---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:25580
- loss:OnlineContrastiveLoss
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
widget:
- source_sentence: ikhtisar arus kas triwulan 1, 2004 (miliar)
sentences:
- Balita (0-59 Bulan) Menurut Status Gizi, Tahun 1998-2005
- Perbandingan Indeks dan Tingkat Inflasi Desember 2023 Kota-kota di Luar Pulau
Jawa dan Sumatera dengan Nasional (2018=100)
- Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan
dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Sulawesi Tengah, 2018-2023
- source_sentence: BaIgaimana gambaran neraca arus dana dUi Indonesia pada kuartal
kedua tahun 2015?
sentences:
- Jumlah Sekolah, Guru, dan Murid Sekolah Menengah Pertama (SMP) di Bawah Kementrian
Pendidikan dan Kebudayaan Menurut Provinsi 2011/2012-2015/2016
- Ringkasan Neraca Arus Dana Triwulan III Tahun 2003 (Miliar Rupiah)
- Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan
dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Sulawesi Tenggara, 2018-2023
- source_sentence: Berapa persen pengeluaran orang di kotaa untuk makanan vs non-makanan,
per provinsi, 2018?
sentences:
- Ekspor Tanaman Obat, Aromatik, dan Rempah-Rempah menurut Negara Tujuan Utama,
2012-2023
- Rata-rata Pendapatan Bersih Pekerja Bebas Menurut Provinsi dan Pendidikan Tertinggi
yang Ditamatkan (ribu rupiah), 2017
- IHK dan Rata-rata Upah per Bulan Buruh Industri di Bawah Mandor (Supervisor),
1996-2014 (1996=100)
- source_sentence: Negara-negara asal impor crude oil dan produk turunannya tahun
2002-2023
sentences:
- Persentase Pengeluaran Rata-rata per Kapita Sebulan Menurut Kelompok Barang, Indonesia,
1999, 2002-2023
- Rata-rata Pendapatan Bersih Berusaha Sendiri menurut Provinsi dan Pendidikan yang
Ditamatkan (ribu rupiah), 2016
- Perkembangan Beberapa Agregat Pendapatan dan Pendapatan per Kapita Atas Dasar
Harga Berlaku, 2010-2016
- source_sentence: Arus dana Q3 2006
sentences:
- Posisi Simpanan Berjangka Rupiah pada Bank Umum dan BPR Menurut Golongan Pemilik
(miliar rupiah), 2005-2018
- Ringkasan Neraca Arus Dana, Triwulan III, 2006, (Miliar Rupiah)
- Rata-Rata Pengeluaran per Kapita Sebulan di Daerah Perkotaan Menurut Kelompok
Barang dan Golongan Pengeluaran per Kapita Sebulan, 2000-2012
datasets:
- yahyaabd/query-hard-pos-neg-doc-pairs-statictable
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- cosine_mcc
model-index:
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: allstats semantic mini v1 test
type: allstats-semantic-mini-v1_test
metrics:
- type: cosine_accuracy
value: 0.9770031027559773
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.7470195889472961
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9648633575013944
name: Cosine F1
- type: cosine_f1_threshold
value: 0.7452057600021362
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9552733296521259
name: Cosine Precision
- type: cosine_recall
value: 0.9746478873239437
name: Cosine Recall
- type: cosine_ap
value: 0.9927055758758331
name: Cosine Ap
- type: cosine_mcc
value: 0.9478797507864009
name: Cosine Mcc
- task:
type: binary-classification
name: Binary Classification
dataset:
name: allstats semantic mini v1 dev
type: allstats-semantic-mini-v1_dev
metrics:
- type: cosine_accuracy
value: 0.9770031027559773
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.7470195889472961
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9648633575013944
name: Cosine F1
- type: cosine_f1_threshold
value: 0.7452057600021362
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9552733296521259
name: Cosine Precision
- type: cosine_recall
value: 0.9746478873239437
name: Cosine Recall
- type: cosine_ap
value: 0.9927055758758331
name: Cosine Ap
- type: cosine_mcc
value: 0.9478797507864009
name: Cosine Mcc
---
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) on the [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable)
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-search-miniLM-v1-5")
# Run inference
sentences = [
'Arus dana Q3 2006',
'Ringkasan Neraca Arus Dana, Triwulan III, 2006, (Miliar Rupiah)',
'Rata-Rata Pengeluaran per Kapita Sebulan di Daerah Perkotaan Menurut Kelompok Barang dan Golongan Pengeluaran per Kapita Sebulan, 2000-2012',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Binary Classification
* Datasets: `allstats-semantic-mini-v1_test` and `allstats-semantic-mini-v1_dev`
* Evaluated with [BinaryClassificationEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | allstats-semantic-mini-v1_test | allstats-semantic-mini-v1_dev |
|:--------------------------|:-------------------------------|:------------------------------|
| cosine_accuracy | 0.977 | 0.977 |
| cosine_accuracy_threshold | 0.747 | 0.747 |
| cosine_f1 | 0.9649 | 0.9649 |
| cosine_f1_threshold | 0.7452 | 0.7452 |
| cosine_precision | 0.9553 | 0.9553 |
| cosine_recall | 0.9746 | 0.9746 |
| **cosine_ap** | **0.9927** | **0.9927** |
| cosine_mcc | 0.9479 | 0.9479 |
## Training Details
### Training Dataset
#### query-hard-pos-neg-doc-pairs-statictable
* Dataset: [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) at [7b28b96](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable/tree/7b28b964daa3073a4d012d1ffca46ecd4f26bb5f)
* Size: 25,580 training samples
* Columns: query
, doc
, and label
* Approximate statistics based on the first 1000 samples:
| | query | doc | label |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details |
Status pekerjaan utama penduduk usia 15+ yang bekerja, 2020
| Jumlah Penghuni Lapas per Kanwil
| 0
|
| status pekerjaan utama penduduk usia 15+ yang bekerja, 2020
| Jumlah Penghuni Lapas per Kanwil
| 0
|
| STATUS PEKERJAAN UTAMA PENDUDUK USIA 15+ YANG BEKERJA, 2020
| Jumlah Penghuni Lapas per Kanwil
| 0
|
* Loss: [OnlineContrastiveLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
### Evaluation Dataset
#### query-hard-pos-neg-doc-pairs-statictable
* Dataset: [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) at [7b28b96](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable/tree/7b28b964daa3073a4d012d1ffca46ecd4f26bb5f)
* Size: 5,479 evaluation samples
* Columns: query
, doc
, and label
* Approximate statistics based on the first 1000 samples:
| | query | doc | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | Bagaimana perbandingan PNS pria dan wanita di berbagai golongan tahun 2014?
| Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017
| 0
|
| bagaimana perbandingan pns pria dan wanita di berbagai golongan tahun 2014?
| Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017
| 0
|
| BAGAIMANA PERBANDINGAN PNS PRIA DAN WANITA DI BERBAGAI GOLONGAN TAHUN 2014?
| Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017
| 0
|
* Loss: [OnlineContrastiveLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 24
- `per_device_eval_batch_size`: 24
- `num_train_epochs`: 2
- `warmup_ratio`: 0.2
- `fp16`: True
- `load_best_model_at_end`: True
- `eval_on_start`: True
#### All Hyperparameters