File size: 4,750 Bytes
fb6f9e5
 
 
 
 
038dc1b
fb6f9e5
 
 
038dc1b
 
 
 
 
fb6f9e5
 
 
 
 
 
 
 
 
 
038dc1b
fb6f9e5
944243f
 
 
 
 
 
 
 
 
fb6f9e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
944243f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb6f9e5
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
library_name: transformers
license: other
base_model: trl-lib/qwen1.5-0.5b-sft
tags:
- alignment-handbook
- trl
- simpo
- generated_from_trainer
- trl
- simpo
- generated_from_trainer
datasets:
- yakazimir/ultrafeedback_binarized
model-index:
- name: qwen_fUNL_entropy
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# qwen_fUNL_entropy

This model is a fine-tuned version of [trl-lib/qwen1.5-0.5b-sft](https://huggingface.co/trl-lib/qwen1.5-0.5b-sft) on the yakazimir/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0000
- Rewards/chosen: -42.7794
- Rewards/rejected: -43.9149
- Rewards/accuracies: 0.5668
- Rewards/margins: 1.1356
- Logps/rejected: -43.9149
- Logps/chosen: -42.7794
- Logits/rejected: 7.2567
- Logits/chosen: 7.5393

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.0           | 0.2141 | 400  | 0.0001          | -29.4740       | -31.2238         | 0.5690             | 1.7498          | -31.2238       | -29.4740     | 4.5258          | 4.5083        |
| 0.0           | 0.4282 | 800  | 0.0000          | -37.0465       | -38.5277         | 0.5579             | 1.4811          | -38.5277       | -37.0465     | 6.2307          | 6.3643        |
| 0.001         | 0.6422 | 1200 | 0.0000          | -38.7942       | -40.1267         | 0.5668             | 1.3324          | -40.1267       | -38.7942     | 6.5149          | 6.7000        |
| 0.0           | 0.8563 | 1600 | 0.0000          | -38.5913       | -40.0107         | 0.5668             | 1.4194          | -40.0107       | -38.5913     | 6.5708          | 6.7471        |
| 0.0           | 1.0704 | 2000 | 0.0000          | -40.7799       | -42.0174         | 0.5675             | 1.2374          | -42.0174       | -40.7799     | 7.0075          | 7.2451        |
| 0.0           | 1.2845 | 2400 | 0.0000          | -40.9809       | -42.2090         | 0.5645             | 1.2280          | -42.2090       | -40.9809     | 6.9425          | 7.1883        |
| 0.0           | 1.4986 | 2800 | 0.0000          | -41.7185       | -42.9016         | 0.5631             | 1.1831          | -42.9016       | -41.7185     | 7.2071          | 7.4629        |
| 0.0           | 1.7127 | 3200 | 0.0000          | -41.7373       | -42.9487         | 0.5675             | 1.2115          | -42.9487       | -41.7373     | 7.0907          | 7.3464        |
| 0.0           | 1.9267 | 3600 | 0.0000          | -42.3165       | -43.4863         | 0.5668             | 1.1698          | -43.4863       | -42.3165     | 7.2080          | 7.4815        |
| 0.0           | 2.1408 | 4000 | 0.0000          | -43.0385       | -44.1473         | 0.5697             | 1.1088          | -44.1473       | -43.0385     | 7.2552          | 7.5548        |
| 0.0           | 2.3549 | 4400 | 0.0000          | -42.9448       | -44.0525         | 0.5705             | 1.1077          | -44.0525       | -42.9448     | 7.2918          | 7.5836        |
| 0.0           | 2.5690 | 4800 | 0.0000          | -43.0768       | -44.1767         | 0.5675             | 1.0999          | -44.1767       | -43.0768     | 7.3794          | 7.6690        |
| 0.0           | 2.7831 | 5200 | 0.0000          | -43.1227       | -44.2291         | 0.5690             | 1.1064          | -44.2291       | -43.1227     | 7.2960          | 7.5933        |
| 0.0           | 2.9972 | 5600 | 0.0000          | -42.7794       | -43.9149         | 0.5668             | 1.1356          | -43.9149       | -42.7794     | 7.2567          | 7.5393        |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1