379
+ - `eval_use_gather_object`: False
380
+ - `average_tokens_across_devices`: False
381
+ - `prompts`: None
382
+ - `batch_sampler`: batch_sampler
383
+ - `multi_dataset_batch_sampler`: proportional
384
+
385
+ </details>
386
+
387
+ ### Training Logs
388
+ | Epoch | Step | Training Loss | Validation Loss | allstats-semantic-base-v1-eval_spearman_cosine | allstat-semantic-base-v1-test_spearman_cosine |
389
+ |:----------:|:-------:|:-------------:|:---------------:|:----------------------------------------------:|:---------------------------------------------:|
390
+ | 0 | 0 | - | 0.0086 | 0.7549 | - |
391
+ | 0.1220 | 10 | 0.0082 | 0.0069 | 0.7610 | - |
392
+ | 0.2439 | 20 | 0.0058 | 0.0049 | 0.7688 | - |
393
+ | 0.3659 | 30 | 0.0047 | 0.0041 | 0.7686 | - |
394
+ | 0.4878 | 40 | 0.0034 | 0.0036 | 0.7682 | - |
395
+ | 0.6098 | 50 | 0.003 | 0.0034 | 0.7696 | - |
396
+ | 0.7317 | 60 | 0.0031 | 0.0027 | 0.7728 | - |
397
+ | 0.8537 | 70 | 0.0031 | 0.0029 | 0.7713 | - |
398
+ | 0.9756 | 80 | 0.003 | 0.0031 | 0.7731 | - |
399
+ | 1.0976 | 90 | 0.0011 | 0.0025 | 0.7746 | - |
400
+ | 1.2195 | 100 | 0.001 | 0.0023 | 0.7759 | - |
401
+ | 1.3415 | 110 | 0.0013 | 0.0021 | 0.7767 | - |
402
+ | 1.4634 | 120 | 0.0011 | 0.0021 | 0.7773 | - |
403
+ | 1.5854 | 130 | 0.0008 | 0.0021 | 0.7786 | - |
404
+ | 1.7073 | 140 | 0.0006 | 0.0021 | 0.7789 | - |
405
+ | 1.8293 | 150 | 0.0007 | 0.0020 | 0.7788 | - |
406
+ | **1.9512** | **160** | **0.0018** | **0.002** | **0.7799** | **-** |
407
+ | 2.0732 | 170 | 0.0006 | 0.0020 | 0.7800 | - |
408
+ | 2.1951 | 180 | 0.0004 | 0.0021 | 0.7795 | - |
409
+ | 2.3171 | 190 | 0.0006 | 0.0021 | 0.7796 | - |
410
+ | 2.4390 | 200 | 0.0004 | 0.0021 | 0.7798 | - |
411
+ | 2.5610 | 210 | 0.0003 | 0.0021 | 0.7799 | - |
412
+ | 2.6829 | 220 | 0.0003 | 0.0021 | 0.7798 | - |
413
+ | 2.8049 | 230 | 0.0004 | 0.0021 | 0.7797 | - |
414
+ | 2.9268 | 240 | 0.0007 | 0.0021 | 0.7798 | - |
415
+ | 3.0488 | 250 | 0.0003 | 0.0021 | 0.7798 | - |
416
+ | 3.1707 | 260 | 0.0002 | 0.0021 | 0.7796 | - |
417
+ | 3.2927 | 270 | 0.0003 | 0.0021 | 0.7797 | - |
418
+ | 3.4146 | 280 | 0.0002 | 0.0021 | 0.7797 | - |
419
+ | 3.5366 | 290 | 0.0002 | 0.0021 | 0.7797 | - |
420
+ | 3.6585 | 300 | 0.0002 | 0.0021 | 0.7797 | - |
421
+ | 3.7805 | 310 | 0.0004 | 0.0021 | 0.7797 | - |
422
+ | 3.9024 | 320 | 0.0003 | 0.0021 | 0.7797 | - |
423
+ | -1 | -1 | - | - | - | 0.8090 |
424
+
425
+ * The bold row denotes the saved checkpoint.
426
+
427
+ ### Framework Versions
428
+ - Python: 3.10.12
429
+ - Sentence Transformers: 3.4.0
430
+ - Transformers: 4.48.1
431
+ - PyTorch: 2.5.1+cu124
432
+ - Accelerate: 1.3.0
433
+ - Datasets: 3.2.0
434
+ - Tokenizers: 0.21.0
435
+
436
+ ## Citation
437
+
438
+ ### BibTeX
439
+
440
+ #### Sentence Transformers
441
+ ```bibtex
442
+ @inproceedings{reimers-2019-sentence-bert,
443
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
444
+ author = "Reimers, Nils and Gurevych, Iryna",
445
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
446
+ month = "11",
447
+ year = "2019",
448
+ publisher = "Association for Computational Linguistics",
449
+ url = "https://arxiv.org/abs/1908.10084",
450
+ }
451
+ ```
452
+
453
+ #### ContrastiveLoss
454
+ ```bibtex
455
+ @inproceedings{hadsell2006dimensionality,
456
+ author={Hadsell, R. and Chopra, S. and LeCun, Y.},
457
+ booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
458
+ title={Dimensionality Reduction by Learning an Invariant Mapping},
459
+ year={2006},
460
+ volume={2},
461
+ number={},
462
+ pages={1735-1742},
463
+ doi={10.1109/CVPR.2006.100}
464
+ }
465
+ ```
466
+
467
+ <!--
468
+ ## Glossary
469
+
470
+ *Clearly define terms in order to be accessible across audiences.*
471
+ -->
472
+
473
+ <!--
474
+ ## Model Card Authors
475
+
476
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
477
+ -->
478
+
479
+ <!--
480
+ ## Model Card Contact
481
+
482
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
483
+ -->
config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "denaya/indoSBERT-Large",
3
+ "_num_labels": 5,
4
+ "architectures": [
5
+ "BertModel"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "classifier_dropout": null,
9
+ "directionality": "bidi",
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "id2label": {
14
+ "0": "LABEL_0",
15
+ "1": "LABEL_1",
16
+ "2": "LABEL_2",
17
+ "3": "LABEL_3",
18
+ "4": "LABEL_4"
19
+ },
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 4096,
22
+ "label2id": {
23
+ "LABEL_0": 0,
24
+ "LABEL_1": 1,
25
+ "LABEL_2": 2,
26
+ "LABEL_3": 3,
27
+ "LABEL_4": 4
28
+ },
29
+ "layer_norm_eps": 1e-12,
30
+ "max_position_embeddings": 512,
31
+ "model_type": "bert",
32
+ "num_attention_heads": 16,
33
+ "num_hidden_layers": 24,
34
+ "output_past": true,
35
+ "pad_token_id": 0,
36
+ "pooler_fc_size": 768,
37
+ "pooler_num_attention_heads": 12,
38
+ "pooler_num_fc_layers": 3,
39
+ "pooler_size_per_head": 128,
40
+ "pooler_type": "first_token_transform",
41
+ "position_embedding_type": "absolute",
42
+ "torch_dtype": "float32",
43
+ "transformers_version": "4.48.1",
44
+ "type_vocab_size": 2,
45
+ "use_cache": true,
46
+ "vocab_size": 30522
47
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.0",
4
+ "transformers": "4.48.1",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:adc1ee8d3a99ef275edb7faedb658c8d0ba32f7262bb36ffe2e0319c95e43bbb
3
+ size 1340612432
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Dense",
18
+ "type": "sentence_transformers.models.Dense"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 256,
51
+ "model_max_length": 256,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff