File size: 4,836 Bytes
384b357
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
---
library_name: peft
license: other
base_model: deepseek-ai/deepseek-coder-1.3b-base
tags:
- generated_from_trainer
model-index:
- name: lemexp-task1-v2-template_full_notypes-deepseek-coder-1.3b-base-ddp-8lr-v2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lemexp-task1-v2-template_full_notypes-deepseek-coder-1.3b-base-ddp-8lr-v2

This model is a fine-tuned version of [deepseek-ai/deepseek-coder-1.3b-base](https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1580

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0008
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 12
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step   | Validation Loss |
|:-------------:|:-----:|:------:|:---------------:|
| 0.323         | 0.2   | 3094   | 0.3202          |
| 0.298         | 0.4   | 6188   | 0.3000          |
| 0.2894        | 0.6   | 9282   | 0.2873          |
| 0.2822        | 0.8   | 12376  | 0.2833          |
| 0.277         | 1.0   | 15470  | 0.2830          |
| 0.2735        | 1.2   | 18564  | 0.2703          |
| 0.2697        | 1.4   | 21658  | 0.2622          |
| 0.2644        | 1.6   | 24752  | 0.2595          |
| 0.2639        | 1.8   | 27846  | 0.2525          |
| 0.259         | 2.0   | 30940  | 0.2543          |
| 0.2525        | 2.2   | 34034  | 0.2585          |
| 0.2527        | 2.4   | 37128  | 0.2484          |
| 0.2479        | 2.6   | 40222  | 0.2459          |
| 0.2474        | 2.8   | 43316  | 0.2459          |
| 0.2446        | 3.0   | 46410  | 0.2534          |
| 0.2406        | 3.2   | 49504  | 0.2390          |
| 0.2406        | 3.4   | 52598  | 0.2351          |
| 0.236         | 3.6   | 55692  | 0.2347          |
| 0.2342        | 3.8   | 58786  | 0.2295          |
| 0.235         | 4.0   | 61880  | 0.2346          |
| 0.2275        | 4.2   | 64974  | 0.2235          |
| 0.2234        | 4.4   | 68068  | 0.2277          |
| 0.2231        | 4.6   | 71162  | 0.2263          |
| 0.2181        | 4.8   | 74256  | 0.2214          |
| 0.2177        | 5.0   | 77350  | 0.2195          |
| 0.2153        | 5.2   | 80444  | 0.2148          |
| 0.2134        | 5.4   | 83538  | 0.2133          |
| 0.2115        | 5.6   | 86632  | 0.2122          |
| 0.2102        | 5.8   | 89726  | 0.2129          |
| 0.2063        | 6.0   | 92820  | 0.2095          |
| 0.2021        | 6.2   | 95914  | 0.2089          |
| 0.2007        | 6.4   | 99008  | 0.2052          |
| 0.2002        | 6.6   | 102102 | 0.2038          |
| 0.2011        | 6.8   | 105196 | 0.1991          |
| 0.1965        | 7.0   | 108290 | 0.1989          |
| 0.1892        | 7.2   | 111384 | 0.1965          |
| 0.1871        | 7.4   | 114478 | 0.1933          |
| 0.1891        | 7.6   | 117572 | 0.1976          |
| 0.1866        | 7.8   | 120666 | 0.1919          |
| 0.1856        | 8.0   | 123760 | 0.1932          |
| 0.1757        | 8.2   | 126854 | 0.1914          |
| 0.1758        | 8.4   | 129948 | 0.1854          |
| 0.1739        | 8.6   | 133042 | 0.1827          |
| 0.1772        | 8.8   | 136136 | 0.1812          |
| 0.1746        | 9.0   | 139230 | 0.1789          |
| 0.1653        | 9.2   | 142324 | 0.1767          |
| 0.165         | 9.4   | 145418 | 0.1739          |
| 0.1644        | 9.6   | 148512 | 0.1730          |
| 0.163         | 9.8   | 151606 | 0.1720          |
| 0.1587        | 10.0  | 154700 | 0.1699          |
| 0.1536        | 10.2  | 157794 | 0.1684          |
| 0.1508        | 10.4  | 160888 | 0.1662          |
| 0.1516        | 10.6  | 163982 | 0.1665          |
| 0.1494        | 10.8  | 167076 | 0.1640          |
| 0.1494        | 11.0  | 170170 | 0.1621          |
| 0.1419        | 11.2  | 173264 | 0.1627          |
| 0.1388        | 11.4  | 176358 | 0.1603          |
| 0.1384        | 11.6  | 179452 | 0.1588          |
| 0.1376        | 11.8  | 182546 | 0.1583          |
| 0.1387        | 12.0  | 185640 | 0.1580          |


### Framework versions

- PEFT 0.14.0
- Transformers 4.47.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0