yahyaabd commited on
Commit
97e2e5d
·
verified ·
1 Parent(s): 9ccadb1

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:2602
8
+ - loss:ContrastiveLoss
9
+ base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
10
+ widget:
11
+ - source_sentence: Data triwulanan GDS, investasi non-fin, pinjaman neto pemerintah
12
+ (triliun) 2010
13
+ sentences:
14
+ - 'Nilai Ekspor Menurut Pelabuhan Utama (Nilai FOB: juta US$) 2000-2023'
15
+ - Suhu Minimum, Rata-Rata, dan Maksimum di Stasiun Pengamatan BMKG (oC), 2011-2015
16
+ - 'Nilai Ekspor Menurut Negara Tujuan Utama (Nilai FOB: juta US$), 2000-2023'
17
+ - source_sentence: Data triwulanan GDS, investasi non-fin, pinjaman neto pemerintah
18
+ (triliun) 2010
19
+ sentences:
20
+ - Tabungan Bruto, Investasi Nonfinansial, dan Pinjaman Neto Triwulanan Sektor Pemerintahan
21
+ Umum (triliun rupiah), 2009-2015
22
+ - Produksi Perikanan Budidaya Menurut Provinsi dan Jenis Budidaya, 2000-2020
23
+ - Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Kelompok Umur
24
+ (ribu rupiah), 2017
25
+ - source_sentence: Gaji bersih vs kelompok umur dan lapangan pekerjaan, 2023
26
+ sentences:
27
+ - Investasi Nonfinansial Menurut Sektor (triliun rupiah), 2008-2014
28
+ - Posisi Kredit Usaha Mikro, Kecil, dan Menengah (UMKM) 1 pada Bank Umum (miliar
29
+ rupiah), 2012-2016
30
+ - Ringkasan Neraca Arus Dana, Triwulan I, 2013*), (Miliar Rupiah)
31
+ - source_sentence: Data utang luar negeri Indonesia (pemerintah dan BI), detail kreditor
32
+ dan syarat, tahun 2010
33
+ sentences:
34
+ - Angka Partisipasi Sekolah (APS) Penduduk Umur 7-18 Tahun Menurut Klasifikasi Desa,
35
+ Jenis Kelamin, dan Kelompok Umur, 2009-2023
36
+ - Indeks Integritas Ujian Nasional
37
+ - Rekapitulasi Luas Penutupan Lahan Hutan dan Non Hutan Menurut Provinsi Tahun 2014-2022
38
+ (Ribu Ha)
39
+ - source_sentence: Laporan keuangan perusahaan asuransi wajib & BPJS akhir 2015
40
+ sentences:
41
+ - Indeks Harga Konsumen Menurut Kelompok Pengeluaran, 2020-2023
42
+ - Ringkasan Neraca Arus Dana, Triwulan I, 2013*), (Miliar Rupiah)
43
+ - Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan
44
+ dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Jawa Timur, 2018-2023
45
+ datasets:
46
+ - yahyaabd/bps-statictable-query-title-pairs
47
+ pipeline_tag: sentence-similarity
48
+ library_name: sentence-transformers
49
+ metrics:
50
+ - pearson_cosine
51
+ - spearman_cosine
52
+ model-index:
53
+ - name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
54
+ results:
55
+ - task:
56
+ type: semantic-similarity
57
+ name: Semantic Similarity
58
+ dataset:
59
+ name: allstats semantic base v1 eval
60
+ type: allstats-semantic-base-v1-eval
61
+ metrics:
62
+ - type: pearson_cosine
63
+ value: 0.8898188833771716
64
+ name: Pearson Cosine
65
+ - type: spearman_cosine
66
+ value: 0.779923841631983
67
+ name: Spearman Cosine
68
+ - task:
69
+ type: semantic-similarity
70
+ name: Semantic Similarity
71
+ dataset:
72
+ name: allstat semantic base v1 test
73
+ type: allstat-semantic-base-v1-test
74
+ metrics:
75
+ - type: pearson_cosine
76
+ value: 0.9039024076661341
77
+ name: Pearson Cosine
78
+ - type: spearman_cosine
79
+ value: 0.8077065435723709
80
+ name: Spearman Cosine
81
+ ---
82
+
83
+ # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
84
+
85
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) on the [bps-statictable-query-title-pairs](https://huggingface.co/datasets/yahyaabd/bps-statictable-query-title-pairs) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
86
+
87
+ ## Model Details
88
+
89
+ ### Model Description
90
+ - **Model Type:** Sentence Transformer
91
+ - **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) <!-- at revision 75c57757a97f90ad739aca51fa8bfea0e485a7f2 -->
92
+ - **Maximum Sequence Length:** 128 tokens
93
+ - **Output Dimensionality:** 768 dimensions
94
+ - **Similarity Function:** Cosine Similarity
95
+ - **Training Dataset:**
96
+ - [bps-statictable-query-title-pairs](https://huggingface.co/datasets/yahyaabd/bps-statictable-query-title-pairs)
97
+ <!-- - **Language:** Unknown -->
98
+ <!-- - **License:** Unknown -->
99
+
100
+ ### Model Sources
101
+
102
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
103
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
104
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
105
+
106
+ ### Full Model Architecture
107
+
108
+ ```
109
+ SentenceTransformer(
110
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
111
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
112
+ )
113
+ ```
114
+
115
+ ## Usage
116
+
117
+ ### Direct Usage (Sentence Transformers)
118
+
119
+ First install the Sentence Transformers library:
120
+
121
+ ```bash
122
+ pip install -U sentence-transformers
123
+ ```
124
+
125
+ Then you can load this model and run inference.
126
+ ```python
127
+ from sentence_transformers import SentenceTransformer
128
+
129
+ # Download from the 🤗 Hub
130
+ model = SentenceTransformer("yahyaabd/allstats-ir-mpnet-base-v1")
131
+ # Run inference
132
+ sentences = [
133
+ 'Laporan keuangan perusahaan asuransi wajib & BPJS akhir 2015',
134
+ 'Ringkasan Neraca Arus Dana, Triwulan I, 2013*), (Miliar Rupiah)',
135
+ 'Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Jawa Timur, 2018-2023',
136
+ ]
137
+ embeddings = model.encode(sentences)
138
+ print(embeddings.shape)
139
+ # [3, 768]
140
+
141
+ # Get the similarity scores for the embeddings
142
+ similarities = model.similarity(embeddings, embeddings)
143
+ print(similarities.shape)
144
+ # [3, 3]
145
+ ```
146
+
147
+ <!--
148
+ ### Direct Usage (Transformers)
149
+
150
+ <details><summary>Click to see the direct usage in Transformers</summary>
151
+
152
+ </details>
153
+ -->
154
+
155
+ <!--
156
+ ### Downstream Usage (Sentence Transformers)
157
+
158
+ You can finetune this model on your own dataset.
159
+
160
+ <details><summary>Click to expand</summary>
161
+
162
+ </details>
163
+ -->
164
+
165
+ <!--
166
+ ### Out-of-Scope Use
167
+
168
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
169
+ -->
170
+
171
+ ## Evaluation
172
+
173
+ ### Metrics
174
+
175
+ #### Semantic Similarity
176
+
177
+ * Datasets: `allstats-semantic-base-v1-eval` and `allstat-semantic-base-v1-test`
178
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
179
+
180
+ | Metric | allstats-semantic-base-v1-eval | allstat-semantic-base-v1-test |
181
+ |:--------------------|:-------------------------------|:------------------------------|
182
+ | pearson_cosine | 0.8898 | 0.9039 |
183
+ | **spearman_cosine** | **0.7799** | **0.8077** |
184
+
185
+ <!--
186
+ ## Bias, Risks and Limitations
187
+
188
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
189
+ -->
190
+
191
+ <!--
192
+ ### Recommendations
193
+
194
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
195
+ -->
196
+
197
+ ## Training Details
198
+
199
+ ### Training Dataset
200
+
201
+ #### bps-statictable-query-title-pairs
202
+
203
+ * Dataset: [bps-statictable-query-title-pairs](https://huggingface.co/datasets/yahyaabd/bps-statictable-query-title-pairs) at [c7df38f](https://huggingface.co/datasets/yahyaabd/bps-statictable-query-title-pairs/tree/c7df38f8b228efe13b1589b94c78fc7b57f02b58)
204
+ * Size: 2,602 training samples
205
+ * Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
206
+ * Approximate statistics based on the first 1000 samples:
207
+ | | query | doc | label |
208
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
209
+ | type | string | string | int |
210
+ | details | <ul><li>min: 5 tokens</li><li>mean: 18.35 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 25.83 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>0: ~66.50%</li><li>1: ~33.50%</li></ul> |
211
+ * Samples:
212
+ | query | doc | label |
213
+ |:-----------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------|:---------------|
214
+ | <code>Pertumbuhan populasi provinsi di Indonesia 1971-2024</code> | <code>Kecepatan Angin dan Kelembaban di Stasiun Pengamatan BMKG, 2000-2010</code> | <code>0</code> |
215
+ | <code>Perbandingan upah nominal dan riil pekerja pertanian di Indonesia (tahun dasar 2012), periode 2017.</code> | <code>Upah Nominal dan Riil Buruh Tani di Indonesia (Rupiah), 2009-2019 (2012=100)</code> | <code>1</code> |
216
+ | <code>Laporan singkat cash flow statement Q4/2005</code> | <code>Nilai Produksi dan Biaya Produksi per Hektar Usaha Tanaman Bawang Merah dan Cabai Merah, 2014</code> | <code>0</code> |
217
+ * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
218
+ ```json
219
+ {
220
+ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
221
+ "margin": 0.5,
222
+ "size_average": true
223
+ }
224
+ ```
225
+
226
+ ### Evaluation Dataset
227
+
228
+ #### bps-statictable-query-title-pairs
229
+
230
+ * Dataset: [bps-statictable-query-title-pairs](https://huggingface.co/datasets/yahyaabd/bps-statictable-query-title-pairs) at [c7df38f](https://huggingface.co/datasets/yahyaabd/bps-statictable-query-title-pairs/tree/c7df38f8b228efe13b1589b94c78fc7b57f02b58)
231
+ * Size: 558 evaluation samples
232
+ * Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
233
+ * Approximate statistics based on the first 558 samples:
234
+ | | query | doc | label |
235
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
236
+ | type | string | string | int |
237
+ | details | <ul><li>min: 4 tokens</li><li>mean: 18.45 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 26.04 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>0: ~70.97%</li><li>1: ~29.03%</li></ul> |
238
+ * Samples:
239
+ | query | doc | label |
240
+ |:------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
241
+ | <code>Data pengeluaran makanan rata-rata warga Sulteng per minggu di tahun 2022, berdasarkan kelompok pendapatan</code> | <code>Sistem Neraca Sosial Ekonomi Indonesia Tahun 2022 (84 x 84)</code> | <code>0</code> |
242
+ | <code>Konsumsi & belanja makanan per orang di NTB, beda kelompok pengeluaran, 2021</code> | <code>Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Nusa Tenggara Barat, 2018-2023</code> | <code>1</code> |
243
+ | <code>Bagaimana perbandingan PNS pria dan wanita di berbagai golongan tahun 2014?</code> | <code>Penduduk Berumur 15 Tahun Ke Atas Menurut Provinsi dan Jenis Kegiatan Selama Seminggu yang Lalu, 2008 - 2024</code> | <code>0</code> |
244
+ * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
245
+ ```json
246
+ {
247
+ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
248
+ "margin": 0.5,
249
+ "size_average": true
250
+ }
251
+ ```
252
+
253
+ ### Training Hyperparameters
254
+ #### Non-Default Hyperparameters
255
+
256
+ - `eval_strategy`: steps
257
+ - `per_device_train_batch_size`: 32
258
+ - `per_device_eval_batch_size`: 32
259
+ - `num_train_epochs`: 4
260
+ - `warmup_ratio`: 0.1
261
+ - `fp16`: True
262
+ - `load_best_model_at_end`: True
263
+ - `eval_on_start`: True
264
+
265
+ #### All Hyperparameters
266
+ <details><summary>Click to expand</summary>
267
+
268
+ - `overwrite_output_dir`: False
269
+ - `do_predict`: False
270
+ - `eval_strategy`: steps
271
+ - `prediction_loss_only`: True
272
+ - `per_device_train_batch_size`: 32
273
+ - `per_device_eval_batch_size`: 32
274
+ - `per_gpu_train_batch_size`: None
275
+ - `per_gpu_eval_batch_size`: None
276
+ - `gradient_accumulation_steps`: 1
277
+ - `eval_accumulation_steps`: None
278
+ - `torch_empty_cache_steps`: None
279
+ - `learning_rate`: 5e-05
280
+ - `weight_decay`: 0.0
281
+ - `adam_beta1`: 0.9
282
+ - `adam_beta2`: 0.999
283
+ - `adam_epsilon`: 1e-08
284
+ - `max_grad_norm`: 1.0
285
+ - `num_train_epochs`: 4
286
+ - `max_steps`: -1
287
+ - `lr_scheduler_type`: linear
288
+ - `lr_scheduler_kwargs`: {}
289
+ - `warmup_ratio`: 0.1
290
+ - `warmup_steps`: 0
291
+ - `log_level`: passive
292
+ - `log_level_replica`: warning
293
+ - `log_on_each_node`: True
294
+ - `logging_nan_inf_filter`: True
295
+ - `save_safetensors`: True
296
+ - `save_on_each_node`: False
297
+ - `save_only_model`: False
298
+ - `restore_callback_states_from_checkpoint`: False
299
+ - `no_cuda`: False
300
+ - `use_cpu`: False
301
+ - `use_mps_device`: False
302
+ - `seed`: 42
303
+ - `data_seed`: None
304
+ - `jit_mode_eval`: False
305
+ - `use_ipex`: False
306
+ - `bf16`: False
307
+ - `fp16`: True
308
+ - `fp16_opt_level`: O1
309
+ - `half_precision_backend`: auto
310
+ - `bf16_full_eval`: False
311
+ - `fp16_full_eval`: False
312
+ - `tf32`: None
313
+ - `local_rank`: 0
314
+ - `ddp_backend`: None
315
+ - `tpu_num_cores`: None
316
+ - `tpu_metrics_debug`: False
317
+ - `debug`: []
318
+ - `dataloader_drop_last`: False
319
+ - `dataloader_num_workers`: 0
320
+ - `dataloader_prefetch_factor`: None
321
+ - `past_index`: -1
322
+ - `disable_tqdm`: False
323
+ - `remove_unused_columns`: True
324
+ - `label_names`: None
325
+ - `load_best_model_at_end`: True
326
+ - `ignore_data_skip`: False
327
+ - `fsdp`: []
328
+ - `fsdp_min_num_params`: 0
329
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
330
+ - `fsdp_transformer_layer_cls_to_wrap`: None
331
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
332
+ - `deepspeed`: None
333
+ - `label_smoothing_factor`: 0.0
334
+ - `optim`: adamw_torch
335
+ - `optim_args`: None
336
+ - `adafactor`: False
337
+ - `group_by_length`: False
338
+ - `length_column_name`: length
339
+ - `ddp_find_unused_parameters`: None
340
+ - `ddp_bucket_cap_mb`: None
341
+ - `ddp_broadcast_buffers`: False
342
+ - `dataloader_pin_memory`: True
343
+ - `dataloader_persistent_workers`: False
344
+ - `skip_memory_metrics`: True
345
+ - `use_legacy_prediction_loop`: False
346
+ - `push_to_hub`: False
347
+ - `resume_from_checkpoint`: None
348
+ - `hub_model_id`: None
349
+ - `hub_strategy`: every_save
350
+ - `hub_private_repo`: None
351
+ - `hub_always_push`: False
352
+ - `gradient_checkpointing`: False
353
+ - `gradient_checkpointing_kwargs`: None
354
+ - `include_inputs_for_metrics`: False
355
+ - `include_for_metrics`: []
356
+ - `eval_do_concat_batches`: True
357
+ - `fp16_backend`: auto
358
+ - `push_to_hub_model_id`: None
359
+ - `push_to_hub_organization`: None
360
+ - `mp_parameters`:
361
+ - `auto_find_batch_size`: False
362
+ - `full_determinism`: False
363
+ - `torchdynamo`: None
364
+ - `ray_scope`: last
365
+ - `ddp_timeout`: 1800
366
+ - `torch_compile`: False
367
+ - `torch_compile_backend`: None
368
+ - `torch_compile_mode`: None
369
+ - `dispatch_batches`: None
370
+ - `split_batches`: None
371
+ - `include_tokens_per_second`: False
372
+ - `include_num_input_tokens_seen`: False
373
+ - `neftune_noise_alpha`: None
374
+ - `optim_target_modules`: None
375
+ - `batch_eval_metrics`: False
376
+ - `eval_on_start`: True
377
+ - `use_liger_kernel`: False
378
+ - `eval_use_gather_object`: False
379
+ - `average_tokens_across_devices`: False
380
+ - `prompts`: None
381
+ - `batch_sampler`: batch_sampler
382
+ - `multi_dataset_batch_sampler`: proportional
383
+
384
+ </details>
385
+
386
+ ### Training Logs
387
+ | Epoch | Step | Training Loss | Validation Loss | allstats-semantic-base-v1-eval_spearman_cosine | allstat-semantic-base-v1-test_spearman_cosine |
388
+ |:----------:|:-------:|:-------------:|:---------------:|:----------------------------------------------:|:---------------------------------------------:|
389
+ | 0 | 0 | - | 0.0099 | 0.7449 | - |
390
+ | 0.1220 | 10 | 0.0091 | 0.0065 | 0.7640 | - |
391
+ | 0.2439 | 20 | 0.0059 | 0.0040 | 0.7743 | - |
392
+ | 0.3659 | 30 | 0.0045 | 0.0036 | 0.7688 | - |
393
+ | 0.4878 | 40 | 0.0045 | 0.0036 | 0.7694 | - |
394
+ | 0.6098 | 50 | 0.0032 | 0.0037 | 0.7758 | - |
395
+ | 0.7317 | 60 | 0.003 | 0.0025 | 0.7753 | - |
396
+ | 0.8537 | 70 | 0.0035 | 0.0029 | 0.7710 | - |
397
+ | 0.9756 | 80 | 0.0028 | 0.0026 | 0.7745 | - |
398
+ | 1.0976 | 90 | 0.0015 | 0.0023 | 0.7754 | - |
399
+ | 1.2195 | 100 | 0.0013 | 0.0021 | 0.7760 | - |
400
+ | 1.3415 | 110 | 0.0013 | 0.0022 | 0.7751 | - |
401
+ | 1.4634 | 120 | 0.002 | 0.0021 | 0.7746 | - |
402
+ | 1.5854 | 130 | 0.0012 | 0.0020 | 0.7750 | - |
403
+ | 1.7073 | 140 | 0.0007 | 0.0019 | 0.7740 | - |
404
+ | 1.8293 | 150 | 0.0008 | 0.0019 | 0.7738 | - |
405
+ | 1.9512 | 160 | 0.0026 | 0.0018 | 0.7772 | - |
406
+ | 2.0732 | 170 | 0.0009 | 0.0019 | 0.7785 | - |
407
+ | 2.1951 | 180 | 0.0005 | 0.0020 | 0.7781 | - |
408
+ | 2.3171 | 190 | 0.0009 | 0.0017 | 0.7777 | - |
409
+ | 2.4390 | 200 | 0.0005 | 0.0017 | 0.7773 | - |
410
+ | 2.5610 | 210 | 0.0004 | 0.0018 | 0.7766 | - |
411
+ | 2.6829 | 220 | 0.0006 | 0.0018 | 0.7762 | - |
412
+ | 2.8049 | 230 | 0.0006 | 0.0019 | 0.7756 | - |
413
+ | 2.9268 | 240 | 0.0016 | 0.0019 | 0.7777 | - |
414
+ | 3.0488 | 250 | 0.0008 | 0.0018 | 0.7796 | - |
415
+ | 3.1707 | 260 | 0.0005 | 0.0017 | 0.7802 | - |
416
+ | **3.2927** | **270** | **0.0006** | **0.0017** | **0.7802** | **-** |
417
+ | 3.4146 | 280 | 0.0004 | 0.0017 | 0.7805 | - |
418
+ | 3.5366 | 290 | 0.0004 | 0.0017 | 0.7805 | - |
419
+ | 3.6585 | 300 | 0.0003 | 0.0018 | 0.7802 | - |
420
+ | 3.7805 | 310 | 0.0006 | 0.0018 | 0.7800 | - |
421
+ | 3.9024 | 320 | 0.0003 | 0.0018 | 0.7799 | - |
422
+ | -1 | -1 | - | - | - | 0.8077 |
423
+
424
+ * The bold row denotes the saved checkpoint.
425
+
426
+ ### Framework Versions
427
+ - Python: 3.10.12
428
+ - Sentence Transformers: 3.4.0
429
+ - Transformers: 4.48.1
430
+ - PyTorch: 2.5.1+cu124
431
+ - Accelerate: 1.3.0
432
+ - Datasets: 3.2.0
433
+ - Tokenizers: 0.21.0
434
+
435
+ ## Citation
436
+
437
+ ### BibTeX
438
+
439
+ #### Sentence Transformers
440
+ ```bibtex
441
+ @inproceedings{reimers-2019-sentence-bert,
442
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
443
+ author = "Reimers, Nils and Gurevych, Iryna",
444
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
445
+ month = "11",
446
+ year = "2019",
447
+ publisher = "Association for Computational Linguistics",
448
+ url = "https://arxiv.org/abs/1908.10084",
449
+ }
450
+ ```
451
+
452
+ #### ContrastiveLoss
453
+ ```bibtex
454
+ @inproceedings{hadsell2006dimensionality,
455
+ author={Hadsell, R. and Chopra, S. and LeCun, Y.},
456
+ booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
457
+ title={Dimensionality Reduction by Learning an Invariant Mapping},
458
+ year={2006},
459
+ volume={2},
460
+ number={},
461
+ pages={1735-1742},
462
+ doi={10.1109/CVPR.2006.100}
463
+ }
464
+ ```
465
+
466
+ <!--
467
+ ## Glossary
468
+
469
+ *Clearly define terms in order to be accessible across audiences.*
470
+ -->
471
+
472
+ <!--
473
+ ## Model Card Authors
474
+
475
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
476
+ -->
477
+
478
+ <!--
479
+ ## Model Card Contact
480
+
481
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
482
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "xlm-roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "output_past": true,
22
+ "pad_token_id": 1,
23
+ "position_embedding_type": "absolute",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.48.1",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 250002
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.0",
4
+ "transformers": "4.48.1",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60fd383aad3df49ab7bee85f88a813c97003cf19083b2b0f81f4f0648ad597fb
3
+ size 1112197096
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "max_length": 128,
51
+ "model_max_length": 128,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "<pad>",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "</s>",
57
+ "stride": 0,
58
+ "tokenizer_class": "XLMRobertaTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "<unk>"
62
+ }