---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:123640
- loss:CosineSimilarityLoss
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
widget:
- source_sentence: data perempuan dan laki-laki di indonesia 2022
sentences:
- Statistik Telekomunikasi Indonesia 2012
- Perkembangan Indeks Produksi Triwulanan Industri Mikro dan Kecil 2023
- Pada Agustus 2014, Jumlah wisman mencapai 826,8 ribu
- source_sentence: hasil survei kebutuhan data 2011 di indonesia
sentences:
- Analisis Survei Kebutuhan Data 2011
- Produk Domestik Bruto Indonesia Triwulanan 2007-2011
- Direktori Perusahaan Air Bersih, Listrik, dan Gas 2022
- source_sentence: komoditas apa yang produksinya naik 3,24 persen pada tahun 2013?
sentences:
- Indikator Ekonomi Juni 2017
- Produksi jagung naik pada tahun 2013.
- Statistik Keuangan Pemerintah Desa 2018
- source_sentence: buku-buku statistik tahun 2007
sentences:
- Statistik Keuangan Badan Usaha Milik Negara dan Badan Usaha Milik Daerah 2019
- Statistik Harga Konsumen Perdesaan Kelompok Makanan 2011
- Buletin Statistik Perdagangan Luar Negeri Impor Mei 2019
- source_sentence: analisis kinerja ekspor indonesia feb 2014
sentences:
- Kajian Big Data Sinyal Pemulihan Indonesia dari Pandemi Covid-19
- Laporan Bulanan Data Sosial Ekonomi Januari 2019
- Buletin Statistik Perdagangan Luar Negeri Ekspor Menurut Kelompok Komoditi dan
Negara Februari 2014
datasets:
- yahyaabd/allstats-semantic-synthetic-dataset-v1
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: allstats semantic base v1 eval
type: allstats-semantic-base-v1-eval
metrics:
- type: pearson_cosine
value: 0.9866451272402678
name: Pearson Cosine
- type: spearman_cosine
value: 0.9032950863870964
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: allstat semantic base v1 test
type: allstat-semantic-base-v1-test
metrics:
- type: pearson_cosine
value: 0.9876833290128094
name: Pearson Cosine
- type: spearman_cosine
value: 0.9063327700749637
name: Spearman Cosine
---
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) on the [allstats-semantic-synthetic-dataset-v1](https://huggingface.co/datasets/yahyaabd/allstats-semantic-synthetic-dataset-v1) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2)
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [allstats-semantic-synthetic-dataset-v1](https://huggingface.co/datasets/yahyaabd/allstats-semantic-synthetic-dataset-v1)
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-semantic-base-v1")
# Run inference
sentences = [
'analisis kinerja ekspor indonesia feb 2014',
'Buletin Statistik Perdagangan Luar Negeri Ekspor Menurut Kelompok Komoditi dan Negara Februari 2014',
'Laporan Bulanan Data Sosial Ekonomi Januari 2019',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Datasets: `allstats-semantic-base-v1-eval` and `allstat-semantic-base-v1-test`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | allstats-semantic-base-v1-eval | allstat-semantic-base-v1-test |
|:--------------------|:-------------------------------|:------------------------------|
| pearson_cosine | 0.9866 | 0.9877 |
| **spearman_cosine** | **0.9033** | **0.9063** |
## Training Details
### Training Dataset
#### allstats-semantic-synthetic-dataset-v1
* Dataset: [allstats-semantic-synthetic-dataset-v1](https://huggingface.co/datasets/yahyaabd/allstats-semantic-synthetic-dataset-v1) at [d59a245](https://huggingface.co/datasets/yahyaabd/allstats-semantic-synthetic-dataset-v1/tree/d59a24585b2ee30e806569dc6a091becd5fcac0c)
* Size: 123,640 training samples
* Columns: query
, doc
, and label
* Approximate statistics based on the first 1000 samples:
| | query | doc | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details |
Gambaran umum karakteristik usaha di Indonesia
| Statistik Karakteristik Usaha 2022/2023
| 0.9
|
| Tabel data jumlah sekolah, guru, dan murid MA di bawah Kementerian Agama per provinsi.
| Jumlah Sekolah, Guru, dan Murid Madrasah Aliyah (MA) di Bawah Kementerian Agama Menurut Provinsi, tahun ajaran 2005/2006-2015/2016
| 0.96
|
| bagaimana kinerja sektor konstruksi indonesia di triwulan ketiga tahun 2008?
| Statistik Restoran/Rumah Makan 2007
| 0.09
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Evaluation Dataset
#### allstats-semantic-synthetic-dataset-v1
* Dataset: [allstats-semantic-synthetic-dataset-v1](https://huggingface.co/datasets/yahyaabd/allstats-semantic-synthetic-dataset-v1) at [d59a245](https://huggingface.co/datasets/yahyaabd/allstats-semantic-synthetic-dataset-v1/tree/d59a24585b2ee30e806569dc6a091becd5fcac0c)
* Size: 26,494 evaluation samples
* Columns: query
, doc
, and label
* Approximate statistics based on the first 1000 samples:
| | query | doc | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | Harga barang konsumsi Indonesia 2022: data per kota
| Harga Konsumen Beberapa Barang Kelompok Makanan, Minuman, dan Tembakau 90 Kota di Indonesia 2022
| 0.92
|
| data biaya hidup bali 2018
| Buletin Statistik Perdagangan Luar Negeri Ekspor Menurut Kelompok Komoditi dan Negara, Maret 2018
| 0.1
|
| ekspor barang indonesia november 2011: data lengkap
| Buletin Statistik Perdagangan Luar Negeri Ekspor Menurut Kelompok Komoditi dan Negara Februari 2013
| 0.12
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `num_train_epochs`: 10
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
#### All Hyperparameters