yahyaabd commited on
Commit
9ac16a6
·
verified ·
1 Parent(s): 4449edb

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,487 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:25580
8
+ - loss:OnlineContrastiveLoss
9
+ base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
10
+ widget:
11
+ - source_sentence: ikhtisar arus kas triwulan 1, 2004 (miliar)
12
+ sentences:
13
+ - Balita (0-59 Bulan) Menurut Status Gizi, Tahun 1998-2005
14
+ - Perbandingan Indeks dan Tingkat Inflasi Desember 2023 Kota-kota di Luar Pulau
15
+ Jawa dan Sumatera dengan Nasional (2018=100)
16
+ - Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan
17
+ dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Sulawesi Tengah, 2018-2023
18
+ - source_sentence: BaIgaimana gambaran neraca arus dana dUi Indonesia pada kuartal
19
+ kedua tahun 2015?
20
+ sentences:
21
+ - Jumlah Sekolah, Guru, dan Murid Sekolah Menengah Pertama (SMP) di Bawah Kementrian
22
+ Pendidikan dan Kebudayaan Menurut Provinsi 2011/2012-2015/2016
23
+ - Ringkasan Neraca Arus Dana Triwulan III Tahun 2003 (Miliar Rupiah)
24
+ - Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan
25
+ dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Sulawesi Tenggara, 2018-2023
26
+ - source_sentence: Berapa persen pengeluaran orang di kotaa untuk makanan vs non-makanan,
27
+ per provinsi, 2018?
28
+ sentences:
29
+ - Ekspor Tanaman Obat, Aromatik, dan Rempah-Rempah menurut Negara Tujuan Utama,
30
+ 2012-2023
31
+ - Rata-rata Pendapatan Bersih Pekerja Bebas Menurut Provinsi dan Pendidikan Tertinggi
32
+ yang Ditamatkan (ribu rupiah), 2017
33
+ - IHK dan Rata-rata Upah per Bulan Buruh Industri di Bawah Mandor (Supervisor),
34
+ 1996-2014 (1996=100)
35
+ - source_sentence: Negara-negara asal impor crude oil dan produk turunannya tahun
36
+ 2002-2023
37
+ sentences:
38
+ - Persentase Pengeluaran Rata-rata per Kapita Sebulan Menurut Kelompok Barang, Indonesia,
39
+ 1999, 2002-2023
40
+ - Rata-rata Pendapatan Bersih Berusaha Sendiri menurut Provinsi dan Pendidikan yang
41
+ Ditamatkan (ribu rupiah), 2016
42
+ - Perkembangan Beberapa Agregat Pendapatan dan Pendapatan per Kapita Atas Dasar
43
+ Harga Berlaku, 2010-2016
44
+ - source_sentence: Arus dana Q3 2006
45
+ sentences:
46
+ - Posisi Simpanan Berjangka Rupiah pada Bank Umum dan BPR Menurut Golongan Pemilik
47
+ (miliar rupiah), 2005-2018
48
+ - Ringkasan Neraca Arus Dana, Triwulan III, 2006, (Miliar Rupiah)
49
+ - Rata-Rata Pengeluaran per Kapita Sebulan di Daerah Perkotaan Menurut Kelompok
50
+ Barang dan Golongan Pengeluaran per Kapita Sebulan, 2000-2012
51
+ datasets:
52
+ - yahyaabd/query-hard-pos-neg-doc-pairs-statictable
53
+ pipeline_tag: sentence-similarity
54
+ library_name: sentence-transformers
55
+ metrics:
56
+ - pearson_cosine
57
+ - spearman_cosine
58
+ model-index:
59
+ - name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
60
+ results:
61
+ - task:
62
+ type: semantic-similarity
63
+ name: Semantic Similarity
64
+ dataset:
65
+ name: allstats search multilingual base v1 eval
66
+ type: allstats-search-multilingual-base-v1-eval
67
+ metrics:
68
+ - type: pearson_cosine
69
+ value: 0.8700002079644513
70
+ name: Pearson Cosine
71
+ - type: spearman_cosine
72
+ value: 0.8061513951134361
73
+ name: Spearman Cosine
74
+ - task:
75
+ type: semantic-similarity
76
+ name: Semantic Similarity
77
+ dataset:
78
+ name: allstats search multilingual base v1 test
79
+ type: allstats-search-multilingual-base-v1-test
80
+ metrics:
81
+ - type: pearson_cosine
82
+ value: 0.9023194252531408
83
+ name: Pearson Cosine
84
+ - type: spearman_cosine
85
+ value: 0.8092675333588865
86
+ name: Spearman Cosine
87
+ ---
88
+
89
+ # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
90
+
91
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) on the [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
92
+
93
+ ## Model Details
94
+
95
+ ### Model Description
96
+ - **Model Type:** Sentence Transformer
97
+ - **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) <!-- at revision 75c57757a97f90ad739aca51fa8bfea0e485a7f2 -->
98
+ - **Maximum Sequence Length:** 128 tokens
99
+ - **Output Dimensionality:** 768 dimensions
100
+ - **Similarity Function:** Cosine Similarity
101
+ - **Training Dataset:**
102
+ - [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable)
103
+ <!-- - **Language:** Unknown -->
104
+ <!-- - **License:** Unknown -->
105
+
106
+ ### Model Sources
107
+
108
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
109
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
110
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
111
+
112
+ ### Full Model Architecture
113
+
114
+ ```
115
+ SentenceTransformer(
116
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
117
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
118
+ )
119
+ ```
120
+
121
+ ## Usage
122
+
123
+ ### Direct Usage (Sentence Transformers)
124
+
125
+ First install the Sentence Transformers library:
126
+
127
+ ```bash
128
+ pip install -U sentence-transformers
129
+ ```
130
+
131
+ Then you can load this model and run inference.
132
+ ```python
133
+ from sentence_transformers import SentenceTransformer
134
+
135
+ # Download from the 🤗 Hub
136
+ model = SentenceTransformer("yahyaabd/allstats-search-multilingual-base-v1")
137
+ # Run inference
138
+ sentences = [
139
+ 'Arus dana Q3 2006',
140
+ 'Ringkasan Neraca Arus Dana, Triwulan III, 2006, (Miliar Rupiah)',
141
+ 'Rata-Rata Pengeluaran per Kapita Sebulan di Daerah Perkotaan Menurut Kelompok Barang dan Golongan Pengeluaran per Kapita Sebulan, 2000-2012',
142
+ ]
143
+ embeddings = model.encode(sentences)
144
+ print(embeddings.shape)
145
+ # [3, 768]
146
+
147
+ # Get the similarity scores for the embeddings
148
+ similarities = model.similarity(embeddings, embeddings)
149
+ print(similarities.shape)
150
+ # [3, 3]
151
+ ```
152
+
153
+ <!--
154
+ ### Direct Usage (Transformers)
155
+
156
+ <details><summary>Click to see the direct usage in Transformers</summary>
157
+
158
+ </details>
159
+ -->
160
+
161
+ <!--
162
+ ### Downstream Usage (Sentence Transformers)
163
+
164
+ You can finetune this model on your own dataset.
165
+
166
+ <details><summary>Click to expand</summary>
167
+
168
+ </details>
169
+ -->
170
+
171
+ <!--
172
+ ### Out-of-Scope Use
173
+
174
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
175
+ -->
176
+
177
+ ## Evaluation
178
+
179
+ ### Metrics
180
+
181
+ #### Semantic Similarity
182
+
183
+ * Datasets: `allstats-search-multilingual-base-v1-eval` and `allstats-search-multilingual-base-v1-test`
184
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
185
+
186
+ | Metric | allstats-search-multilingual-base-v1-eval | allstats-search-multilingual-base-v1-test |
187
+ |:--------------------|:------------------------------------------|:------------------------------------------|
188
+ | pearson_cosine | 0.87 | 0.9023 |
189
+ | **spearman_cosine** | **0.8062** | **0.8093** |
190
+
191
+ <!--
192
+ ## Bias, Risks and Limitations
193
+
194
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
195
+ -->
196
+
197
+ <!--
198
+ ### Recommendations
199
+
200
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
201
+ -->
202
+
203
+ ## Training Details
204
+
205
+ ### Training Dataset
206
+
207
+ #### query-hard-pos-neg-doc-pairs-statictable
208
+
209
+ * Dataset: [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) at [7b28b96](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable/tree/7b28b964daa3073a4d012d1ffca46ecd4f26bb5f)
210
+ * Size: 25,580 training samples
211
+ * Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
212
+ * Approximate statistics based on the first 1000 samples:
213
+ | | query | doc | label |
214
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
215
+ | type | string | string | int |
216
+ | details | <ul><li>min: 7 tokens</li><li>mean: 20.14 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 24.9 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>0: ~70.80%</li><li>1: ~29.20%</li></ul> |
217
+ * Samples:
218
+ | query | doc | label |
219
+ |:-------------------------------------------------------------------------|:----------------------------------------------|:---------------|
220
+ | <code>Status pekerjaan utama penduduk usia 15+ yang bekerja, 2020</code> | <code>Jumlah Penghuni Lapas per Kanwil</code> | <code>0</code> |
221
+ | <code>status pekerjaan utama penduduk usia 15+ yang bekerja, 2020</code> | <code>Jumlah Penghuni Lapas per Kanwil</code> | <code>0</code> |
222
+ | <code>STATUS PEKERJAAN UTAMA PENDUDUK USIA 15+ YANG BEKERJA, 2020</code> | <code>Jumlah Penghuni Lapas per Kanwil</code> | <code>0</code> |
223
+ * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
224
+
225
+ ### Evaluation Dataset
226
+
227
+ #### query-hard-pos-neg-doc-pairs-statictable
228
+
229
+ * Dataset: [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) at [7b28b96](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable/tree/7b28b964daa3073a4d012d1ffca46ecd4f26bb5f)
230
+ * Size: 5,479 evaluation samples
231
+ * Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
232
+ * Approximate statistics based on the first 1000 samples:
233
+ | | query | doc | label |
234
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
235
+ | type | string | string | int |
236
+ | details | <ul><li>min: 7 tokens</li><li>mean: 20.78 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 26.28 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>0: ~71.50%</li><li>1: ~28.50%</li></ul> |
237
+ * Samples:
238
+ | query | doc | label |
239
+ |:-----------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|:---------------|
240
+ | <code>Bagaimana perbandingan PNS pria dan wanita di berbagai golongan tahun 2014?</code> | <code>Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017</code> | <code>0</code> |
241
+ | <code>bagaimana perbandingan pns pria dan wanita di berbagai golongan tahun 2014?</code> | <code>Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017</code> | <code>0</code> |
242
+ | <code>BAGAIMANA PERBANDINGAN PNS PRIA DAN WANITA DI BERBAGAI GOLONGAN TAHUN 2014?</code> | <code>Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017</code> | <code>0</code> |
243
+ * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
244
+
245
+ ### Training Hyperparameters
246
+ #### Non-Default Hyperparameters
247
+
248
+ - `eval_strategy`: steps
249
+ - `per_device_train_batch_size`: 64
250
+ - `per_device_eval_batch_size`: 64
251
+ - `warmup_ratio`: 0.05
252
+ - `fp16`: True
253
+ - `load_best_model_at_end`: True
254
+ - `eval_on_start`: True
255
+
256
+ #### All Hyperparameters
257
+ <details><summary>Click to expand</summary>
258
+
259
+ - `overwrite_output_dir`: False
260
+ - `do_predict`: False
261
+ - `eval_strategy`: steps
262
+ - `prediction_loss_only`: True
263
+ - `per_device_train_batch_size`: 64
264
+ - `per_device_eval_batch_size`: 64
265
+ - `per_gpu_train_batch_size`: None
266
+ - `per_gpu_eval_batch_size`: None
267
+ - `gradient_accumulation_steps`: 1
268
+ - `eval_accumulation_steps`: None
269
+ - `torch_empty_cache_steps`: None
270
+ - `learning_rate`: 5e-05
271
+ - `weight_decay`: 0.0
272
+ - `adam_beta1`: 0.9
273
+ - `adam_beta2`: 0.999
274
+ - `adam_epsilon`: 1e-08
275
+ - `max_grad_norm`: 1.0
276
+ - `num_train_epochs`: 3
277
+ - `max_steps`: -1
278
+ - `lr_scheduler_type`: linear
279
+ - `lr_scheduler_kwargs`: {}
280
+ - `warmup_ratio`: 0.05
281
+ - `warmup_steps`: 0
282
+ - `log_level`: passive
283
+ - `log_level_replica`: warning
284
+ - `log_on_each_node`: True
285
+ - `logging_nan_inf_filter`: True
286
+ - `save_safetensors`: True
287
+ - `save_on_each_node`: False
288
+ - `save_only_model`: False
289
+ - `restore_callback_states_from_checkpoint`: False
290
+ - `no_cuda`: False
291
+ - `use_cpu`: False
292
+ - `use_mps_device`: False
293
+ - `seed`: 42
294
+ - `data_seed`: None
295
+ - `jit_mode_eval`: False
296
+ - `use_ipex`: False
297
+ - `bf16`: False
298
+ - `fp16`: True
299
+ - `fp16_opt_level`: O1
300
+ - `half_precision_backend`: auto
301
+ - `bf16_full_eval`: False
302
+ - `fp16_full_eval`: False
303
+ - `tf32`: None
304
+ - `local_rank`: 0
305
+ - `ddp_backend`: None
306
+ - `tpu_num_cores`: None
307
+ - `tpu_metrics_debug`: False
308
+ - `debug`: []
309
+ - `dataloader_drop_last`: False
310
+ - `dataloader_num_workers`: 0
311
+ - `dataloader_prefetch_factor`: None
312
+ - `past_index`: -1
313
+ - `disable_tqdm`: False
314
+ - `remove_unused_columns`: True
315
+ - `label_names`: None
316
+ - `load_best_model_at_end`: True
317
+ - `ignore_data_skip`: False
318
+ - `fsdp`: []
319
+ - `fsdp_min_num_params`: 0
320
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
321
+ - `fsdp_transformer_layer_cls_to_wrap`: None
322
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
323
+ - `deepspeed`: None
324
+ - `label_smoothing_factor`: 0.0
325
+ - `optim`: adamw_torch
326
+ - `optim_args`: None
327
+ - `adafactor`: False
328
+ - `group_by_length`: False
329
+ - `length_column_name`: length
330
+ - `ddp_find_unused_parameters`: None
331
+ - `ddp_bucket_cap_mb`: None
332
+ - `ddp_broadcast_buffers`: False
333
+ - `dataloader_pin_memory`: True
334
+ - `dataloader_persistent_workers`: False
335
+ - `skip_memory_metrics`: True
336
+ - `use_legacy_prediction_loop`: False
337
+ - `push_to_hub`: False
338
+ - `resume_from_checkpoint`: None
339
+ - `hub_model_id`: None
340
+ - `hub_strategy`: every_save
341
+ - `hub_private_repo`: None
342
+ - `hub_always_push`: False
343
+ - `gradient_checkpointing`: False
344
+ - `gradient_checkpointing_kwargs`: None
345
+ - `include_inputs_for_metrics`: False
346
+ - `include_for_metrics`: []
347
+ - `eval_do_concat_batches`: True
348
+ - `fp16_backend`: auto
349
+ - `push_to_hub_model_id`: None
350
+ - `push_to_hub_organization`: None
351
+ - `mp_parameters`:
352
+ - `auto_find_batch_size`: False
353
+ - `full_determinism`: False
354
+ - `torchdynamo`: None
355
+ - `ray_scope`: last
356
+ - `ddp_timeout`: 1800
357
+ - `torch_compile`: False
358
+ - `torch_compile_backend`: None
359
+ - `torch_compile_mode`: None
360
+ - `dispatch_batches`: None
361
+ - `split_batches`: None
362
+ - `include_tokens_per_second`: False
363
+ - `include_num_input_tokens_seen`: False
364
+ - `neftune_noise_alpha`: None
365
+ - `optim_target_modules`: None
366
+ - `batch_eval_metrics`: False
367
+ - `eval_on_start`: True
368
+ - `use_liger_kernel`: False
369
+ - `eval_use_gather_object`: False
370
+ - `average_tokens_across_devices`: False
371
+ - `prompts`: None
372
+ - `batch_sampler`: batch_sampler
373
+ - `multi_dataset_batch_sampler`: proportional
374
+
375
+ </details>
376
+
377
+ ### Training Logs
378
+ | Epoch | Step | Training Loss | Validation Loss | allstats-search-multilingual-base-v1-eval_spearman_cosine | allstats-search-multilingual-base-v1-test_spearman_cosine |
379
+ |:-------:|:-------:|:-------------:|:---------------:|:---------------------------------------------------------:|:---------------------------------------------------------:|
380
+ | 0 | 0 | - | 1.3012 | 0.7447 | - |
381
+ | 0.05 | 20 | 0.9548 | 0.3980 | 0.7961 | - |
382
+ | 0.1 | 40 | 0.3959 | 0.3512 | 0.7993 | - |
383
+ | 0.15 | 60 | 0.1949 | 0.3102 | 0.8016 | - |
384
+ | 0.2 | 80 | 0.2126 | 0.4306 | 0.7967 | - |
385
+ | 0.25 | 100 | 0.2228 | 0.2865 | 0.8026 | - |
386
+ | 0.3 | 120 | 0.1306 | 0.2476 | 0.8035 | - |
387
+ | 0.35 | 140 | 0.172 | 0.2592 | 0.8014 | - |
388
+ | 0.4 | 160 | 0.1619 | 0.2495 | 0.8037 | - |
389
+ | 0.45 | 180 | 0.1416 | 0.1890 | 0.8046 | - |
390
+ | 0.5 | 200 | 0.1041 | 0.1717 | 0.8059 | - |
391
+ | 0.55 | 220 | 0.2145 | 0.2165 | 0.8049 | - |
392
+ | 0.6 | 240 | 0.0459 | 0.2176 | 0.8036 | - |
393
+ | 0.65 | 260 | 0.0627 | 0.2670 | 0.8023 | - |
394
+ | 0.7 | 280 | 0.1132 | 0.2309 | 0.8041 | - |
395
+ | 0.75 | 300 | 0.1048 | 0.2623 | 0.8028 | - |
396
+ | 0.8 | 320 | 0.0524 | 0.2328 | 0.8031 | - |
397
+ | 0.85 | 340 | 0.034 | 0.2580 | 0.8024 | - |
398
+ | 0.9 | 360 | 0.0664 | 0.2309 | 0.8034 | - |
399
+ | 0.95 | 380 | 0.0623 | 0.1746 | 0.8053 | - |
400
+ | 1.0 | 400 | 0.0402 | 0.2126 | 0.8041 | - |
401
+ | 1.05 | 420 | 0.0459 | 0.1660 | 0.8062 | - |
402
+ | 1.1 | 440 | 0.0739 | 0.1487 | 0.8068 | - |
403
+ | 1.15 | 460 | 0.0191 | 0.1595 | 0.8066 | - |
404
+ | 1.2 | 480 | 0.0073 | 0.1509 | 0.8066 | - |
405
+ | 1.25 | 500 | 0.0265 | 0.1779 | 0.8062 | - |
406
+ | 1.3 | 520 | 0.0325 | 0.2646 | 0.8032 | - |
407
+ | 1.35 | 540 | 0.0536 | 0.2818 | 0.8030 | - |
408
+ | 1.4 | 560 | 0.0076 | 0.1768 | 0.8057 | - |
409
+ | 1.45 | 580 | 0.011 | 0.1866 | 0.8054 | - |
410
+ | 1.5 | 600 | 0.0181 | 0.1726 | 0.8057 | - |
411
+ | 1.55 | 620 | 0.032 | 0.1881 | 0.8052 | - |
412
+ | 1.6 | 640 | 0.0459 | 0.1482 | 0.8066 | - |
413
+ | 1.65 | 660 | 0.041 | 0.1571 | 0.8065 | - |
414
+ | **1.7** | **680** | **0.0228** | **0.1298** | **0.807** | **-** |
415
+ | 1.75 | 700 | 0.0275 | 0.1571 | 0.8067 | - |
416
+ | 1.8 | 720 | 0.0 | 0.1624 | 0.8066 | - |
417
+ | 1.85 | 740 | 0.0218 | 0.1537 | 0.8068 | - |
418
+ | 1.9 | 760 | 0.0241 | 0.1699 | 0.8062 | - |
419
+ | 1.95 | 780 | 0.0065 | 0.1841 | 0.8059 | - |
420
+ | 2.0 | 800 | 0.0073 | 0.1805 | 0.8061 | - |
421
+ | 2.05 | 820 | 0.0 | 0.1703 | 0.8064 | - |
422
+ | 2.1 | 840 | 0.0 | 0.1702 | 0.8064 | - |
423
+ | 2.15 | 860 | 0.0 | 0.1717 | 0.8064 | - |
424
+ | 2.2 | 880 | 0.0 | 0.1717 | 0.8064 | - |
425
+ | 2.25 | 900 | 0.0 | 0.1717 | 0.8064 | - |
426
+ | 2.3 | 920 | 0.0097 | 0.1875 | 0.8059 | - |
427
+ | 2.35 | 940 | 0.0148 | 0.1868 | 0.8060 | - |
428
+ | 2.4 | 960 | 0.0067 | 0.2205 | 0.8051 | - |
429
+ | 2.45 | 980 | 0.0 | 0.2295 | 0.8049 | - |
430
+ | 2.5 | 1000 | 0.0154 | 0.2238 | 0.8052 | - |
431
+ | 2.55 | 1020 | 0.0063 | 0.2125 | 0.8055 | - |
432
+ | 2.6 | 1040 | 0.0 | 0.2183 | 0.8053 | - |
433
+ | 2.65 | 1060 | 0.0 | 0.2188 | 0.8053 | - |
434
+ | 2.7 | 1080 | 0.0068 | 0.2082 | 0.8056 | - |
435
+ | 2.75 | 1100 | 0.0384 | 0.1770 | 0.8060 | - |
436
+ | 2.8 | 1120 | 0.0 | 0.1645 | 0.8061 | - |
437
+ | 2.85 | 1140 | 0.0105 | 0.1613 | 0.8061 | - |
438
+ | 2.9 | 1160 | 0.0 | 0.1601 | 0.8061 | - |
439
+ | 2.95 | 1180 | 0.0 | 0.1601 | 0.8062 | - |
440
+ | 3.0 | 1200 | 0.0 | 0.1601 | 0.8062 | - |
441
+ | -1 | -1 | - | - | - | 0.8093 |
442
+
443
+ * The bold row denotes the saved checkpoint.
444
+
445
+ ### Framework Versions
446
+ - Python: 3.10.12
447
+ - Sentence Transformers: 3.4.0
448
+ - Transformers: 4.48.1
449
+ - PyTorch: 2.5.1+cu124
450
+ - Accelerate: 1.3.0
451
+ - Datasets: 3.2.0
452
+ - Tokenizers: 0.21.0
453
+
454
+ ## Citation
455
+
456
+ ### BibTeX
457
+
458
+ #### Sentence Transformers
459
+ ```bibtex
460
+ @inproceedings{reimers-2019-sentence-bert,
461
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
462
+ author = "Reimers, Nils and Gurevych, Iryna",
463
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
464
+ month = "11",
465
+ year = "2019",
466
+ publisher = "Association for Computational Linguistics",
467
+ url = "https://arxiv.org/abs/1908.10084",
468
+ }
469
+ ```
470
+
471
+ <!--
472
+ ## Glossary
473
+
474
+ *Clearly define terms in order to be accessible across audiences.*
475
+ -->
476
+
477
+ <!--
478
+ ## Model Card Authors
479
+
480
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
481
+ -->
482
+
483
+ <!--
484
+ ## Model Card Contact
485
+
486
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
487
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "xlm-roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "output_past": true,
22
+ "pad_token_id": 1,
23
+ "position_embedding_type": "absolute",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.48.1",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 250002
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.0",
4
+ "transformers": "4.48.1",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:769d214b40d4b03bf805c820ce79c953848de360d3142caaf666c57d6a468b3b
3
+ size 1112197096
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "max_length": 128,
51
+ "model_max_length": 128,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "<pad>",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "</s>",
57
+ "stride": 0,
58
+ "tokenizer_class": "XLMRobertaTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "<unk>"
62
+ }