File size: 4,834 Bytes
5f0cbba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34bf20c
5f0cbba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34bf20c
5f0cbba
 
 
 
34bf20c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f0cbba
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
---
library_name: peft
license: other
base_model: deepseek-ai/deepseek-coder-1.3b-base
tags:
- generated_from_trainer
model-index:
- name: lemexp-task1-v2-template_full_nodefs-deepseek-coder-1.3b-base-ddp-8lr-v2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lemexp-task1-v2-template_full_nodefs-deepseek-coder-1.3b-base-ddp-8lr-v2

This model is a fine-tuned version of [deepseek-ai/deepseek-coder-1.3b-base](https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1453

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0008
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 12
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step   | Validation Loss |
|:-------------:|:-----:|:------:|:---------------:|
| 0.2767        | 0.2   | 3094   | 0.2776          |
| 0.2557        | 0.4   | 6188   | 0.2610          |
| 0.2507        | 0.6   | 9282   | 0.2532          |
| 0.2434        | 0.8   | 12376  | 0.2445          |
| 0.2395        | 1.0   | 15470  | 0.2353          |
| 0.2339        | 1.2   | 18564  | 0.2381          |
| 0.2332        | 1.4   | 21658  | 0.2260          |
| 0.2275        | 1.6   | 24752  | 0.2299          |
| 0.2298        | 1.8   | 27846  | 0.2205          |
| 0.2233        | 2.0   | 30940  | 0.2328          |
| 0.221         | 2.2   | 34034  | 0.2231          |
| 0.2201        | 2.4   | 37128  | 0.2136          |
| 0.2154        | 2.6   | 40222  | 0.2186          |
| 0.2152        | 2.8   | 43316  | 0.2148          |
| 0.2153        | 3.0   | 46410  | 0.2166          |
| 0.21          | 3.2   | 49504  | 0.2103          |
| 0.2094        | 3.4   | 52598  | 0.2103          |
| 0.2054        | 3.6   | 55692  | 0.2095          |
| 0.2046        | 3.8   | 58786  | 0.2053          |
| 0.2056        | 4.0   | 61880  | 0.2002          |
| 0.1989        | 4.2   | 64974  | 0.2069          |
| 0.1968        | 4.4   | 68068  | 0.1943          |
| 0.1948        | 4.6   | 71162  | 0.2035          |
| 0.1905        | 4.8   | 74256  | 0.1966          |
| 0.1909        | 5.0   | 77350  | 0.1933          |
| 0.1879        | 5.2   | 80444  | 0.1892          |
| 0.1877        | 5.4   | 83538  | 0.1933          |
| 0.186         | 5.6   | 86632  | 0.1895          |
| 0.1844        | 5.8   | 89726  | 0.1868          |
| 0.1815        | 6.0   | 92820  | 0.1869          |
| 0.1764        | 6.2   | 95914  | 0.1845          |
| 0.1764        | 6.4   | 99008  | 0.1874          |
| 0.1754        | 6.6   | 102102 | 0.1894          |
| 0.176         | 6.8   | 105196 | 0.1816          |
| 0.1724        | 7.0   | 108290 | 0.1799          |
| 0.1656        | 7.2   | 111384 | 0.1761          |
| 0.1637        | 7.4   | 114478 | 0.1751          |
| 0.1672        | 7.6   | 117572 | 0.1767          |
| 0.164         | 7.8   | 120666 | 0.1714          |
| 0.1637        | 8.0   | 123760 | 0.1714          |
| 0.1553        | 8.2   | 126854 | 0.1694          |
| 0.1538        | 8.4   | 129948 | 0.1700          |
| 0.1533        | 8.6   | 133042 | 0.1686          |
| 0.1561        | 8.8   | 136136 | 0.1641          |
| 0.1544        | 9.0   | 139230 | 0.1627          |
| 0.1457        | 9.2   | 142324 | 0.1582          |
| 0.1458        | 9.4   | 145418 | 0.1593          |
| 0.1447        | 9.6   | 148512 | 0.1590          |
| 0.1446        | 9.8   | 151606 | 0.1565          |
| 0.1405        | 10.0  | 154700 | 0.1557          |
| 0.1357        | 10.2  | 157794 | 0.1539          |
| 0.1338        | 10.4  | 160888 | 0.1528          |
| 0.1333        | 10.6  | 163982 | 0.1518          |
| 0.1319        | 10.8  | 167076 | 0.1509          |
| 0.1324        | 11.0  | 170170 | 0.1479          |
| 0.1264        | 11.2  | 173264 | 0.1487          |
| 0.1227        | 11.4  | 176358 | 0.1483          |
| 0.1234        | 11.6  | 179452 | 0.1458          |
| 0.1223        | 11.8  | 182546 | 0.1461          |
| 0.1226        | 12.0  | 185640 | 0.1453          |


### Framework versions

- PEFT 0.14.0
- Transformers 4.47.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0