File size: 4,825 Bytes
be351c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
---
library_name: peft
license: other
base_model: deepseek-ai/deepseek-coder-1.3b-base
tags:
- generated_from_trainer
model-index:
- name: lemexp-task1-template_small-deepseek-coder-1.3b-base-ddp-8lr-1bs
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lemexp-task1-template_small-deepseek-coder-1.3b-base-ddp-8lr-1bs

This model is a fine-tuned version of [deepseek-ai/deepseek-coder-1.3b-base](https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1927

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0008
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 8
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 12
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step  | Validation Loss |
|:-------------:|:-------:|:-----:|:---------------:|
| 0.3957        | 0.2001  | 1258  | 0.3826          |
| 0.3477        | 0.4002  | 2516  | 0.3397          |
| 0.3363        | 0.6003  | 3774  | 0.3289          |
| 0.3209        | 0.8004  | 5032  | 0.3253          |
| 0.3156        | 1.0005  | 6290  | 0.3069          |
| 0.3004        | 1.2006  | 7548  | 0.3068          |
| 0.3008        | 1.4007  | 8806  | 0.2984          |
| 0.2906        | 1.6008  | 10064 | 0.2998          |
| 0.2945        | 1.8009  | 11322 | 0.2932          |
| 0.2894        | 2.0010  | 12580 | 0.2823          |
| 0.2752        | 2.2010  | 13838 | 0.2808          |
| 0.2718        | 2.4011  | 15096 | 0.2829          |
| 0.2731        | 2.6012  | 16354 | 0.2806          |
| 0.2692        | 2.8013  | 17612 | 0.2707          |
| 0.2644        | 3.0014  | 18870 | 0.2728          |
| 0.2543        | 3.2015  | 20128 | 0.2660          |
| 0.2575        | 3.4016  | 21386 | 0.2628          |
| 0.2563        | 3.6017  | 22644 | 0.2645          |
| 0.2522        | 3.8018  | 23902 | 0.2550          |
| 0.2519        | 4.0019  | 25160 | 0.2550          |
| 0.2397        | 4.2020  | 26418 | 0.2544          |
| 0.2419        | 4.4021  | 27676 | 0.2483          |
| 0.2358        | 4.6022  | 28934 | 0.2477          |
| 0.2349        | 4.8023  | 30192 | 0.2466          |
| 0.234         | 5.0024  | 31450 | 0.2442          |
| 0.2212        | 5.2025  | 32708 | 0.2443          |
| 0.2221        | 5.4026  | 33966 | 0.2420          |
| 0.222         | 5.6027  | 35224 | 0.2322          |
| 0.2198        | 5.8028  | 36482 | 0.2319          |
| 0.2193        | 6.0029  | 37740 | 0.2315          |
| 0.2051        | 6.2030  | 38998 | 0.2245          |
| 0.2071        | 6.4031  | 40256 | 0.2249          |
| 0.2039        | 6.6031  | 41514 | 0.2309          |
| 0.2059        | 6.8032  | 42772 | 0.2184          |
| 0.2044        | 7.0033  | 44030 | 0.2175          |
| 0.1878        | 7.2034  | 45288 | 0.2172          |
| 0.1903        | 7.4035  | 46546 | 0.2123          |
| 0.1924        | 7.6036  | 47804 | 0.2105          |
| 0.1886        | 7.8037  | 49062 | 0.2087          |
| 0.1876        | 8.0038  | 50320 | 0.2063          |
| 0.1726        | 8.2039  | 51578 | 0.2109          |
| 0.1756        | 8.4040  | 52836 | 0.2097          |
| 0.1764        | 8.6041  | 54094 | 0.2045          |
| 0.1737        | 8.8042  | 55352 | 0.1993          |
| 0.1702        | 9.0043  | 56610 | 0.2031          |
| 0.1561        | 9.2044  | 57868 | 0.1991          |
| 0.158         | 9.4045  | 59126 | 0.1977          |
| 0.1568        | 9.6046  | 60384 | 0.1983          |
| 0.1583        | 9.8047  | 61642 | 0.1965          |
| 0.1591        | 10.0048 | 62900 | 0.1940          |
| 0.1419        | 10.2049 | 64158 | 0.1956          |
| 0.1434        | 10.4050 | 65416 | 0.1924          |
| 0.1411        | 10.6051 | 66674 | 0.1940          |
| 0.1418        | 10.8052 | 67932 | 0.1929          |
| 0.1393        | 11.0052 | 69190 | 0.1922          |
| 0.1279        | 11.2053 | 70448 | 0.1946          |
| 0.1287        | 11.4054 | 71706 | 0.1953          |
| 0.1274        | 11.6055 | 72964 | 0.1948          |
| 0.1259        | 11.8056 | 74222 | 0.1927          |


### Framework versions

- PEFT 0.14.0
- Transformers 4.47.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0