yahyaabd commited on
Commit
2c42435
·
verified ·
1 Parent(s): b07b252

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
2_Dense/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"in_features": 1024, "out_features": 256, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
2_Dense/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8980adc06f59d0caaff2ce32817702886fd3970bde8c78df33691a42b520f01d
3
+ size 1049760
README.md ADDED
@@ -0,0 +1,499 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:25580
8
+ - loss:OnlineContrastiveLoss
9
+ base_model: denaya/indoSBERT-large
10
+ widget:
11
+ - source_sentence: ikhtisar arus kas triwulan 1, 2004 (miliar)
12
+ sentences:
13
+ - Balita (0-59 Bulan) Menurut Status Gizi, Tahun 1998-2005
14
+ - Perbandingan Indeks dan Tingkat Inflasi Desember 2023 Kota-kota di Luar Pulau
15
+ Jawa dan Sumatera dengan Nasional (2018=100)
16
+ - Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan
17
+ dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Sulawesi Tengah, 2018-2023
18
+ - source_sentence: BaIgaimana gambaran neraca arus dana dUi Indonesia pada kuartal
19
+ kedua tahun 2015?
20
+ sentences:
21
+ - Jumlah Sekolah, Guru, dan Murid Sekolah Menengah Pertama (SMP) di Bawah Kementrian
22
+ Pendidikan dan Kebudayaan Menurut Provinsi 2011/2012-2015/2016
23
+ - Ringkasan Neraca Arus Dana Triwulan III Tahun 2003 (Miliar Rupiah)
24
+ - Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan
25
+ dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Sulawesi Tenggara, 2018-2023
26
+ - source_sentence: Berapa persen pengeluaran orang di kotaa untuk makanan vs non-makanan,
27
+ per provinsi, 2018?
28
+ sentences:
29
+ - Ekspor Tanaman Obat, Aromatik, dan Rempah-Rempah menurut Negara Tujuan Utama,
30
+ 2012-2023
31
+ - Rata-rata Pendapatan Bersih Pekerja Bebas Menurut Provinsi dan Pendidikan Tertinggi
32
+ yang Ditamatkan (ribu rupiah), 2017
33
+ - IHK dan Rata-rata Upah per Bulan Buruh Industri di Bawah Mandor (Supervisor),
34
+ 1996-2014 (1996=100)
35
+ - source_sentence: Negara-negara asal impor crude oil dan produk turunannya tahun
36
+ 2002-2023
37
+ sentences:
38
+ - Persentase Pengeluaran Rata-rata per Kapita Sebulan Menurut Kelompok Barang, Indonesia,
39
+ 1999, 2002-2023
40
+ - Rata-rata Pendapatan Bersih Berusaha Sendiri menurut Provinsi dan Pendidikan yang
41
+ Ditamatkan (ribu rupiah), 2016
42
+ - Perkembangan Beberapa Agregat Pendapatan dan Pendapatan per Kapita Atas Dasar
43
+ Harga Berlaku, 2010-2016
44
+ - source_sentence: Arus dana Q3 2006
45
+ sentences:
46
+ - Posisi Simpanan Berjangka Rupiah pada Bank Umum dan BPR Menurut Golongan Pemilik
47
+ (miliar rupiah), 2005-2018
48
+ - Ringkasan Neraca Arus Dana, Triwulan III, 2006, (Miliar Rupiah)
49
+ - Rata-Rata Pengeluaran per Kapita Sebulan di Daerah Perkotaan Menurut Kelompok
50
+ Barang dan Golongan Pengeluaran per Kapita Sebulan, 2000-2012
51
+ datasets:
52
+ - yahyaabd/query-hard-pos-neg-doc-pairs-statictable
53
+ pipeline_tag: sentence-similarity
54
+ library_name: sentence-transformers
55
+ metrics:
56
+ - cosine_accuracy
57
+ - cosine_accuracy_threshold
58
+ - cosine_f1
59
+ - cosine_f1_threshold
60
+ - cosine_precision
61
+ - cosine_recall
62
+ - cosine_ap
63
+ - cosine_mcc
64
+ model-index:
65
+ - name: SentenceTransformer based on denaya/indoSBERT-large
66
+ results:
67
+ - task:
68
+ type: binary-classification
69
+ name: Binary Classification
70
+ dataset:
71
+ name: allstats semantic large v1 test
72
+ type: allstats-semantic-large-v1_test
73
+ metrics:
74
+ - type: cosine_accuracy
75
+ value: 0.9878048780487805
76
+ name: Cosine Accuracy
77
+ - type: cosine_accuracy_threshold
78
+ value: 0.7687987089157104
79
+ name: Cosine Accuracy Threshold
80
+ - type: cosine_f1
81
+ value: 0.9813318473112288
82
+ name: Cosine F1
83
+ - type: cosine_f1_threshold
84
+ value: 0.7652501463890076
85
+ name: Cosine F1 Threshold
86
+ - type: cosine_precision
87
+ value: 0.9788771539744302
88
+ name: Cosine Precision
89
+ - type: cosine_recall
90
+ value: 0.9837988826815642
91
+ name: Cosine Recall
92
+ - type: cosine_ap
93
+ value: 0.9973707172812245
94
+ name: Cosine Ap
95
+ - type: cosine_mcc
96
+ value: 0.9722833961709166
97
+ name: Cosine Mcc
98
+ - task:
99
+ type: binary-classification
100
+ name: Binary Classification
101
+ dataset:
102
+ name: allstats semantic large v1 dev
103
+ type: allstats-semantic-large-v1_dev
104
+ metrics:
105
+ - type: cosine_accuracy
106
+ value: 0.9819310093082679
107
+ name: Cosine Accuracy
108
+ - type: cosine_accuracy_threshold
109
+ value: 0.776313841342926
110
+ name: Cosine Accuracy Threshold
111
+ - type: cosine_f1
112
+ value: 0.9723540910360235
113
+ name: Cosine F1
114
+ - type: cosine_f1_threshold
115
+ value: 0.776313841342926
116
+ name: Cosine F1 Threshold
117
+ - type: cosine_precision
118
+ value: 0.9640088593576965
119
+ name: Cosine Precision
120
+ - type: cosine_recall
121
+ value: 0.9808450704225352
122
+ name: Cosine Recall
123
+ - type: cosine_ap
124
+ value: 0.9918988791388367
125
+ name: Cosine Ap
126
+ - type: cosine_mcc
127
+ value: 0.959014781948805
128
+ name: Cosine Mcc
129
+ ---
130
+
131
+ # SentenceTransformer based on denaya/indoSBERT-large
132
+
133
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [denaya/indoSBERT-large](https://huggingface.co/denaya/indoSBERT-large) on the [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) dataset. It maps sentences & paragraphs to a 256-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
134
+
135
+ ## Model Details
136
+
137
+ ### Model Description
138
+ - **Model Type:** Sentence Transformer
139
+ - **Base model:** [denaya/indoSBERT-large](https://huggingface.co/denaya/indoSBERT-large) <!-- at revision 5c64d43f07f7054dfbf33d226b3066414b6ebc4a -->
140
+ - **Maximum Sequence Length:** 256 tokens
141
+ - **Output Dimensionality:** 256 dimensions
142
+ - **Similarity Function:** Cosine Similarity
143
+ - **Training Dataset:**
144
+ - [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable)
145
+ <!-- - **Language:** Unknown -->
146
+ <!-- - **License:** Unknown -->
147
+
148
+ ### Model Sources
149
+
150
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
151
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
152
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
153
+
154
+ ### Full Model Architecture
155
+
156
+ ```
157
+ SentenceTransformer(
158
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
159
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
160
+ (2): Dense({'in_features': 1024, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
161
+ )
162
+ ```
163
+
164
+ ## Usage
165
+
166
+ ### Direct Usage (Sentence Transformers)
167
+
168
+ First install the Sentence Transformers library:
169
+
170
+ ```bash
171
+ pip install -U sentence-transformers
172
+ ```
173
+
174
+ Then you can load this model and run inference.
175
+ ```python
176
+ from sentence_transformers import SentenceTransformer
177
+
178
+ # Download from the 🤗 Hub
179
+ model = SentenceTransformer("yahyaabd/allstats-search-large-v1-64-1")
180
+ # Run inference
181
+ sentences = [
182
+ 'Arus dana Q3 2006',
183
+ 'Ringkasan Neraca Arus Dana, Triwulan III, 2006, (Miliar Rupiah)',
184
+ 'Rata-Rata Pengeluaran per Kapita Sebulan di Daerah Perkotaan Menurut Kelompok Barang dan Golongan Pengeluaran per Kapita Sebulan, 2000-2012',
185
+ ]
186
+ embeddings = model.encode(sentences)
187
+ print(embeddings.shape)
188
+ # [3, 256]
189
+
190
+ # Get the similarity scores for the embeddings
191
+ similarities = model.similarity(embeddings, embeddings)
192
+ print(similarities.shape)
193
+ # [3, 3]
194
+ ```
195
+
196
+ <!--
197
+ ### Direct Usage (Transformers)
198
+
199
+ <details><summary>Click to see the direct usage in Transformers</summary>
200
+
201
+ </details>
202
+ -->
203
+
204
+ <!--
205
+ ### Downstream Usage (Sentence Transformers)
206
+
207
+ You can finetune this model on your own dataset.
208
+
209
+ <details><summary>Click to expand</summary>
210
+
211
+ </details>
212
+ -->
213
+
214
+ <!--
215
+ ### Out-of-Scope Use
216
+
217
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
218
+ -->
219
+
220
+ ## Evaluation
221
+
222
+ ### Metrics
223
+
224
+ #### Binary Classification
225
+
226
+ * Datasets: `allstats-semantic-large-v1_test` and `allstats-semantic-large-v1_dev`
227
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
228
+
229
+ | Metric | allstats-semantic-large-v1_test | allstats-semantic-large-v1_dev |
230
+ |:--------------------------|:--------------------------------|:-------------------------------|
231
+ | cosine_accuracy | 0.9878 | 0.9819 |
232
+ | cosine_accuracy_threshold | 0.7688 | 0.7763 |
233
+ | cosine_f1 | 0.9813 | 0.9724 |
234
+ | cosine_f1_threshold | 0.7653 | 0.7763 |
235
+ | cosine_precision | 0.9789 | 0.964 |
236
+ | cosine_recall | 0.9838 | 0.9808 |
237
+ | **cosine_ap** | **0.9974** | **0.9919** |
238
+ | cosine_mcc | 0.9723 | 0.959 |
239
+
240
+ <!--
241
+ ## Bias, Risks and Limitations
242
+
243
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
244
+ -->
245
+
246
+ <!--
247
+ ### Recommendations
248
+
249
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
250
+ -->
251
+
252
+ ## Training Details
253
+
254
+ ### Training Dataset
255
+
256
+ #### query-hard-pos-neg-doc-pairs-statictable
257
+
258
+ * Dataset: [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) at [7b28b96](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable/tree/7b28b964daa3073a4d012d1ffca46ecd4f26bb5f)
259
+ * Size: 25,580 training samples
260
+ * Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
261
+ * Approximate statistics based on the first 1000 samples:
262
+ | | query | doc | label |
263
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
264
+ | type | string | string | int |
265
+ | details | <ul><li>min: 6 tokens</li><li>mean: 17.12 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 20.47 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>0: ~70.80%</li><li>1: ~29.20%</li></ul> |
266
+ * Samples:
267
+ | query | doc | label |
268
+ |:-------------------------------------------------------------------------|:----------------------------------------------|:---------------|
269
+ | <code>Status pekerjaan utama penduduk usia 15+ yang bekerja, 2020</code> | <code>Jumlah Penghuni Lapas per Kanwil</code> | <code>0</code> |
270
+ | <code>status pekerjaan utama penduduk usia 15+ yang bekerja, 2020</code> | <code>Jumlah Penghuni Lapas per Kanwil</code> | <code>0</code> |
271
+ | <code>STATUS PEKERJAAN UTAMA PENDUDUK USIA 15+ YANG BEKERJA, 2020</code> | <code>Jumlah Penghuni Lapas per Kanwil</code> | <code>0</code> |
272
+ * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
273
+
274
+ ### Evaluation Dataset
275
+
276
+ #### query-hard-pos-neg-doc-pairs-statictable
277
+
278
+ * Dataset: [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) at [7b28b96](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable/tree/7b28b964daa3073a4d012d1ffca46ecd4f26bb5f)
279
+ * Size: 5,479 evaluation samples
280
+ * Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
281
+ * Approximate statistics based on the first 1000 samples:
282
+ | | query | doc | label |
283
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
284
+ | type | string | string | int |
285
+ | details | <ul><li>min: 7 tokens</li><li>mean: 17.85 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 21.2 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>0: ~71.50%</li><li>1: ~28.50%</li></ul> |
286
+ * Samples:
287
+ | query | doc | label |
288
+ |:-----------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|:---------------|
289
+ | <code>Bagaimana perbandingan PNS pria dan wanita di berbagai golongan tahun 2014?</code> | <code>Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017</code> | <code>0</code> |
290
+ | <code>bagaimana perbandingan pns pria dan wanita di berbagai golongan tahun 2014?</code> | <code>Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017</code> | <code>0</code> |
291
+ | <code>BAGAIMANA PERBANDINGAN PNS PRIA DAN WANITA DI BERBAGAI GOLONGAN TAHUN 2014?</code> | <code>Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017</code> | <code>0</code> |
292
+ * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
293
+
294
+ ### Training Hyperparameters
295
+ #### Non-Default Hyperparameters
296
+
297
+ - `eval_strategy`: steps
298
+ - `per_device_train_batch_size`: 64
299
+ - `per_device_eval_batch_size`: 64
300
+ - `num_train_epochs`: 1
301
+ - `warmup_ratio`: 0.1
302
+ - `fp16`: True
303
+ - `dataloader_num_workers`: 4
304
+ - `load_best_model_at_end`: True
305
+ - `eval_on_start`: True
306
+
307
+ #### All Hyperparameters
308
+ <details><summary>Click to expand</summary>
309
+
310
+ - `overwrite_output_dir`: False
311
+ - `do_predict`: False
312
+ - `eval_strategy`: steps
313
+ - `prediction_loss_only`: True
314
+ - `per_device_train_batch_size`: 64
315
+ - `per_device_eval_batch_size`: 64
316
+ - `per_gpu_train_batch_size`: None
317
+ - `per_gpu_eval_batch_size`: None
318
+ - `gradient_accumulation_steps`: 1
319
+ - `eval_accumulation_steps`: None
320
+ - `torch_empty_cache_steps`: None
321
+ - `learning_rate`: 5e-05
322
+ - `weight_decay`: 0.0
323
+ - `adam_beta1`: 0.9
324
+ - `adam_beta2`: 0.999
325
+ - `adam_epsilon`: 1e-08
326
+ - `max_grad_norm`: 1.0
327
+ - `num_train_epochs`: 1
328
+ - `max_steps`: -1
329
+ - `lr_scheduler_type`: linear
330
+ - `lr_scheduler_kwargs`: {}
331
+ - `warmup_ratio`: 0.1
332
+ - `warmup_steps`: 0
333
+ - `log_level`: passive
334
+ - `log_level_replica`: warning
335
+ - `log_on_each_node`: True
336
+ - `logging_nan_inf_filter`: True
337
+ - `save_safetensors`: True
338
+ - `save_on_each_node`: False
339
+ - `save_only_model`: False
340
+ - `restore_callback_states_from_checkpoint`: False
341
+ - `no_cuda`: False
342
+ - `use_cpu`: False
343
+ - `use_mps_device`: False
344
+ - `seed`: 42
345
+ - `data_seed`: None
346
+ - `jit_mode_eval`: False
347
+ - `use_ipex`: False
348
+ - `bf16`: False
349
+ - `fp16`: True
350
+ - `fp16_opt_level`: O1
351
+ - `half_precision_backend`: auto
352
+ - `bf16_full_eval`: False
353
+ - `fp16_full_eval`: False
354
+ - `tf32`: None
355
+ - `local_rank`: 0
356
+ - `ddp_backend`: None
357
+ - `tpu_num_cores`: None
358
+ - `tpu_metrics_debug`: False
359
+ - `debug`: []
360
+ - `dataloader_drop_last`: False
361
+ - `dataloader_num_workers`: 4
362
+ - `dataloader_prefetch_factor`: None
363
+ - `past_index`: -1
364
+ - `disable_tqdm`: False
365
+ - `remove_unused_columns`: True
366
+ - `label_names`: None
367
+ - `load_best_model_at_end`: True
368
+ - `ignore_data_skip`: False
369
+ - `fsdp`: []
370
+ - `fsdp_min_num_params`: 0
371
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
372
+ - `fsdp_transformer_layer_cls_to_wrap`: None
373
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
374
+ - `deepspeed`: None
375
+ - `label_smoothing_factor`: 0.0
376
+ - `optim`: adamw_torch
377
+ - `optim_args`: None
378
+ - `adafactor`: False
379
+ - `group_by_length`: False
380
+ - `length_column_name`: length
381
+ - `ddp_find_unused_parameters`: None
382
+ - `ddp_bucket_cap_mb`: None
383
+ - `ddp_broadcast_buffers`: False
384
+ - `dataloader_pin_memory`: True
385
+ - `dataloader_persistent_workers`: False
386
+ - `skip_memory_metrics`: True
387
+ - `use_legacy_prediction_loop`: False
388
+ - `push_to_hub`: False
389
+ - `resume_from_checkpoint`: None
390
+ - `hub_model_id`: None
391
+ - `hub_strategy`: every_save
392
+ - `hub_private_repo`: None
393
+ - `hub_always_push`: False
394
+ - `gradient_checkpointing`: False
395
+ - `gradient_checkpointing_kwargs`: None
396
+ - `include_inputs_for_metrics`: False
397
+ - `include_for_metrics`: []
398
+ - `eval_do_concat_batches`: True
399
+ - `fp16_backend`: auto
400
+ - `push_to_hub_model_id`: None
401
+ - `push_to_hub_organization`: None
402
+ - `mp_parameters`:
403
+ - `auto_find_batch_size`: False
404
+ - `full_determinism`: False
405
+ - `torchdynamo`: None
406
+ - `ray_scope`: last
407
+ - `ddp_timeout`: 1800
408
+ - `torch_compile`: False
409
+ - `torch_compile_backend`: None
410
+ - `torch_compile_mode`: None
411
+ - `dispatch_batches`: None
412
+ - `split_batches`: None
413
+ - `include_tokens_per_second`: False
414
+ - `include_num_input_tokens_seen`: False
415
+ - `neftune_noise_alpha`: None
416
+ - `optim_target_modules`: None
417
+ - `batch_eval_metrics`: False
418
+ - `eval_on_start`: True
419
+ - `use_liger_kernel`: False
420
+ - `eval_use_gather_object`: False
421
+ - `average_tokens_across_devices`: False
422
+ - `prompts`: None
423
+ - `batch_sampler`: batch_sampler
424
+ - `multi_dataset_batch_sampler`: proportional
425
+
426
+ </details>
427
+
428
+ ### Training Logs
429
+ | Epoch | Step | Training Loss | Validation Loss | allstats-semantic-large-v1_test_cosine_ap | allstats-semantic-large-v1_dev_cosine_ap |
430
+ |:--------:|:-------:|:-------------:|:---------------:|:-----------------------------------------:|:----------------------------------------:|
431
+ | -1 | -1 | - | - | 0.9750 | - |
432
+ | 0 | 0 | - | 0.5420 | - | 0.9766 |
433
+ | 0.05 | 20 | 0.4283 | 0.3152 | - | 0.9864 |
434
+ | 0.1 | 40 | 0.2681 | 0.3588 | - | 0.9828 |
435
+ | 0.15 | 60 | 0.1538 | 0.2478 | - | 0.9866 |
436
+ | 0.2 | 80 | 0.1336 | 0.1804 | - | 0.9918 |
437
+ | 0.25 | 100 | 0.0763 | 0.2175 | - | 0.9906 |
438
+ | 0.3 | 120 | 0.1878 | 0.2453 | - | 0.9862 |
439
+ | 0.35 | 140 | 0.0609 | 0.2112 | - | 0.9892 |
440
+ | 0.4 | 160 | 0.0933 | 0.1774 | - | 0.9896 |
441
+ | 0.45 | 180 | 0.0471 | 0.1552 | - | 0.9933 |
442
+ | 0.5 | 200 | 0.0516 | 0.1933 | - | 0.9942 |
443
+ | 0.55 | 220 | 0.0421 | 0.1992 | - | 0.9910 |
444
+ | 0.6 | 240 | 0.0233 | 0.1728 | - | 0.9933 |
445
+ | 0.65 | 260 | 0.0445 | 0.1640 | - | 0.9930 |
446
+ | 0.7 | 280 | 0.0157 | 0.1709 | - | 0.9894 |
447
+ | 0.75 | 300 | 0.022 | 0.1653 | - | 0.9889 |
448
+ | 0.8 | 320 | 0.0192 | 0.1655 | - | 0.9893 |
449
+ | **0.85** | **340** | **0.0417** | **0.1509** | **-** | **0.9913** |
450
+ | 0.9 | 360 | 0.0 | 0.1622 | - | 0.9916 |
451
+ | 0.95 | 380 | 0.0242 | 0.1543 | - | 0.9919 |
452
+ | 1.0 | 400 | 0.0 | 0.1530 | - | 0.9919 |
453
+ | -1 | -1 | - | - | 0.9974 | - |
454
+
455
+ * The bold row denotes the saved checkpoint.
456
+
457
+ ### Framework Versions
458
+ - Python: 3.10.12
459
+ - Sentence Transformers: 3.4.0
460
+ - Transformers: 4.48.1
461
+ - PyTorch: 2.5.1+cu124
462
+ - Accelerate: 1.3.0
463
+ - Datasets: 3.2.0
464
+ - Tokenizers: 0.21.0
465
+
466
+ ## Citation
467
+
468
+ ### BibTeX
469
+
470
+ #### Sentence Transformers
471
+ ```bibtex
472
+ @inproceedings{reimers-2019-sentence-bert,
473
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
474
+ author = "Reimers, Nils and Gurevych, Iryna",
475
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
476
+ month = "11",
477
+ year = "2019",
478
+ publisher = "Association for Computational Linguistics",
479
+ url = "https://arxiv.org/abs/1908.10084",
480
+ }
481
+ ```
482
+
483
+ <!--
484
+ ## Glossary
485
+
486
+ *Clearly define terms in order to be accessible across audiences.*
487
+ -->
488
+
489
+ <!--
490
+ ## Model Card Authors
491
+
492
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
493
+ -->
494
+
495
+ <!--
496
+ ## Model Card Contact
497
+
498
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
499
+ -->
config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "denaya/indoSBERT-Large",
3
+ "_num_labels": 5,
4
+ "architectures": [
5
+ "BertModel"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "classifier_dropout": null,
9
+ "directionality": "bidi",
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "id2label": {
14
+ "0": "LABEL_0",
15
+ "1": "LABEL_1",
16
+ "2": "LABEL_2",
17
+ "3": "LABEL_3",
18
+ "4": "LABEL_4"
19
+ },
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 4096,
22
+ "label2id": {
23
+ "LABEL_0": 0,
24
+ "LABEL_1": 1,
25
+ "LABEL_2": 2,
26
+ "LABEL_3": 3,
27
+ "LABEL_4": 4
28
+ },
29
+ "layer_norm_eps": 1e-12,
30
+ "max_position_embeddings": 512,
31
+ "model_type": "bert",
32
+ "num_attention_heads": 16,
33
+ "num_hidden_layers": 24,
34
+ "output_past": true,
35
+ "pad_token_id": 0,
36
+ "pooler_fc_size": 768,
37
+ "pooler_num_attention_heads": 12,
38
+ "pooler_num_fc_layers": 3,
39
+ "pooler_size_per_head": 128,
40
+ "pooler_type": "first_token_transform",
41
+ "position_embedding_type": "absolute",
42
+ "torch_dtype": "float32",
43
+ "transformers_version": "4.48.1",
44
+ "type_vocab_size": 2,
45
+ "use_cache": true,
46
+ "vocab_size": 30522
47
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.0",
4
+ "transformers": "4.48.1",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:408cb981b3fcc9507e66832b9bc4a270155862c009f41ba699820f4a347266c4
3
+ size 1340612432
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Dense",
18
+ "type": "sentence_transformers.models.Dense"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 256,
51
+ "model_max_length": 256,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff