---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2602
- loss:ContrastiveLoss
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
widget:
- source_sentence: Data triwulanan GDS, investasi non-fin, pinjaman neto pemerintah
(triliun) 2010
sentences:
- 'Nilai Ekspor Menurut Pelabuhan Utama (Nilai FOB: juta US$) 2000-2023'
- Suhu Minimum, Rata-Rata, dan Maksimum di Stasiun Pengamatan BMKG (oC), 2011-2015
- 'Nilai Ekspor Menurut Negara Tujuan Utama (Nilai FOB: juta US$), 2000-2023'
- source_sentence: Data triwulanan GDS, investasi non-fin, pinjaman neto pemerintah
(triliun) 2010
sentences:
- Tabungan Bruto, Investasi Nonfinansial, dan Pinjaman Neto Triwulanan Sektor Pemerintahan
Umum (triliun rupiah), 2009-2015
- Produksi Perikanan Budidaya Menurut Provinsi dan Jenis Budidaya, 2000-2020
- Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Kelompok Umur
(ribu rupiah), 2017
- source_sentence: Gaji bersih vs kelompok umur dan lapangan pekerjaan, 2023
sentences:
- Investasi Nonfinansial Menurut Sektor (triliun rupiah), 2008-2014
- Posisi Kredit Usaha Mikro, Kecil, dan Menengah (UMKM) 1 pada Bank Umum (miliar
rupiah), 2012-2016
- Ringkasan Neraca Arus Dana, Triwulan I, 2013*), (Miliar Rupiah)
- source_sentence: Data utang luar negeri Indonesia (pemerintah dan BI), detail kreditor
dan syarat, tahun 2010
sentences:
- Angka Partisipasi Sekolah (APS) Penduduk Umur 7-18 Tahun Menurut Klasifikasi Desa,
Jenis Kelamin, dan Kelompok Umur, 2009-2023
- Indeks Integritas Ujian Nasional
- Rekapitulasi Luas Penutupan Lahan Hutan dan Non Hutan Menurut Provinsi Tahun 2014-2022
(Ribu Ha)
- source_sentence: Laporan keuangan perusahaan asuransi wajib & BPJS akhir 2015
sentences:
- Indeks Harga Konsumen Menurut Kelompok Pengeluaran, 2020-2023
- Ringkasan Neraca Arus Dana, Triwulan I, 2013*), (Miliar Rupiah)
- Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan
dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Jawa Timur, 2018-2023
datasets:
- yahyaabd/bps-statictable-query-title-pairs
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: allstats semantic base v1 eval
type: allstats-semantic-base-v1-eval
metrics:
- type: pearson_cosine
value: 0.8898188833771716
name: Pearson Cosine
- type: spearman_cosine
value: 0.779923841631983
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: allstat semantic base v1 test
type: allstat-semantic-base-v1-test
metrics:
- type: pearson_cosine
value: 0.9039024076661341
name: Pearson Cosine
- type: spearman_cosine
value: 0.8077065435723709
name: Spearman Cosine
---
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) on the [bps-statictable-query-title-pairs](https://huggingface.co/datasets/yahyaabd/bps-statictable-query-title-pairs) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2)
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [bps-statictable-query-title-pairs](https://huggingface.co/datasets/yahyaabd/bps-statictable-query-title-pairs)
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-ir-mpnet-base-v1")
# Run inference
sentences = [
'Laporan keuangan perusahaan asuransi wajib & BPJS akhir 2015',
'Ringkasan Neraca Arus Dana, Triwulan I, 2013*), (Miliar Rupiah)',
'Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Jawa Timur, 2018-2023',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Datasets: `allstats-semantic-base-v1-eval` and `allstat-semantic-base-v1-test`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | allstats-semantic-base-v1-eval | allstat-semantic-base-v1-test |
|:--------------------|:-------------------------------|:------------------------------|
| pearson_cosine | 0.8898 | 0.9039 |
| **spearman_cosine** | **0.7799** | **0.8077** |
## Training Details
### Training Dataset
#### bps-statictable-query-title-pairs
* Dataset: [bps-statictable-query-title-pairs](https://huggingface.co/datasets/yahyaabd/bps-statictable-query-title-pairs) at [c7df38f](https://huggingface.co/datasets/yahyaabd/bps-statictable-query-title-pairs/tree/c7df38f8b228efe13b1589b94c78fc7b57f02b58)
* Size: 2,602 training samples
* Columns: query
, doc
, and label
* Approximate statistics based on the first 1000 samples:
| | query | doc | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details |
Pertumbuhan populasi provinsi di Indonesia 1971-2024
| Kecepatan Angin dan Kelembaban di Stasiun Pengamatan BMKG, 2000-2010
| 0
|
| Perbandingan upah nominal dan riil pekerja pertanian di Indonesia (tahun dasar 2012), periode 2017.
| Upah Nominal dan Riil Buruh Tani di Indonesia (Rupiah), 2009-2019 (2012=100)
| 1
|
| Laporan singkat cash flow statement Q4/2005
| Nilai Produksi dan Biaya Produksi per Hektar Usaha Tanaman Bawang Merah dan Cabai Merah, 2014
| 0
|
* Loss: [ContrastiveLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
```json
{
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
"margin": 0.5,
"size_average": true
}
```
### Evaluation Dataset
#### bps-statictable-query-title-pairs
* Dataset: [bps-statictable-query-title-pairs](https://huggingface.co/datasets/yahyaabd/bps-statictable-query-title-pairs) at [c7df38f](https://huggingface.co/datasets/yahyaabd/bps-statictable-query-title-pairs/tree/c7df38f8b228efe13b1589b94c78fc7b57f02b58)
* Size: 558 evaluation samples
* Columns: query
, doc
, and label
* Approximate statistics based on the first 558 samples:
| | query | doc | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | Data pengeluaran makanan rata-rata warga Sulteng per minggu di tahun 2022, berdasarkan kelompok pendapatan
| Sistem Neraca Sosial Ekonomi Indonesia Tahun 2022 (84 x 84)
| 0
|
| Konsumsi & belanja makanan per orang di NTB, beda kelompok pengeluaran, 2021
| Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Nusa Tenggara Barat, 2018-2023
| 1
|
| Bagaimana perbandingan PNS pria dan wanita di berbagai golongan tahun 2014?
| Penduduk Berumur 15 Tahun Ke Atas Menurut Provinsi dan Jenis Kegiatan Selama Seminggu yang Lalu, 2008 - 2024
| 0
|
* Loss: [ContrastiveLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
```json
{
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
"margin": 0.5,
"size_average": true
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `num_train_epochs`: 4
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
- `eval_on_start`: True
#### All Hyperparameters