yahyaabd commited on
Commit
97d64a4
·
verified ·
1 Parent(s): 4398f14

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
2_Dense/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"in_features": 1024, "out_features": 256, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
2_Dense/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:514a2b011c5171b1add47e6ab3f8544102be7ff1dd57140802d0db0c8b216cc5
3
+ size 1049760
README.md ADDED
@@ -0,0 +1,675 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:1432
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: denaya/indoSBERT-large
10
+ widget:
11
+ - source_sentence: 'Input-output domestik Indonesia: 17 sektor usaha, harga produsen,
12
+ data tahun 2016 (juta Rp)'
13
+ sentences:
14
+ - 'Impor Besi dan Baja Menurut Negara Asal Utama, 2017-2023 '
15
+ - 'IHK dan Rata-rata Upah per Bulan Buruh Hotel di Bawah Mandor (Supervisor), 1996-2014
16
+ (1996=100) '
17
+ - 'Tabel Input-Output Indonesia Transaksi Domestik Atas Dasar Harga Produsen (17
18
+ Lapangan Usaha), 2016 (Juta Rupiah) '
19
+ - source_sentence: 'Gaji bulanan: beda umur, beda jenis pekerjaan (9 sektor), 2017'
20
+ sentences:
21
+ - 'Rata-rata Upah/Gaji Bersih Sebulan Buruh/Karyawan/Pegawai Menurut Kelompok Umur
22
+ dan Lapangan Pekerjaan Utama di 9 Sektor (Rupiah), 2017 '
23
+ - 'Ekspor Rumput Laut dan Ganggang Lainnya menurut Negara Tujuan Utama, 2012-2023 '
24
+ - 'Rata-Rata Harga Valuta Asing Terpilih menurut Provinsi 2017 '
25
+ - source_sentence: Ringkasan aliran dana kuartal terakhir 2009 dalam Rupiah
26
+ sentences:
27
+ - 'Jumlah Perahu/Kapal, Luas Usaha Budidaya dan Produksi menurut Sub Sektor Perikanan,
28
+ 2002-2016 '
29
+ - 'Jumlah Pendapatan Menurut Golongan Rumah Tangga (miliar rupiah) 2000, 2005, dan
30
+ 2008 '
31
+ - 'Ringkasan Neraca Arus Dana, Triwulan IV, 2009, (Miliar Rupiah) '
32
+ - source_sentence: Berapa total transaksi (harga pembeli) untuk 9 sektor ekonomi di
33
+ Indonesia tahun 2005? (miliar rupiah)
34
+ sentences:
35
+ - 'Jumlah Rumah Tangga Perikanan Budidaya Menurut Provinsi dan Jenis Budidaya, 2000-2016 '
36
+ - 'Transaksi Total Atas Dasar Harga Pembeli 9 Sektor Ekonomi (miliar rupiah), 2005 '
37
+ - 'Perbandingan Indeks dan Tingkat Inflasi Desember 2023 Kota-kota di Luar Pulau
38
+ Jawa dan Sumatera dengan Nasional (2018=100) '
39
+ - source_sentence: Bagaimana kaitan antara pendidikan dan kegiatan mingguan penduduk
40
+ usia 15+ pada tahun 2022?
41
+ sentences:
42
+ - 'Persentase Perkembangan Distribusi Pengeluaran '
43
+ - 'Rata-rata Pendapatan Bersih Pekerja Bebas Menurut Provinsi dan Lapangan Pekerjaan
44
+ Utama (ribu rupiah), 2018 '
45
+ - 'Penduduk Berumur 15 Tahun Ke Atas Menurut Pendidikan Tertinggi yang Ditamatkan
46
+ dan Jenis Kegiatan Selama Seminggu yang Lalu, 2008-2024 '
47
+ pipeline_tag: sentence-similarity
48
+ library_name: sentence-transformers
49
+ metrics:
50
+ - cosine_accuracy@1
51
+ - cosine_accuracy@3
52
+ - cosine_accuracy@5
53
+ - cosine_accuracy@10
54
+ - cosine_precision@1
55
+ - cosine_precision@3
56
+ - cosine_precision@5
57
+ - cosine_precision@10
58
+ - cosine_recall@1
59
+ - cosine_recall@3
60
+ - cosine_recall@5
61
+ - cosine_recall@10
62
+ - cosine_ndcg@10
63
+ - cosine_mrr@10
64
+ - cosine_map@100
65
+ - cosine_accuracy
66
+ - cosine_accuracy_threshold
67
+ - cosine_f1
68
+ - cosine_f1_threshold
69
+ - cosine_precision
70
+ - cosine_recall
71
+ - cosine_ap
72
+ - cosine_mcc
73
+ model-index:
74
+ - name: SentenceTransformer based on denaya/indoSBERT-large
75
+ results:
76
+ - task:
77
+ type: information-retrieval
78
+ name: Information Retrieval
79
+ dataset:
80
+ name: eval
81
+ type: eval
82
+ metrics:
83
+ - type: cosine_accuracy@1
84
+ value: 0.9120521172638436
85
+ name: Cosine Accuracy@1
86
+ - type: cosine_accuracy@3
87
+ value: 0.990228013029316
88
+ name: Cosine Accuracy@3
89
+ - type: cosine_accuracy@5
90
+ value: 0.993485342019544
91
+ name: Cosine Accuracy@5
92
+ - type: cosine_accuracy@10
93
+ value: 0.996742671009772
94
+ name: Cosine Accuracy@10
95
+ - type: cosine_precision@1
96
+ value: 0.9120521172638436
97
+ name: Cosine Precision@1
98
+ - type: cosine_precision@3
99
+ value: 0.3572204125950054
100
+ name: Cosine Precision@3
101
+ - type: cosine_precision@5
102
+ value: 0.23778501628664495
103
+ name: Cosine Precision@5
104
+ - type: cosine_precision@10
105
+ value: 0.13745928338762217
106
+ name: Cosine Precision@10
107
+ - type: cosine_recall@1
108
+ value: 0.7097252402956855
109
+ name: Cosine Recall@1
110
+ - type: cosine_recall@3
111
+ value: 0.7867346590488319
112
+ name: Cosine Recall@3
113
+ - type: cosine_recall@5
114
+ value: 0.8052359035035943
115
+ name: Cosine Recall@5
116
+ - type: cosine_recall@10
117
+ value: 0.8221312325947948
118
+ name: Cosine Recall@10
119
+ - type: cosine_ndcg@10
120
+ value: 0.8348212945928647
121
+ name: Cosine Ndcg@10
122
+ - type: cosine_mrr@10
123
+ value: 0.9497052892818366
124
+ name: Cosine Mrr@10
125
+ - type: cosine_map@100
126
+ value: 0.7729410950742827
127
+ name: Cosine Map@100
128
+ - task:
129
+ type: binary-classification
130
+ name: Binary Classification
131
+ dataset:
132
+ name: quora duplicates dev
133
+ type: quora_duplicates_dev
134
+ metrics:
135
+ - type: cosine_accuracy
136
+ value: 0.9914529914529915
137
+ name: Cosine Accuracy
138
+ - type: cosine_accuracy_threshold
139
+ value: 0.31953397393226624
140
+ name: Cosine Accuracy Threshold
141
+ - type: cosine_f1
142
+ value: 0.9850953206239168
143
+ name: Cosine F1
144
+ - type: cosine_f1_threshold
145
+ value: 0.30364981293678284
146
+ name: Cosine F1 Threshold
147
+ - type: cosine_precision
148
+ value: 0.988865692414753
149
+ name: Cosine Precision
150
+ - type: cosine_recall
151
+ value: 0.981353591160221
152
+ name: Cosine Recall
153
+ - type: cosine_ap
154
+ value: 0.9956970583311449
155
+ name: Cosine Ap
156
+ - type: cosine_mcc
157
+ value: 0.9791180702139771
158
+ name: Cosine Mcc
159
+ ---
160
+
161
+ # SentenceTransformer based on denaya/indoSBERT-large
162
+
163
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [denaya/indoSBERT-large](https://huggingface.co/denaya/indoSBERT-large). It maps sentences & paragraphs to a 256-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
164
+
165
+ ## Model Details
166
+
167
+ ### Model Description
168
+ - **Model Type:** Sentence Transformer
169
+ - **Base model:** [denaya/indoSBERT-large](https://huggingface.co/denaya/indoSBERT-large) <!-- at revision 5c64d43f07f7054dfbf33d226b3066414b6ebc4a -->
170
+ - **Maximum Sequence Length:** 256 tokens
171
+ - **Output Dimensionality:** 256 dimensions
172
+ - **Similarity Function:** Cosine Similarity
173
+ <!-- - **Training Dataset:** Unknown -->
174
+ <!-- - **Language:** Unknown -->
175
+ <!-- - **License:** Unknown -->
176
+
177
+ ### Model Sources
178
+
179
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
180
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
181
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
182
+
183
+ ### Full Model Architecture
184
+
185
+ ```
186
+ SentenceTransformer(
187
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
188
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
189
+ (2): Dense({'in_features': 1024, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
190
+ )
191
+ ```
192
+
193
+ ## Usage
194
+
195
+ ### Direct Usage (Sentence Transformers)
196
+
197
+ First install the Sentence Transformers library:
198
+
199
+ ```bash
200
+ pip install -U sentence-transformers
201
+ ```
202
+
203
+ Then you can load this model and run inference.
204
+ ```python
205
+ from sentence_transformers import SentenceTransformer
206
+
207
+ # Download from the 🤗 Hub
208
+ model = SentenceTransformer("yahyaabd/allstats-search-large-bpstable-v1")
209
+ # Run inference
210
+ sentences = [
211
+ 'Bagaimana kaitan antara pendidikan dan kegiatan mingguan penduduk usia 15+ pada tahun 2022?',
212
+ 'Penduduk Berumur 15 Tahun Ke Atas Menurut Pendidikan Tertinggi yang Ditamatkan dan Jenis Kegiatan Selama Seminggu yang Lalu, 2008-2024 ',
213
+ 'Persentase Perkembangan Distribusi Pengeluaran ',
214
+ ]
215
+ embeddings = model.encode(sentences)
216
+ print(embeddings.shape)
217
+ # [3, 256]
218
+
219
+ # Get the similarity scores for the embeddings
220
+ similarities = model.similarity(embeddings, embeddings)
221
+ print(similarities.shape)
222
+ # [3, 3]
223
+ ```
224
+
225
+ <!--
226
+ ### Direct Usage (Transformers)
227
+
228
+ <details><summary>Click to see the direct usage in Transformers</summary>
229
+
230
+ </details>
231
+ -->
232
+
233
+ <!--
234
+ ### Downstream Usage (Sentence Transformers)
235
+
236
+ You can finetune this model on your own dataset.
237
+
238
+ <details><summary>Click to expand</summary>
239
+
240
+ </details>
241
+ -->
242
+
243
+ <!--
244
+ ### Out-of-Scope Use
245
+
246
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
247
+ -->
248
+
249
+ ## Evaluation
250
+
251
+ ### Metrics
252
+
253
+ #### Information Retrieval
254
+
255
+ * Dataset: `eval`
256
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
257
+
258
+ | Metric | Value |
259
+ |:--------------------|:-----------|
260
+ | cosine_accuracy@1 | 0.9121 |
261
+ | cosine_accuracy@3 | 0.9902 |
262
+ | cosine_accuracy@5 | 0.9935 |
263
+ | cosine_accuracy@10 | 0.9967 |
264
+ | cosine_precision@1 | 0.9121 |
265
+ | cosine_precision@3 | 0.3572 |
266
+ | cosine_precision@5 | 0.2378 |
267
+ | cosine_precision@10 | 0.1375 |
268
+ | cosine_recall@1 | 0.7097 |
269
+ | cosine_recall@3 | 0.7867 |
270
+ | cosine_recall@5 | 0.8052 |
271
+ | cosine_recall@10 | 0.8221 |
272
+ | **cosine_ndcg@10** | **0.8348** |
273
+ | cosine_mrr@10 | 0.9497 |
274
+ | cosine_map@100 | 0.7729 |
275
+
276
+ #### Binary Classification
277
+
278
+ * Dataset: `quora_duplicates_dev`
279
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
280
+
281
+ | Metric | Value |
282
+ |:--------------------------|:-----------|
283
+ | cosine_accuracy | 0.9915 |
284
+ | cosine_accuracy_threshold | 0.3195 |
285
+ | cosine_f1 | 0.9851 |
286
+ | cosine_f1_threshold | 0.3036 |
287
+ | cosine_precision | 0.9889 |
288
+ | cosine_recall | 0.9814 |
289
+ | **cosine_ap** | **0.9957** |
290
+ | cosine_mcc | 0.9791 |
291
+
292
+ <!--
293
+ ## Bias, Risks and Limitations
294
+
295
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
296
+ -->
297
+
298
+ <!--
299
+ ### Recommendations
300
+
301
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
302
+ -->
303
+
304
+ ## Training Details
305
+
306
+ ### Training Dataset
307
+
308
+ #### Unnamed Dataset
309
+
310
+ * Size: 1,432 training samples
311
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
312
+ * Approximate statistics based on the first 1000 samples:
313
+ | | sentence_0 | sentence_1 | label |
314
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------|
315
+ | type | string | string | int |
316
+ | details | <ul><li>min: 4 tokens</li><li>mean: 16.84 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 20.88 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> |
317
+ * Samples:
318
+ | sentence_0 | sentence_1 | label |
319
+ |:-------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------|:---------------|
320
+ | <code>Average monthly net wage/salary of employees by age group and type of work (Rupiah), 2018</code> | <code>Rata-rata Upah/Gaji Bersih Sebulan Buruh/Karyawan/Pegawai Menurut Kelompok Umur dan Jenis Pekerjaan (Rupiah), 2018 </code> | <code>1</code> |
321
+ | <code>Cek average real wage buruh industri pengolahan (level bawah) sekitar tahun 2009</code> | <code>Rata-rata Upah Riil Per Bulan Buruh Industri Pengolahan di Bawah Mandor, 2005-2014 (1996=100) </code> | <code>1</code> |
322
+ | <code>Dimana saya bisa lihat rekapitulasi dokumen RPB kabupaten/kota?</code> | <code>Rekap Dokumen RPB Kabupaten/Kota </code> | <code>1</code> |
323
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
324
+ ```json
325
+ {
326
+ "scale": 20.0,
327
+ "similarity_fct": "cos_sim"
328
+ }
329
+ ```
330
+
331
+ ### Training Hyperparameters
332
+ #### Non-Default Hyperparameters
333
+
334
+ - `eval_strategy`: steps
335
+ - `per_device_train_batch_size`: 16
336
+ - `per_device_eval_batch_size`: 16
337
+ - `num_train_epochs`: 30
338
+ - `fp16`: True
339
+ - `multi_dataset_batch_sampler`: round_robin
340
+
341
+ #### All Hyperparameters
342
+ <details><summary>Click to expand</summary>
343
+
344
+ - `overwrite_output_dir`: False
345
+ - `do_predict`: False
346
+ - `eval_strategy`: steps
347
+ - `prediction_loss_only`: True
348
+ - `per_device_train_batch_size`: 16
349
+ - `per_device_eval_batch_size`: 16
350
+ - `per_gpu_train_batch_size`: None
351
+ - `per_gpu_eval_batch_size`: None
352
+ - `gradient_accumulation_steps`: 1
353
+ - `eval_accumulation_steps`: None
354
+ - `torch_empty_cache_steps`: None
355
+ - `learning_rate`: 5e-05
356
+ - `weight_decay`: 0.0
357
+ - `adam_beta1`: 0.9
358
+ - `adam_beta2`: 0.999
359
+ - `adam_epsilon`: 1e-08
360
+ - `max_grad_norm`: 1
361
+ - `num_train_epochs`: 30
362
+ - `max_steps`: -1
363
+ - `lr_scheduler_type`: linear
364
+ - `lr_scheduler_kwargs`: {}
365
+ - `warmup_ratio`: 0.0
366
+ - `warmup_steps`: 0
367
+ - `log_level`: passive
368
+ - `log_level_replica`: warning
369
+ - `log_on_each_node`: True
370
+ - `logging_nan_inf_filter`: True
371
+ - `save_safetensors`: True
372
+ - `save_on_each_node`: False
373
+ - `save_only_model`: False
374
+ - `restore_callback_states_from_checkpoint`: False
375
+ - `no_cuda`: False
376
+ - `use_cpu`: False
377
+ - `use_mps_device`: False
378
+ - `seed`: 42
379
+ - `data_seed`: None
380
+ - `jit_mode_eval`: False
381
+ - `use_ipex`: False
382
+ - `bf16`: False
383
+ - `fp16`: True
384
+ - `fp16_opt_level`: O1
385
+ - `half_precision_backend`: auto
386
+ - `bf16_full_eval`: False
387
+ - `fp16_full_eval`: False
388
+ - `tf32`: None
389
+ - `local_rank`: 0
390
+ - `ddp_backend`: None
391
+ - `tpu_num_cores`: None
392
+ - `tpu_metrics_debug`: False
393
+ - `debug`: []
394
+ - `dataloader_drop_last`: False
395
+ - `dataloader_num_workers`: 0
396
+ - `dataloader_prefetch_factor`: None
397
+ - `past_index`: -1
398
+ - `disable_tqdm`: False
399
+ - `remove_unused_columns`: True
400
+ - `label_names`: None
401
+ - `load_best_model_at_end`: False
402
+ - `ignore_data_skip`: False
403
+ - `fsdp`: []
404
+ - `fsdp_min_num_params`: 0
405
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
406
+ - `fsdp_transformer_layer_cls_to_wrap`: None
407
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
408
+ - `deepspeed`: None
409
+ - `label_smoothing_factor`: 0.0
410
+ - `optim`: adamw_torch
411
+ - `optim_args`: None
412
+ - `adafactor`: False
413
+ - `group_by_length`: False
414
+ - `length_column_name`: length
415
+ - `ddp_find_unused_parameters`: None
416
+ - `ddp_bucket_cap_mb`: None
417
+ - `ddp_broadcast_buffers`: False
418
+ - `dataloader_pin_memory`: True
419
+ - `dataloader_persistent_workers`: False
420
+ - `skip_memory_metrics`: True
421
+ - `use_legacy_prediction_loop`: False
422
+ - `push_to_hub`: False
423
+ - `resume_from_checkpoint`: None
424
+ - `hub_model_id`: None
425
+ - `hub_strategy`: every_save
426
+ - `hub_private_repo`: None
427
+ - `hub_always_push`: False
428
+ - `gradient_checkpointing`: False
429
+ - `gradient_checkpointing_kwargs`: None
430
+ - `include_inputs_for_metrics`: False
431
+ - `include_for_metrics`: []
432
+ - `eval_do_concat_batches`: True
433
+ - `fp16_backend`: auto
434
+ - `push_to_hub_model_id`: None
435
+ - `push_to_hub_organization`: None
436
+ - `mp_parameters`:
437
+ - `auto_find_batch_size`: False
438
+ - `full_determinism`: False
439
+ - `torchdynamo`: None
440
+ - `ray_scope`: last
441
+ - `ddp_timeout`: 1800
442
+ - `torch_compile`: False
443
+ - `torch_compile_backend`: None
444
+ - `torch_compile_mode`: None
445
+ - `dispatch_batches`: None
446
+ - `split_batches`: None
447
+ - `include_tokens_per_second`: False
448
+ - `include_num_input_tokens_seen`: False
449
+ - `neftune_noise_alpha`: None
450
+ - `optim_target_modules`: None
451
+ - `batch_eval_metrics`: False
452
+ - `eval_on_start`: False
453
+ - `use_liger_kernel`: False
454
+ - `eval_use_gather_object`: False
455
+ - `average_tokens_across_devices`: False
456
+ - `prompts`: None
457
+ - `batch_sampler`: batch_sampler
458
+ - `multi_dataset_batch_sampler`: round_robin
459
+
460
+ </details>
461
+
462
+ ### Training Logs
463
+ <details><summary>Click to expand</summary>
464
+
465
+ | Epoch | Step | Training Loss | eval_cosine_ndcg@10 | quora_duplicates_dev_cosine_ap |
466
+ |:-------:|:----:|:-------------:|:-------------------:|:------------------------------:|
467
+ | 0.2222 | 20 | - | 0.7769 | - |
468
+ | 0.4444 | 40 | - | 0.8167 | - |
469
+ | 0.6667 | 60 | - | 0.8221 | - |
470
+ | 0.8889 | 80 | - | 0.8282 | - |
471
+ | 1.0 | 90 | - | 0.8256 | - |
472
+ | 1.1111 | 100 | - | 0.8278 | - |
473
+ | 1.3333 | 120 | - | 0.8388 | - |
474
+ | 1.5556 | 140 | - | 0.8347 | - |
475
+ | 1.7778 | 160 | - | 0.8351 | - |
476
+ | 2.0 | 180 | - | 0.8407 | - |
477
+ | 2.2222 | 200 | - | 0.8302 | - |
478
+ | 2.4444 | 220 | - | 0.8261 | - |
479
+ | 2.6667 | 240 | - | 0.8217 | - |
480
+ | 2.8889 | 260 | - | 0.8161 | - |
481
+ | 3.0 | 270 | - | 0.8143 | - |
482
+ | 3.1111 | 280 | - | 0.8133 | - |
483
+ | 3.3333 | 300 | - | 0.8259 | - |
484
+ | 3.5556 | 320 | - | 0.8342 | - |
485
+ | 3.7778 | 340 | - | 0.8267 | - |
486
+ | 4.0 | 360 | - | 0.8190 | - |
487
+ | 4.2222 | 380 | - | 0.8193 | - |
488
+ | 4.4444 | 400 | - | 0.8281 | - |
489
+ | 4.6667 | 420 | - | 0.8283 | - |
490
+ | 4.8889 | 440 | - | 0.8197 | - |
491
+ | 5.0 | 450 | - | 0.8211 | - |
492
+ | 5.1111 | 460 | - | 0.8118 | - |
493
+ | 5.3333 | 480 | - | 0.8298 | - |
494
+ | 5.5556 | 500 | 0.0412 | 0.8283 | - |
495
+ | 5.7778 | 520 | - | 0.8264 | - |
496
+ | 6.0 | 540 | - | 0.8271 | - |
497
+ | 6.2222 | 560 | - | 0.8243 | - |
498
+ | 6.4444 | 580 | - | 0.8256 | - |
499
+ | 6.6667 | 600 | - | 0.8356 | - |
500
+ | 6.8889 | 620 | - | 0.8332 | - |
501
+ | 7.0 | 630 | - | 0.8250 | - |
502
+ | 7.1111 | 640 | - | 0.8179 | - |
503
+ | 7.3333 | 660 | - | 0.8356 | - |
504
+ | 7.5556 | 680 | - | 0.8400 | - |
505
+ | 7.7778 | 700 | - | 0.8349 | - |
506
+ | 8.0 | 720 | - | 0.8281 | - |
507
+ | 8.2222 | 740 | - | 0.8330 | - |
508
+ | 8.4444 | 760 | - | 0.8338 | - |
509
+ | 8.6667 | 780 | - | 0.8338 | - |
510
+ | 8.8889 | 800 | - | 0.8344 | - |
511
+ | 9.0 | 810 | - | 0.8319 | - |
512
+ | 9.1111 | 820 | - | 0.8328 | - |
513
+ | 9.3333 | 840 | - | 0.8325 | - |
514
+ | 9.5556 | 860 | - | 0.8375 | - |
515
+ | 9.7778 | 880 | - | 0.8306 | - |
516
+ | 10.0 | 900 | - | 0.8263 | - |
517
+ | 10.2222 | 920 | - | 0.8280 | - |
518
+ | 10.4444 | 940 | - | 0.8272 | - |
519
+ | 10.6667 | 960 | - | 0.8280 | - |
520
+ | 10.8889 | 980 | - | 0.8313 | - |
521
+ | 11.0 | 990 | - | 0.8307 | - |
522
+ | 11.1111 | 1000 | 0.0198 | 0.8324 | - |
523
+ | 11.3333 | 1020 | - | 0.8303 | - |
524
+ | 11.5556 | 1040 | - | 0.8262 | - |
525
+ | 11.7778 | 1060 | - | 0.8294 | - |
526
+ | 12.0 | 1080 | - | 0.8309 | - |
527
+ | 12.2222 | 1100 | - | 0.8274 | - |
528
+ | 12.4444 | 1120 | - | 0.8312 | - |
529
+ | 12.6667 | 1140 | - | 0.8371 | - |
530
+ | 12.8889 | 1160 | - | 0.8408 | - |
531
+ | 13.0 | 1170 | - | 0.8374 | - |
532
+ | 13.1111 | 1180 | - | 0.8344 | - |
533
+ | 13.3333 | 1200 | - | 0.8341 | - |
534
+ | 13.5556 | 1220 | - | 0.8333 | - |
535
+ | 13.7778 | 1240 | - | 0.8388 | - |
536
+ | 14.0 | 1260 | - | 0.8414 | - |
537
+ | 14.2222 | 1280 | - | 0.8344 | - |
538
+ | 14.4444 | 1300 | - | 0.8328 | - |
539
+ | 14.6667 | 1320 | - | 0.8340 | - |
540
+ | 14.8889 | 1340 | - | 0.8317 | - |
541
+ | 15.0 | 1350 | - | 0.8260 | - |
542
+ | 15.1111 | 1360 | - | 0.8252 | - |
543
+ | 15.3333 | 1380 | - | 0.8244 | - |
544
+ | 15.5556 | 1400 | - | 0.8269 | - |
545
+ | 15.7778 | 1420 | - | 0.8275 | - |
546
+ | 16.0 | 1440 | - | 0.8281 | - |
547
+ | 16.2222 | 1460 | - | 0.8294 | - |
548
+ | 16.4444 | 1480 | - | 0.8299 | - |
549
+ | 16.6667 | 1500 | 0.0136 | 0.8318 | - |
550
+ | 16.8889 | 1520 | - | 0.8320 | - |
551
+ | 17.0 | 1530 | - | 0.8332 | - |
552
+ | 17.1111 | 1540 | - | 0.8337 | - |
553
+ | 17.3333 | 1560 | - | 0.8299 | - |
554
+ | 17.5556 | 1580 | - | 0.8283 | - |
555
+ | 17.7778 | 1600 | - | 0.8309 | - |
556
+ | 18.0 | 1620 | - | 0.8329 | - |
557
+ | 18.2222 | 1640 | - | 0.8317 | - |
558
+ | 18.4444 | 1660 | - | 0.8313 | - |
559
+ | 18.6667 | 1680 | - | 0.8317 | - |
560
+ | 18.8889 | 1700 | - | 0.8356 | - |
561
+ | 19.0 | 1710 | - | 0.8345 | - |
562
+ | 19.1111 | 1720 | - | 0.8358 | - |
563
+ | 19.3333 | 1740 | - | 0.8334 | - |
564
+ | 19.5556 | 1760 | - | 0.8335 | - |
565
+ | 19.7778 | 1780 | - | 0.8318 | - |
566
+ | 20.0 | 1800 | - | 0.8326 | - |
567
+ | 20.2222 | 1820 | - | 0.8318 | - |
568
+ | 20.4444 | 1840 | - | 0.8335 | - |
569
+ | 20.6667 | 1860 | - | 0.8333 | - |
570
+ | 20.8889 | 1880 | - | 0.8335 | - |
571
+ | 21.0 | 1890 | - | 0.8341 | - |
572
+ | 21.1111 | 1900 | - | 0.8341 | - |
573
+ | 21.3333 | 1920 | - | 0.8355 | - |
574
+ | 21.5556 | 1940 | - | 0.8360 | - |
575
+ | 21.7778 | 1960 | - | 0.8343 | - |
576
+ | 22.0 | 1980 | - | 0.8351 | - |
577
+ | 22.2222 | 2000 | 0.015 | 0.8342 | - |
578
+ | 22.4444 | 2020 | - | 0.8342 | - |
579
+ | 22.6667 | 2040 | - | 0.8339 | - |
580
+ | 22.8889 | 2060 | - | 0.8342 | - |
581
+ | 23.0 | 2070 | - | 0.8345 | - |
582
+ | 23.1111 | 2080 | - | 0.8354 | - |
583
+ | 23.3333 | 2100 | - | 0.8366 | - |
584
+ | 23.5556 | 2120 | - | 0.8379 | - |
585
+ | 23.7778 | 2140 | - | 0.8386 | - |
586
+ | 24.0 | 2160 | - | 0.8367 | - |
587
+ | 24.2222 | 2180 | - | 0.8357 | - |
588
+ | 24.4444 | 2200 | - | 0.8372 | - |
589
+ | 24.6667 | 2220 | - | 0.8377 | - |
590
+ | 24.8889 | 2240 | - | 0.8373 | - |
591
+ | 25.0 | 2250 | - | 0.8367 | - |
592
+ | 25.1111 | 2260 | - | 0.8366 | - |
593
+ | 25.3333 | 2280 | - | 0.8369 | - |
594
+ | 25.5556 | 2300 | - | 0.8373 | - |
595
+ | 25.7778 | 2320 | - | 0.8366 | - |
596
+ | 26.0 | 2340 | - | 0.8354 | - |
597
+ | 26.2222 | 2360 | - | 0.8347 | - |
598
+ | 26.4444 | 2380 | - | 0.8344 | - |
599
+ | 26.6667 | 2400 | - | 0.8341 | - |
600
+ | 26.8889 | 2420 | - | 0.8343 | - |
601
+ | 27.0 | 2430 | - | 0.8344 | - |
602
+ | 27.1111 | 2440 | - | 0.8345 | - |
603
+ | 27.3333 | 2460 | - | 0.8344 | - |
604
+ | 27.5556 | 2480 | - | 0.8347 | - |
605
+ | 27.7778 | 2500 | 0.0136 | 0.8342 | - |
606
+ | 28.0 | 2520 | - | 0.8347 | - |
607
+ | 28.2222 | 2540 | - | 0.8346 | - |
608
+ | 28.4444 | 2560 | - | 0.8346 | - |
609
+ | 28.6667 | 2580 | - | 0.8347 | - |
610
+ | 28.8889 | 2600 | - | 0.8348 | - |
611
+ | 29.0 | 2610 | - | 0.8348 | - |
612
+ | 29.1111 | 2620 | - | 0.8348 | - |
613
+ | 29.3333 | 2640 | - | 0.8348 | - |
614
+ | 29.5556 | 2660 | - | 0.8348 | - |
615
+ | 29.7778 | 2680 | - | 0.8348 | - |
616
+ | 30.0 | 2700 | - | 0.8348 | - |
617
+ | -1 | -1 | - | - | 0.9957 |
618
+
619
+ </details>
620
+
621
+ ### Framework Versions
622
+ - Python: 3.10.12
623
+ - Sentence Transformers: 3.4.0
624
+ - Transformers: 4.48.1
625
+ - PyTorch: 2.5.1+cu124
626
+ - Accelerate: 1.3.0
627
+ - Datasets: 3.2.0
628
+ - Tokenizers: 0.21.0
629
+
630
+ ## Citation
631
+
632
+ ### BibTeX
633
+
634
+ #### Sentence Transformers
635
+ ```bibtex
636
+ @inproceedings{reimers-2019-sentence-bert,
637
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
638
+ author = "Reimers, Nils and Gurevych, Iryna",
639
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
640
+ month = "11",
641
+ year = "2019",
642
+ publisher = "Association for Computational Linguistics",
643
+ url = "https://arxiv.org/abs/1908.10084",
644
+ }
645
+ ```
646
+
647
+ #### MultipleNegativesRankingLoss
648
+ ```bibtex
649
+ @misc{henderson2017efficient,
650
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
651
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
652
+ year={2017},
653
+ eprint={1705.00652},
654
+ archivePrefix={arXiv},
655
+ primaryClass={cs.CL}
656
+ }
657
+ ```
658
+
659
+ <!--
660
+ ## Glossary
661
+
662
+ *Clearly define terms in order to be accessible across audiences.*
663
+ -->
664
+
665
+ <!--
666
+ ## Model Card Authors
667
+
668
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
669
+ -->
670
+
671
+ <!--
672
+ ## Model Card Contact
673
+
674
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
675
+ -->
config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "denaya/indoSBERT-Large",
3
+ "_num_labels": 5,
4
+ "architectures": [
5
+ "BertModel"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "classifier_dropout": null,
9
+ "directionality": "bidi",
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "id2label": {
14
+ "0": "LABEL_0",
15
+ "1": "LABEL_1",
16
+ "2": "LABEL_2",
17
+ "3": "LABEL_3",
18
+ "4": "LABEL_4"
19
+ },
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 4096,
22
+ "label2id": {
23
+ "LABEL_0": 0,
24
+ "LABEL_1": 1,
25
+ "LABEL_2": 2,
26
+ "LABEL_3": 3,
27
+ "LABEL_4": 4
28
+ },
29
+ "layer_norm_eps": 1e-12,
30
+ "max_position_embeddings": 512,
31
+ "model_type": "bert",
32
+ "num_attention_heads": 16,
33
+ "num_hidden_layers": 24,
34
+ "output_past": true,
35
+ "pad_token_id": 0,
36
+ "pooler_fc_size": 768,
37
+ "pooler_num_attention_heads": 12,
38
+ "pooler_num_fc_layers": 3,
39
+ "pooler_size_per_head": 128,
40
+ "pooler_type": "first_token_transform",
41
+ "position_embedding_type": "absolute",
42
+ "torch_dtype": "float32",
43
+ "transformers_version": "4.48.1",
44
+ "type_vocab_size": 2,
45
+ "use_cache": true,
46
+ "vocab_size": 30522
47
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.0",
4
+ "transformers": "4.48.1",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:571d77e13317318c61517a3957be66da18e48e6355c79923b587f37727ca0fee
3
+ size 1340612432
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Dense",
18
+ "type": "sentence_transformers.models.Dense"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 256,
51
+ "model_max_length": 256,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff