File size: 32,816 Bytes
032378a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:123637
- loss:CosineSimilarityLoss
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
widget:
- source_sentence: Analisis biaya hidup di tiga kota Banten thn 2018
  sentences:
  - Indikator Konstruksi Triwulan I-2007
  - Survei Biaya Hidup (SBH) 2018 Bengkulu
  - Indikator Ekonomi Februari 2002
- source_sentence: Grafik ekspor hasil minyak Indonesia ke berbagai negara dari tahun
    2000 hingga 2023.
  sentences:
  - Sistem Neraca Sosial Ekonomi Indonesia Tahun 2022 dalam Format SNA 1968 (65x65)
  - Harga Produsen Gabah dan Beras Januari 2020
  - Profil Usaha Konstruksi Perorangan Provinsi Papua 2016
- source_sentence: Tren konstruksi Indonesia tahun 2007 Q4
  sentences:
  - Laporan Bulanan Data Sosial Ekonomi Desember 2018
  - Indeks Unit Value Ekspor Menurut Kode SITC Bulan Februari 2023
  - Inflasi Februari 2008 sebesar 0,5 persen
- source_sentence: Informasi tentang kepemilikan dan penggunaan AC di rumah tangga
    Indonesia tahun 2013?
  sentences:
  - Data dan Informasi Kemiskinan Kabupaten/Kota Tahun 2014
  - Rata-rata Upah/Gaji Bersih Sebulan Buruh/Karyawan/Pegawai Menurut Kelompok Umur
    dan Jenis Pekerjaan, 2022-2023
  - Indikator Konstruksi, Triwulan II-2022
- source_sentence: Statistik harga Ternate 2012
  sentences:
  - Statistik Perhubungan 2005
  - Indeks Unit Value Ekspor Menurut Kode SITC Bulan Januari 2019
  - Indikator Ekonomi Agustus 2002
datasets:
- yahyaabd/allstats-semantic-synthetic-dataset-v1
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: allstats semantic base v1 eval
      type: allstats-semantic-base-v1-eval
    metrics:
    - type: pearson_cosine
      value: 0.9868927327091045
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.9277441071536588
      name: Spearman Cosine
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: allstat semantic base v1 test
      type: allstat-semantic-base-v1-test
    metrics:
    - type: pearson_cosine
      value: 0.9867639981224826
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.9256998894451143
      name: Spearman Cosine
---

# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) on the [allstats-semantic-synthetic-dataset-v1](https://huggingface.co/datasets/yahyaabd/allstats-semantic-synthetic-dataset-v1) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) <!-- at revision 75c57757a97f90ad739aca51fa8bfea0e485a7f2 -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [allstats-semantic-synthetic-dataset-v1](https://huggingface.co/datasets/yahyaabd/allstats-semantic-synthetic-dataset-v1)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-semantic-base-v1-2")
# Run inference
sentences = [
    'Statistik harga Ternate 2012',
    'Indikator Ekonomi Agustus 2002',
    'Indeks Unit Value Ekspor Menurut Kode SITC Bulan Januari 2019',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity

* Datasets: `allstats-semantic-base-v1-eval` and `allstat-semantic-base-v1-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | allstats-semantic-base-v1-eval | allstat-semantic-base-v1-test |
|:--------------------|:-------------------------------|:------------------------------|
| pearson_cosine      | 0.9869                         | 0.9868                        |
| **spearman_cosine** | **0.9277**                     | **0.9257**                    |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### allstats-semantic-synthetic-dataset-v1

* Dataset: [allstats-semantic-synthetic-dataset-v1](https://huggingface.co/datasets/yahyaabd/allstats-semantic-synthetic-dataset-v1) at [e73718f](https://huggingface.co/datasets/yahyaabd/allstats-semantic-synthetic-dataset-v1/tree/e73718fb155f47b2c5cf8c4e00f0690d37bac9fa)
* Size: 123,637 training samples
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                             | doc                                                                               | label                                                         |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | float                                                         |
  | details | <ul><li>min: 5 tokens</li><li>mean: 10.59 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.29 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> |
* Samples:
  | query                                                                                                               | doc                                                                                                                             | label             |
  |:--------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------|:------------------|
  | <code>Analisis upah tenaga kerja ekonomi kreatif</code>                                                             | <code>Upah Tenaga Kerja Ekonomi Kreatif 2011-2016</code>                                                                        | <code>0.88</code> |
  | <code>cari data persentase rumah tangga yang menggunakan listrik pln menurut provinsi dari 1993 sampai 2022.</code> | <code>Persentase Rumah Tangga menurut Provinsi dan Sumber Penerangan Listrik PLN, 1993-2022</code>                              | <code>0.93</code> |
  | <code>apakah ada tabel yang menunjukkan ekspor minyak mentah ke negara tujuan utama tahun 2000-2023?</code>         | <code>IHK dan Rata-rata Upah per Bulan Buruh Peternakan dan Perikanan di Bawah Mandor (Supervisor), 2012-2014 (2012=100)</code> | <code>0.13</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
  ```json
  {
      "loss_fct": "torch.nn.modules.loss.MSELoss"
  }
  ```

### Evaluation Dataset

#### allstats-semantic-synthetic-dataset-v1

* Dataset: [allstats-semantic-synthetic-dataset-v1](https://huggingface.co/datasets/yahyaabd/allstats-semantic-synthetic-dataset-v1) at [e73718f](https://huggingface.co/datasets/yahyaabd/allstats-semantic-synthetic-dataset-v1/tree/e73718fb155f47b2c5cf8c4e00f0690d37bac9fa)
* Size: 26,494 evaluation samples
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                             | doc                                                                               | label                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | float                                                          |
  | details | <ul><li>min: 5 tokens</li><li>mean: 10.66 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 13.94 tokens</li><li>max: 70 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.49</li><li>max: 1.0</li></ul> |
* Samples:
  | query                                                         | doc                                                                              | label             |
  |:--------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------|
  | <code>SBH Aceh 2018: Meulaboh, Banda Aceh, Lhokseumawe</code> | <code>Survei Biaya Hidup (SBH) 2018 Meulaboh, Banda Aceh, dan Lhokseumawe</code> | <code>0.9</code>  |
  | <code>ekspor produk indonesia juli 2018 per negara</code>     | <code>Direktori Perusahaan Pertambangan Besar 2013</code>                        | <code>0.07</code> |
  | <code>peternakan sapi di jawa tengah 2011</code>              | <code>Laporan Bulanan Data Sosial Ekonomi Juli 2024</code>                       | <code>0.07</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
  ```json
  {
      "loss_fct": "torch.nn.modules.loss.MSELoss"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `num_train_epochs`: 24
- `warmup_ratio`: 0.1
- `fp16`: True
- `dataloader_num_workers`: 4
- `load_best_model_at_end`: True
- `label_smoothing_factor`: 0.1
- `eval_on_start`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 24
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 4
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.1
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: True
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch       | Step      | Training Loss | Validation Loss | allstats-semantic-base-v1-eval_spearman_cosine | allstat-semantic-base-v1-test_spearman_cosine |
|:-----------:|:---------:|:-------------:|:---------------:|:----------------------------------------------:|:---------------------------------------------:|
| 0           | 0         | -             | 0.0942          | 0.6574                                         | -                                             |
| 0.2588      | 500       | 0.0449        | 0.0262          | 0.7353                                         | -                                             |
| 0.5176      | 1000      | 0.0232        | 0.0185          | 0.7592                                         | -                                             |
| 0.7764      | 1500      | 0.0172        | 0.0154          | 0.7760                                         | -                                             |
| 1.0352      | 2000      | 0.0153        | 0.0137          | 0.7905                                         | -                                             |
| 1.2940      | 2500      | 0.0124        | 0.0130          | 0.7920                                         | -                                             |
| 1.5528      | 3000      | 0.0119        | 0.0120          | 0.8048                                         | -                                             |
| 1.8116      | 3500      | 0.0121        | 0.0121          | 0.8021                                         | -                                             |
| 2.0704      | 4000      | 0.0114        | 0.0112          | 0.8018                                         | -                                             |
| 2.3292      | 4500      | 0.0093        | 0.0117          | 0.7996                                         | -                                             |
| 2.5880      | 5000      | 0.0097        | 0.0105          | 0.8133                                         | -                                             |
| 2.8468      | 5500      | 0.0092        | 0.0103          | 0.8137                                         | -                                             |
| 3.1056      | 6000      | 0.0085        | 0.0094          | 0.8247                                         | -                                             |
| 3.3644      | 6500      | 0.0068        | 0.0090          | 0.8326                                         | -                                             |
| 3.6232      | 7000      | 0.0073        | 0.0092          | 0.8273                                         | -                                             |
| 3.8820      | 7500      | 0.007         | 0.0084          | 0.8404                                         | -                                             |
| 4.1408      | 8000      | 0.0061        | 0.0083          | 0.8381                                         | -                                             |
| 4.3996      | 8500      | 0.0057        | 0.0082          | 0.8382                                         | -                                             |
| 4.6584      | 9000      | 0.0056        | 0.0074          | 0.8458                                         | -                                             |
| 4.9172      | 9500      | 0.0057        | 0.0073          | 0.8468                                         | -                                             |
| 5.1760      | 10000     | 0.0045        | 0.0071          | 0.8508                                         | -                                             |
| 5.4348      | 10500     | 0.0041        | 0.0069          | 0.8579                                         | -                                             |
| 5.6936      | 11000     | 0.0047        | 0.0069          | 0.8471                                         | -                                             |
| 5.9524      | 11500     | 0.0046        | 0.0067          | 0.8554                                         | -                                             |
| 6.2112      | 12000     | 0.0034        | 0.0062          | 0.8616                                         | -                                             |
| 6.4700      | 12500     | 0.0034        | 0.0063          | 0.8636                                         | -                                             |
| 6.7288      | 13000     | 0.0036        | 0.0062          | 0.8649                                         | -                                             |
| 6.9876      | 13500     | 0.0037        | 0.0063          | 0.8641                                         | -                                             |
| 7.2464      | 14000     | 0.0027        | 0.0059          | 0.8691                                         | -                                             |
| 7.5052      | 14500     | 0.0027        | 0.0060          | 0.8733                                         | -                                             |
| 7.7640      | 15000     | 0.0031        | 0.0060          | 0.8748                                         | -                                             |
| 8.0228      | 15500     | 0.0028        | 0.0058          | 0.8736                                         | -                                             |
| 8.2816      | 16000     | 0.0023        | 0.0055          | 0.8785                                         | -                                             |
| 8.5404      | 16500     | 0.0025        | 0.0054          | 0.8801                                         | -                                             |
| 8.7992      | 17000     | 0.0024        | 0.0058          | 0.8809                                         | -                                             |
| 9.0580      | 17500     | 0.0026        | 0.0058          | 0.8811                                         | -                                             |
| 9.3168      | 18000     | 0.002         | 0.0055          | 0.8824                                         | -                                             |
| 9.5756      | 18500     | 0.002         | 0.0053          | 0.8859                                         | -                                             |
| 9.8344      | 19000     | 0.0021        | 0.0053          | 0.8851                                         | -                                             |
| 10.0932     | 19500     | 0.0019        | 0.0055          | 0.8904                                         | -                                             |
| 10.3520     | 20000     | 0.0016        | 0.0052          | 0.8946                                         | -                                             |
| 10.6108     | 20500     | 0.0017        | 0.0057          | 0.8884                                         | -                                             |
| 10.8696     | 21000     | 0.0019        | 0.0055          | 0.8889                                         | -                                             |
| 11.1284     | 21500     | 0.0016        | 0.0052          | 0.8942                                         | -                                             |
| 11.3872     | 22000     | 0.0014        | 0.0053          | 0.8961                                         | -                                             |
| 11.6460     | 22500     | 0.0016        | 0.0053          | 0.8928                                         | -                                             |
| 11.9048     | 23000     | 0.0017        | 0.0051          | 0.8947                                         | -                                             |
| 12.1636     | 23500     | 0.0013        | 0.0050          | 0.9015                                         | -                                             |
| 12.4224     | 24000     | 0.0012        | 0.0059          | 0.8886                                         | -                                             |
| 12.6812     | 24500     | 0.0014        | 0.0051          | 0.9030                                         | -                                             |
| 12.9400     | 25000     | 0.0014        | 0.0051          | 0.9012                                         | -                                             |
| 13.1988     | 25500     | 0.0011        | 0.0050          | 0.9037                                         | -                                             |
| 13.4576     | 26000     | 0.0011        | 0.0050          | 0.9053                                         | -                                             |
| 13.7164     | 26500     | 0.0011        | 0.0049          | 0.9060                                         | -                                             |
| 13.9752     | 27000     | 0.0011        | 0.0049          | 0.9086                                         | -                                             |
| 14.2340     | 27500     | 0.001         | 0.0048          | 0.9063                                         | -                                             |
| 14.4928     | 28000     | 0.001         | 0.0051          | 0.9056                                         | -                                             |
| 14.7516     | 28500     | 0.001         | 0.0051          | 0.9079                                         | -                                             |
| 15.0104     | 29000     | 0.0011        | 0.0049          | 0.9080                                         | -                                             |
| 15.2692     | 29500     | 0.0008        | 0.0048          | 0.9126                                         | -                                             |
| 15.5280     | 30000     | 0.0008        | 0.0049          | 0.9112                                         | -                                             |
| 15.7867     | 30500     | 0.0008        | 0.0049          | 0.9123                                         | -                                             |
| 16.0455     | 31000     | 0.0008        | 0.0048          | 0.9133                                         | -                                             |
| 16.3043     | 31500     | 0.0006        | 0.0048          | 0.9103                                         | -                                             |
| 16.5631     | 32000     | 0.0007        | 0.0049          | 0.9144                                         | -                                             |
| 16.8219     | 32500     | 0.0008        | 0.0048          | 0.9143                                         | -                                             |
| 17.0807     | 33000     | 0.0007        | 0.0048          | 0.9159                                         | -                                             |
| 17.3395     | 33500     | 0.0007        | 0.0047          | 0.9174                                         | -                                             |
| 17.5983     | 34000     | 0.0006        | 0.0048          | 0.9175                                         | -                                             |
| 17.8571     | 34500     | 0.0007        | 0.0047          | 0.9163                                         | -                                             |
| 18.1159     | 35000     | 0.0006        | 0.0046          | 0.9195                                         | -                                             |
| 18.3747     | 35500     | 0.0006        | 0.0047          | 0.9190                                         | -                                             |
| 18.6335     | 36000     | 0.0006        | 0.0047          | 0.9192                                         | -                                             |
| 18.8923     | 36500     | 0.0006        | 0.0047          | 0.9204                                         | -                                             |
| 19.1511     | 37000     | 0.0005        | 0.0047          | 0.9219                                         | -                                             |
| 19.4099     | 37500     | 0.0004        | 0.0046          | 0.9218                                         | -                                             |
| 19.6687     | 38000     | 0.0005        | 0.0047          | 0.9221                                         | -                                             |
| 19.9275     | 38500     | 0.0005        | 0.0046          | 0.9230                                         | -                                             |
| 20.1863     | 39000     | 0.0005        | 0.0046          | 0.9233                                         | -                                             |
| 20.4451     | 39500     | 0.0004        | 0.0046          | 0.9240                                         | -                                             |
| 20.7039     | 40000     | 0.0005        | 0.0047          | 0.9234                                         | -                                             |
| 20.9627     | 40500     | 0.0004        | 0.0047          | 0.9241                                         | -                                             |
| 21.2215     | 41000     | 0.0004        | 0.0046          | 0.9253                                         | -                                             |
| 21.4803     | 41500     | 0.0004        | 0.0046          | 0.9259                                         | -                                             |
| 21.7391     | 42000     | 0.0004        | 0.0046          | 0.9262                                         | -                                             |
| **21.9979** | **42500** | **0.0004**    | **0.0046**      | **0.9263**                                     | **-**                                         |
| 22.2567     | 43000     | 0.0003        | 0.0046          | 0.9266                                         | -                                             |
| 22.5155     | 43500     | 0.0003        | 0.0046          | 0.9266                                         | -                                             |
| 22.7743     | 44000     | 0.0003        | 0.0046          | 0.9273                                         | -                                             |
| 23.0331     | 44500     | 0.0003        | 0.0046          | 0.9273                                         | -                                             |
| 23.2919     | 45000     | 0.0003        | 0.0046          | 0.9274                                         | -                                             |
| 23.5507     | 45500     | 0.0003        | 0.0046          | 0.9277                                         | -                                             |
| 23.8095     | 46000     | 0.0003        | 0.0046          | 0.9277                                         | -                                             |
| 24.0        | 46368     | -             | -               | -                                              | 0.9257                                        |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->