Add new SentenceTransformer model
Browse files- 1_Pooling/config.json +10 -0
- 2_Dense/config.json +1 -0
- 2_Dense/model.safetensors +3 -0
- README.md +483 -0
- config.json +47 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +65 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
2_Dense/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"in_features": 1024, "out_features": 256, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
|
2_Dense/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b1a384d35ab4568d4825456f7cbc4ea54b2167953a3115b22b968b58cbbf9dd
|
3 |
+
size 1049760
|
README.md
ADDED
@@ -0,0 +1,483 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:2602
|
8 |
+
- loss:ContrastiveLoss
|
9 |
+
base_model: denaya/indoSBERT-large
|
10 |
+
widget:
|
11 |
+
- source_sentence: Data triwulanan GDS, investasi non-fin, pinjaman neto pemerintah
|
12 |
+
(triliun) 2010
|
13 |
+
sentences:
|
14 |
+
- 'Nilai Ekspor Menurut Pelabuhan Utama (Nilai FOB: juta US$) 2000-2023'
|
15 |
+
- Suhu Minimum, Rata-Rata, dan Maksimum di Stasiun Pengamatan BMKG (oC), 2011-2015
|
16 |
+
- 'Nilai Ekspor Menurut Negara Tujuan Utama (Nilai FOB: juta US$), 2000-2023'
|
17 |
+
- source_sentence: Data triwulanan GDS, investasi non-fin, pinjaman neto pemerintah
|
18 |
+
(triliun) 2010
|
19 |
+
sentences:
|
20 |
+
- Tabungan Bruto, Investasi Nonfinansial, dan Pinjaman Neto Triwulanan Sektor Pemerintahan
|
21 |
+
Umum (triliun rupiah), 2009-2015
|
22 |
+
- Produksi Perikanan Budidaya Menurut Provinsi dan Jenis Budidaya, 2000-2020
|
23 |
+
- Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Kelompok Umur
|
24 |
+
(ribu rupiah), 2017
|
25 |
+
- source_sentence: Gaji bersih vs kelompok umur dan lapangan pekerjaan, 2023
|
26 |
+
sentences:
|
27 |
+
- Investasi Nonfinansial Menurut Sektor (triliun rupiah), 2008-2014
|
28 |
+
- Posisi Kredit Usaha Mikro, Kecil, dan Menengah (UMKM) 1 pada Bank Umum (miliar
|
29 |
+
rupiah), 2012-2016
|
30 |
+
- Ringkasan Neraca Arus Dana, Triwulan I, 2013*), (Miliar Rupiah)
|
31 |
+
- source_sentence: Data utang luar negeri Indonesia (pemerintah dan BI), detail kreditor
|
32 |
+
dan syarat, tahun 2010
|
33 |
+
sentences:
|
34 |
+
- Angka Partisipasi Sekolah (APS) Penduduk Umur 7-18 Tahun Menurut Klasifikasi Desa,
|
35 |
+
Jenis Kelamin, dan Kelompok Umur, 2009-2023
|
36 |
+
- Indeks Integritas Ujian Nasional
|
37 |
+
- Rekapitulasi Luas Penutupan Lahan Hutan dan Non Hutan Menurut Provinsi Tahun 2014-2022
|
38 |
+
(Ribu Ha)
|
39 |
+
- source_sentence: Laporan keuangan perusahaan asuransi wajib & BPJS akhir 2015
|
40 |
+
sentences:
|
41 |
+
- Indeks Harga Konsumen Menurut Kelompok Pengeluaran, 2020-2023
|
42 |
+
- Ringkasan Neraca Arus Dana, Triwulan I, 2013*), (Miliar Rupiah)
|
43 |
+
- Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan
|
44 |
+
dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Jawa Timur, 2018-2023
|
45 |
+
datasets:
|
46 |
+
- yahyaabd/bps-statictable-query-title-pairs
|
47 |
+
pipeline_tag: sentence-similarity
|
48 |
+
library_name: sentence-transformers
|
49 |
+
metrics:
|
50 |
+
- pearson_cosine
|
51 |
+
- spearman_cosine
|
52 |
+
model-index:
|
53 |
+
- name: SentenceTransformer based on denaya/indoSBERT-large
|
54 |
+
results:
|
55 |
+
- task:
|
56 |
+
type: semantic-similarity
|
57 |
+
name: Semantic Similarity
|
58 |
+
dataset:
|
59 |
+
name: allstats semantic base v1 eval
|
60 |
+
type: allstats-semantic-base-v1-eval
|
61 |
+
metrics:
|
62 |
+
- type: pearson_cosine
|
63 |
+
value: 0.902671671573215
|
64 |
+
name: Pearson Cosine
|
65 |
+
- type: spearman_cosine
|
66 |
+
value: 0.7797277576994545
|
67 |
+
name: Spearman Cosine
|
68 |
+
- task:
|
69 |
+
type: semantic-similarity
|
70 |
+
name: Semantic Similarity
|
71 |
+
dataset:
|
72 |
+
name: allstat semantic base v1 test
|
73 |
+
type: allstat-semantic-base-v1-test
|
74 |
+
metrics:
|
75 |
+
- type: pearson_cosine
|
76 |
+
value: 0.9166324050239434
|
77 |
+
name: Pearson Cosine
|
78 |
+
- type: spearman_cosine
|
79 |
+
value: 0.8089661156615633
|
80 |
+
name: Spearman Cosine
|
81 |
+
---
|
82 |
+
|
83 |
+
# SentenceTransformer based on denaya/indoSBERT-large
|
84 |
+
|
85 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [denaya/indoSBERT-large](https://huggingface.co/denaya/indoSBERT-large) on the [bps-statictable-query-title-pairs](https://huggingface.co/datasets/yahyaabd/bps-statictable-query-title-pairs) dataset. It maps sentences & paragraphs to a 256-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
86 |
+
|
87 |
+
## Model Details
|
88 |
+
|
89 |
+
### Model Description
|
90 |
+
- **Model Type:** Sentence Transformer
|
91 |
+
- **Base model:** [denaya/indoSBERT-large](https://huggingface.co/denaya/indoSBERT-large) <!-- at revision 5c64d43f07f7054dfbf33d226b3066414b6ebc4a -->
|
92 |
+
- **Maximum Sequence Length:** 256 tokens
|
93 |
+
- **Output Dimensionality:** 256 dimensions
|
94 |
+
- **Similarity Function:** Cosine Similarity
|
95 |
+
- **Training Dataset:**
|
96 |
+
- [bps-statictable-query-title-pairs](https://huggingface.co/datasets/yahyaabd/bps-statictable-query-title-pairs)
|
97 |
+
<!-- - **Language:** Unknown -->
|
98 |
+
<!-- - **License:** Unknown -->
|
99 |
+
|
100 |
+
### Model Sources
|
101 |
+
|
102 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
103 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
104 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
105 |
+
|
106 |
+
### Full Model Architecture
|
107 |
+
|
108 |
+
```
|
109 |
+
SentenceTransformer(
|
110 |
+
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
|
111 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
112 |
+
(2): Dense({'in_features': 1024, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
|
113 |
+
)
|
114 |
+
```
|
115 |
+
|
116 |
+
## Usage
|
117 |
+
|
118 |
+
### Direct Usage (Sentence Transformers)
|
119 |
+
|
120 |
+
First install the Sentence Transformers library:
|
121 |
+
|
122 |
+
```bash
|
123 |
+
pip install -U sentence-transformers
|
124 |
+
```
|
125 |
+
|
126 |
+
Then you can load this model and run inference.
|
127 |
+
```python
|
128 |
+
from sentence_transformers import SentenceTransformer
|
129 |
+
|
130 |
+
# Download from the 🤗 Hub
|
131 |
+
model = SentenceTransformer("yahyaabd/allstats-ir-indoSBERT-large-v1")
|
132 |
+
# Run inference
|
133 |
+
sentences = [
|
134 |
+
'Laporan keuangan perusahaan asuransi wajib & BPJS akhir 2015',
|
135 |
+
'Ringkasan Neraca Arus Dana, Triwulan I, 2013*), (Miliar Rupiah)',
|
136 |
+
'Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Jawa Timur, 2018-2023',
|
137 |
+
]
|
138 |
+
embeddings = model.encode(sentences)
|
139 |
+
print(embeddings.shape)
|
140 |
+
# [3, 256]
|
141 |
+
|
142 |
+
# Get the similarity scores for the embeddings
|
143 |
+
similarities = model.similarity(embeddings, embeddings)
|
144 |
+
print(similarities.shape)
|
145 |
+
# [3, 3]
|
146 |
+
```
|
147 |
+
|
148 |
+
<!--
|
149 |
+
### Direct Usage (Transformers)
|
150 |
+
|
151 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
152 |
+
|
153 |
+
</details>
|
154 |
+
-->
|
155 |
+
|
156 |
+
<!--
|
157 |
+
### Downstream Usage (Sentence Transformers)
|
158 |
+
|
159 |
+
You can finetune this model on your own dataset.
|
160 |
+
|
161 |
+
<details><summary>Click to expand</summary>
|
162 |
+
|
163 |
+
</details>
|
164 |
+
-->
|
165 |
+
|
166 |
+
<!--
|
167 |
+
### Out-of-Scope Use
|
168 |
+
|
169 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
170 |
+
-->
|
171 |
+
|
172 |
+
## Evaluation
|
173 |
+
|
174 |
+
### Metrics
|
175 |
+
|
176 |
+
#### Semantic Similarity
|
177 |
+
|
178 |
+
* Datasets: `allstats-semantic-base-v1-eval` and `allstat-semantic-base-v1-test`
|
179 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
180 |
+
|
181 |
+
| Metric | allstats-semantic-base-v1-eval | allstat-semantic-base-v1-test |
|
182 |
+
|:--------------------|:-------------------------------|:------------------------------|
|
183 |
+
| pearson_cosine | 0.9027 | 0.9166 |
|
184 |
+
| **spearman_cosine** | **0.7797** | **0.809** |
|
185 |
+
|
186 |
+
<!--
|
187 |
+
## Bias, Risks and Limitations
|
188 |
+
|
189 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
190 |
+
-->
|
191 |
+
|
192 |
+
<!--
|
193 |
+
### Recommendations
|
194 |
+
|
195 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
196 |
+
-->
|
197 |
+
|
198 |
+
## Training Details
|
199 |
+
|
200 |
+
### Training Dataset
|
201 |
+
|
202 |
+
#### bps-statictable-query-title-pairs
|
203 |
+
|
204 |
+
* Dataset: [bps-statictable-query-title-pairs](https://huggingface.co/datasets/yahyaabd/bps-statictable-query-title-pairs) at [c7df38f](https://huggingface.co/datasets/yahyaabd/bps-statictable-query-title-pairs/tree/c7df38f8b228efe13b1589b94c78fc7b57f02b58)
|
205 |
+
* Size: 2,602 training samples
|
206 |
+
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
|
207 |
+
* Approximate statistics based on the first 1000 samples:
|
208 |
+
| | query | doc | label |
|
209 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
|
210 |
+
| type | string | string | int |
|
211 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 16.78 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 21.01 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>0: ~66.50%</li><li>1: ~33.50%</li></ul> |
|
212 |
+
* Samples:
|
213 |
+
| query | doc | label |
|
214 |
+
|:-----------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------|:---------------|
|
215 |
+
| <code>Pertumbuhan populasi provinsi di Indonesia 1971-2024</code> | <code>Kecepatan Angin dan Kelembaban di Stasiun Pengamatan BMKG, 2000-2010</code> | <code>0</code> |
|
216 |
+
| <code>Perbandingan upah nominal dan riil pekerja pertanian di Indonesia (tahun dasar 2012), periode 2017.</code> | <code>Upah Nominal dan Riil Buruh Tani di Indonesia (Rupiah), 2009-2019 (2012=100)</code> | <code>1</code> |
|
217 |
+
| <code>Laporan singkat cash flow statement Q4/2005</code> | <code>Nilai Produksi dan Biaya Produksi per Hektar Usaha Tanaman Bawang Merah dan Cabai Merah, 2014</code> | <code>0</code> |
|
218 |
+
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
|
219 |
+
```json
|
220 |
+
{
|
221 |
+
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
|
222 |
+
"margin": 0.5,
|
223 |
+
"size_average": true
|
224 |
+
}
|
225 |
+
```
|
226 |
+
|
227 |
+
### Evaluation Dataset
|
228 |
+
|
229 |
+
#### bps-statictable-query-title-pairs
|
230 |
+
|
231 |
+
* Dataset: [bps-statictable-query-title-pairs](https://huggingface.co/datasets/yahyaabd/bps-statictable-query-title-pairs) at [c7df38f](https://huggingface.co/datasets/yahyaabd/bps-statictable-query-title-pairs/tree/c7df38f8b228efe13b1589b94c78fc7b57f02b58)
|
232 |
+
* Size: 558 evaluation samples
|
233 |
+
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
|
234 |
+
* Approximate statistics based on the first 558 samples:
|
235 |
+
| | query | doc | label |
|
236 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
|
237 |
+
| type | string | string | int |
|
238 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 16.82 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 21.13 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>0: ~70.97%</li><li>1: ~29.03%</li></ul> |
|
239 |
+
* Samples:
|
240 |
+
| query | doc | label |
|
241 |
+
|:------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
|
242 |
+
| <code>Data pengeluaran makanan rata-rata warga Sulteng per minggu di tahun 2022, berdasarkan kelompok pendapatan</code> | <code>Sistem Neraca Sosial Ekonomi Indonesia Tahun 2022 (84 x 84)</code> | <code>0</code> |
|
243 |
+
| <code>Konsumsi & belanja makanan per orang di NTB, beda kelompok pengeluaran, 2021</code> | <code>Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Nusa Tenggara Barat, 2018-2023</code> | <code>1</code> |
|
244 |
+
| <code>Bagaimana perbandingan PNS pria dan wanita di berbagai golongan tahun 2014?</code> | <code>Penduduk Berumur 15 Tahun Ke Atas Menurut Provinsi dan Jenis Kegiatan Selama Seminggu yang Lalu, 2008 - 2024</code> | <code>0</code> |
|
245 |
+
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
|
246 |
+
```json
|
247 |
+
{
|
248 |
+
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
|
249 |
+
"margin": 0.5,
|
250 |
+
"size_average": true
|
251 |
+
}
|
252 |
+
```
|
253 |
+
|
254 |
+
### Training Hyperparameters
|
255 |
+
#### Non-Default Hyperparameters
|
256 |
+
|
257 |
+
- `eval_strategy`: steps
|
258 |
+
- `per_device_train_batch_size`: 32
|
259 |
+
- `per_device_eval_batch_size`: 32
|
260 |
+
- `num_train_epochs`: 4
|
261 |
+
- `warmup_ratio`: 0.1
|
262 |
+
- `fp16`: True
|
263 |
+
- `load_best_model_at_end`: True
|
264 |
+
- `eval_on_start`: True
|
265 |
+
|
266 |
+
#### All Hyperparameters
|
267 |
+
<details><summary>Click to expand</summary>
|
268 |
+
|
269 |
+
- `overwrite_output_dir`: False
|
270 |
+
- `do_predict`: False
|
271 |
+
- `eval_strategy`: steps
|
272 |
+
- `prediction_loss_only`: True
|
273 |
+
- `per_device_train_batch_size`: 32
|
274 |
+
- `per_device_eval_batch_size`: 32
|
275 |
+
- `per_gpu_train_batch_size`: None
|
276 |
+
- `per_gpu_eval_batch_size`: None
|
277 |
+
- `gradient_accumulation_steps`: 1
|
278 |
+
- `eval_accumulation_steps`: None
|
279 |
+
- `torch_empty_cache_steps`: None
|
280 |
+
- `learning_rate`: 5e-05
|
281 |
+
- `weight_decay`: 0.0
|
282 |
+
- `adam_beta1`: 0.9
|
283 |
+
- `adam_beta2`: 0.999
|
284 |
+
- `adam_epsilon`: 1e-08
|
285 |
+
- `max_grad_norm`: 1.0
|
286 |
+
- `num_train_epochs`: 4
|
287 |
+
- `max_steps`: -1
|
288 |
+
- `lr_scheduler_type`: linear
|
289 |
+
- `lr_scheduler_kwargs`: {}
|
290 |
+
- `warmup_ratio`: 0.1
|
291 |
+
- `warmup_steps`: 0
|
292 |
+
- `log_level`: passive
|
293 |
+
- `log_level_replica`: warning
|
294 |
+
- `log_on_each_node`: True
|
295 |
+
- `logging_nan_inf_filter`: True
|
296 |
+
- `save_safetensors`: True
|
297 |
+
- `save_on_each_node`: False
|
298 |
+
- `save_only_model`: False
|
299 |
+
- `restore_callback_states_from_checkpoint`: False
|
300 |
+
- `no_cuda`: False
|
301 |
+
- `use_cpu`: False
|
302 |
+
- `use_mps_device`: False
|
303 |
+
- `seed`: 42
|
304 |
+
- `data_seed`: None
|
305 |
+
- `jit_mode_eval`: False
|
306 |
+
- `use_ipex`: False
|
307 |
+
- `bf16`: False
|
308 |
+
- `fp16`: True
|
309 |
+
- `fp16_opt_level`: O1
|
310 |
+
- `half_precision_backend`: auto
|
311 |
+
- `bf16_full_eval`: False
|
312 |
+
- `fp16_full_eval`: False
|
313 |
+
- `tf32`: None
|
314 |
+
- `local_rank`: 0
|
315 |
+
- `ddp_backend`: None
|
316 |
+
- `tpu_num_cores`: None
|
317 |
+
- `tpu_metrics_debug`: False
|
318 |
+
- `debug`: []
|
319 |
+
- `dataloader_drop_last`: False
|
320 |
+
- `dataloader_num_workers`: 0
|
321 |
+
- `dataloader_prefetch_factor`: None
|
322 |
+
- `past_index`: -1
|
323 |
+
- `disable_tqdm`: False
|
324 |
+
- `remove_unused_columns`: True
|
325 |
+
- `label_names`: None
|
326 |
+
- `load_best_model_at_end`: True
|
327 |
+
- `ignore_data_skip`: False
|
328 |
+
- `fsdp`: []
|
329 |
+
- `fsdp_min_num_params`: 0
|
330 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
331 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
332 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
333 |
+
- `deepspeed`: None
|
334 |
+
- `label_smoothing_factor`: 0.0
|
335 |
+
- `optim`: adamw_torch
|
336 |
+
- `optim_args`: None
|
337 |
+
- `adafactor`: False
|
338 |
+
- `group_by_length`: False
|
339 |
+
- `length_column_name`: length
|
340 |
+
- `ddp_find_unused_parameters`: None
|
341 |
+
- `ddp_bucket_cap_mb`: None
|
342 |
+
- `ddp_broadcast_buffers`: False
|
343 |
+
- `dataloader_pin_memory`: True
|
344 |
+
- `dataloader_persistent_workers`: False
|
345 |
+
- `skip_memory_metrics`: True
|
346 |
+
- `use_legacy_prediction_loop`: False
|
347 |
+
- `push_to_hub`: False
|
348 |
+
- `resume_from_checkpoint`: None
|
349 |
+
- `hub_model_id`: None
|
350 |
+
- `hub_strategy`: every_save
|
351 |
+
- `hub_private_repo`: None
|
352 |
+
- `hub_always_push`: False
|
353 |
+
- `gradient_checkpointing`: False
|
354 |
+
- `gradient_checkpointing_kwargs`: None
|
355 |
+
- `include_inputs_for_metrics`: False
|
356 |
+
- `include_for_metrics`: []
|
357 |
+
- `eval_do_concat_batches`: True
|
358 |
+
- `fp16_backend`: auto
|
359 |
+
- `push_to_hub_model_id`: None
|
360 |
+
- `push_to_hub_organization`: None
|
361 |
+
- `mp_parameters`:
|
362 |
+
- `auto_find_batch_size`: False
|
363 |
+
- `full_determinism`: False
|
364 |
+
- `torchdynamo`: None
|
365 |
+
- `ray_scope`: last
|
366 |
+
- `ddp_timeout`: 1800
|
367 |
+
- `torch_compile`: False
|
368 |
+
- `torch_compile_backend`: None
|
369 |
+
- `torch_compile_mode`: None
|
370 |
+
- `dispatch_batches`: None
|
371 |
+
- `split_batches`: None
|
372 |
+
- `include_tokens_per_second`: False
|
373 |
+
- `include_num_input_tokens_seen`: False
|
374 |
+
- `neftune_noise_alpha`: None
|
375 |
+
- `optim_target_modules`: None
|
376 |
+
- `batch_eval_metrics`: False
|
377 |
+
- `eval_on_start`: True
|
378 |
+
- `use_liger_kernel`: False
|
379 |
+
- `eval_use_gather_object`: False
|
380 |
+
- `average_tokens_across_devices`: False
|
381 |
+
- `prompts`: None
|
382 |
+
- `batch_sampler`: batch_sampler
|
383 |
+
- `multi_dataset_batch_sampler`: proportional
|
384 |
+
|
385 |
+
</details>
|
386 |
+
|
387 |
+
### Training Logs
|
388 |
+
| Epoch | Step | Training Loss | Validation Loss | allstats-semantic-base-v1-eval_spearman_cosine | allstat-semantic-base-v1-test_spearman_cosine |
|
389 |
+
|:----------:|:-------:|:-------------:|:---------------:|:----------------------------------------------:|:---------------------------------------------:|
|
390 |
+
| 0 | 0 | - | 0.0086 | 0.7549 | - |
|
391 |
+
| 0.1220 | 10 | 0.0082 | 0.0069 | 0.7610 | - |
|
392 |
+
| 0.2439 | 20 | 0.0058 | 0.0049 | 0.7688 | - |
|
393 |
+
| 0.3659 | 30 | 0.0047 | 0.0041 | 0.7686 | - |
|
394 |
+
| 0.4878 | 40 | 0.0034 | 0.0036 | 0.7682 | - |
|
395 |
+
| 0.6098 | 50 | 0.003 | 0.0034 | 0.7696 | - |
|
396 |
+
| 0.7317 | 60 | 0.0031 | 0.0027 | 0.7728 | - |
|
397 |
+
| 0.8537 | 70 | 0.0031 | 0.0029 | 0.7713 | - |
|
398 |
+
| 0.9756 | 80 | 0.003 | 0.0031 | 0.7731 | - |
|
399 |
+
| 1.0976 | 90 | 0.0011 | 0.0025 | 0.7746 | - |
|
400 |
+
| 1.2195 | 100 | 0.001 | 0.0023 | 0.7759 | - |
|
401 |
+
| 1.3415 | 110 | 0.0013 | 0.0021 | 0.7767 | - |
|
402 |
+
| 1.4634 | 120 | 0.0011 | 0.0021 | 0.7773 | - |
|
403 |
+
| 1.5854 | 130 | 0.0008 | 0.0021 | 0.7786 | - |
|
404 |
+
| 1.7073 | 140 | 0.0006 | 0.0021 | 0.7789 | - |
|
405 |
+
| 1.8293 | 150 | 0.0007 | 0.0020 | 0.7788 | - |
|
406 |
+
| **1.9512** | **160** | **0.0018** | **0.002** | **0.7799** | **-** |
|
407 |
+
| 2.0732 | 170 | 0.0006 | 0.0020 | 0.7800 | - |
|
408 |
+
| 2.1951 | 180 | 0.0004 | 0.0021 | 0.7795 | - |
|
409 |
+
| 2.3171 | 190 | 0.0006 | 0.0021 | 0.7796 | - |
|
410 |
+
| 2.4390 | 200 | 0.0004 | 0.0021 | 0.7798 | - |
|
411 |
+
| 2.5610 | 210 | 0.0003 | 0.0021 | 0.7799 | - |
|
412 |
+
| 2.6829 | 220 | 0.0003 | 0.0021 | 0.7798 | - |
|
413 |
+
| 2.8049 | 230 | 0.0004 | 0.0021 | 0.7797 | - |
|
414 |
+
| 2.9268 | 240 | 0.0007 | 0.0021 | 0.7798 | - |
|
415 |
+
| 3.0488 | 250 | 0.0003 | 0.0021 | 0.7798 | - |
|
416 |
+
| 3.1707 | 260 | 0.0002 | 0.0021 | 0.7796 | - |
|
417 |
+
| 3.2927 | 270 | 0.0003 | 0.0021 | 0.7797 | - |
|
418 |
+
| 3.4146 | 280 | 0.0002 | 0.0021 | 0.7797 | - |
|
419 |
+
| 3.5366 | 290 | 0.0002 | 0.0021 | 0.7797 | - |
|
420 |
+
| 3.6585 | 300 | 0.0002 | 0.0021 | 0.7797 | - |
|
421 |
+
| 3.7805 | 310 | 0.0004 | 0.0021 | 0.7797 | - |
|
422 |
+
| 3.9024 | 320 | 0.0003 | 0.0021 | 0.7797 | - |
|
423 |
+
| -1 | -1 | - | - | - | 0.8090 |
|
424 |
+
|
425 |
+
* The bold row denotes the saved checkpoint.
|
426 |
+
|
427 |
+
### Framework Versions
|
428 |
+
- Python: 3.10.12
|
429 |
+
- Sentence Transformers: 3.4.0
|
430 |
+
- Transformers: 4.48.1
|
431 |
+
- PyTorch: 2.5.1+cu124
|
432 |
+
- Accelerate: 1.3.0
|
433 |
+
- Datasets: 3.2.0
|
434 |
+
- Tokenizers: 0.21.0
|
435 |
+
|
436 |
+
## Citation
|
437 |
+
|
438 |
+
### BibTeX
|
439 |
+
|
440 |
+
#### Sentence Transformers
|
441 |
+
```bibtex
|
442 |
+
@inproceedings{reimers-2019-sentence-bert,
|
443 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
444 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
445 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
446 |
+
month = "11",
|
447 |
+
year = "2019",
|
448 |
+
publisher = "Association for Computational Linguistics",
|
449 |
+
url = "https://arxiv.org/abs/1908.10084",
|
450 |
+
}
|
451 |
+
```
|
452 |
+
|
453 |
+
#### ContrastiveLoss
|
454 |
+
```bibtex
|
455 |
+
@inproceedings{hadsell2006dimensionality,
|
456 |
+
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
|
457 |
+
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
|
458 |
+
title={Dimensionality Reduction by Learning an Invariant Mapping},
|
459 |
+
year={2006},
|
460 |
+
volume={2},
|
461 |
+
number={},
|
462 |
+
pages={1735-1742},
|
463 |
+
doi={10.1109/CVPR.2006.100}
|
464 |
+
}
|
465 |
+
```
|
466 |
+
|
467 |
+
<!--
|
468 |
+
## Glossary
|
469 |
+
|
470 |
+
*Clearly define terms in order to be accessible across audiences.*
|
471 |
+
-->
|
472 |
+
|
473 |
+
<!--
|
474 |
+
## Model Card Authors
|
475 |
+
|
476 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
477 |
+
-->
|
478 |
+
|
479 |
+
<!--
|
480 |
+
## Model Card Contact
|
481 |
+
|
482 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
483 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "denaya/indoSBERT-Large",
|
3 |
+
"_num_labels": 5,
|
4 |
+
"architectures": [
|
5 |
+
"BertModel"
|
6 |
+
],
|
7 |
+
"attention_probs_dropout_prob": 0.1,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"directionality": "bidi",
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"id2label": {
|
14 |
+
"0": "LABEL_0",
|
15 |
+
"1": "LABEL_1",
|
16 |
+
"2": "LABEL_2",
|
17 |
+
"3": "LABEL_3",
|
18 |
+
"4": "LABEL_4"
|
19 |
+
},
|
20 |
+
"initializer_range": 0.02,
|
21 |
+
"intermediate_size": 4096,
|
22 |
+
"label2id": {
|
23 |
+
"LABEL_0": 0,
|
24 |
+
"LABEL_1": 1,
|
25 |
+
"LABEL_2": 2,
|
26 |
+
"LABEL_3": 3,
|
27 |
+
"LABEL_4": 4
|
28 |
+
},
|
29 |
+
"layer_norm_eps": 1e-12,
|
30 |
+
"max_position_embeddings": 512,
|
31 |
+
"model_type": "bert",
|
32 |
+
"num_attention_heads": 16,
|
33 |
+
"num_hidden_layers": 24,
|
34 |
+
"output_past": true,
|
35 |
+
"pad_token_id": 0,
|
36 |
+
"pooler_fc_size": 768,
|
37 |
+
"pooler_num_attention_heads": 12,
|
38 |
+
"pooler_num_fc_layers": 3,
|
39 |
+
"pooler_size_per_head": 128,
|
40 |
+
"pooler_type": "first_token_transform",
|
41 |
+
"position_embedding_type": "absolute",
|
42 |
+
"torch_dtype": "float32",
|
43 |
+
"transformers_version": "4.48.1",
|
44 |
+
"type_vocab_size": 2,
|
45 |
+
"use_cache": true,
|
46 |
+
"vocab_size": 30522
|
47 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.4.0",
|
4 |
+
"transformers": "4.48.1",
|
5 |
+
"pytorch": "2.5.1+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:adc1ee8d3a99ef275edb7faedb658c8d0ba32f7262bb36ffe2e0319c95e43bbb
|
3 |
+
size 1340612432
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Dense",
|
18 |
+
"type": "sentence_transformers.models.Dense"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 256,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"max_length": 256,
|
51 |
+
"model_max_length": 256,
|
52 |
+
"never_split": null,
|
53 |
+
"pad_to_multiple_of": null,
|
54 |
+
"pad_token": "[PAD]",
|
55 |
+
"pad_token_type_id": 0,
|
56 |
+
"padding_side": "right",
|
57 |
+
"sep_token": "[SEP]",
|
58 |
+
"stride": 0,
|
59 |
+
"strip_accents": null,
|
60 |
+
"tokenize_chinese_chars": true,
|
61 |
+
"tokenizer_class": "BertTokenizer",
|
62 |
+
"truncation_side": "right",
|
63 |
+
"truncation_strategy": "longest_first",
|
64 |
+
"unk_token": "[UNK]"
|
65 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|