File size: 4,832 Bytes
8528232 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
---
library_name: peft
license: other
base_model: deepseek-ai/deepseek-coder-1.3b-base
tags:
- generated_from_trainer
model-index:
- name: lemexp-task1-v2-template_small-deepseek-coder-1.3b-base-ddp-12lr-v2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# lemexp-task1-v2-template_small-deepseek-coder-1.3b-base-ddp-12lr-v2
This model is a fine-tuned version of [deepseek-ai/deepseek-coder-1.3b-base](https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1541
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0012
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 12
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:-----:|:---------------:|
| 0.3986 | 0.2001 | 720 | 0.3279 |
| 0.3106 | 0.4001 | 1440 | 0.2887 |
| 0.2816 | 0.6002 | 2160 | 0.2783 |
| 0.2741 | 0.8002 | 2880 | 0.2706 |
| 0.2644 | 1.0003 | 3600 | 0.2729 |
| 0.2559 | 1.2003 | 4320 | 0.2616 |
| 0.2526 | 1.4004 | 5040 | 0.2572 |
| 0.248 | 1.6004 | 5760 | 0.2575 |
| 0.2467 | 1.8005 | 6480 | 0.2575 |
| 0.2414 | 2.0006 | 7200 | 0.2458 |
| 0.2347 | 2.2006 | 7920 | 0.2465 |
| 0.2335 | 2.4007 | 8640 | 0.2434 |
| 0.2304 | 2.6007 | 9360 | 0.2338 |
| 0.2273 | 2.8008 | 10080 | 0.2284 |
| 0.2272 | 3.0008 | 10800 | 0.2300 |
| 0.2176 | 3.2009 | 11520 | 0.2303 |
| 0.2208 | 3.4009 | 12240 | 0.2261 |
| 0.2142 | 3.6010 | 12960 | 0.2264 |
| 0.2121 | 3.8011 | 13680 | 0.2194 |
| 0.2111 | 4.0011 | 14400 | 0.2199 |
| 0.203 | 4.2012 | 15120 | 0.2156 |
| 0.2029 | 4.4012 | 15840 | 0.2122 |
| 0.1986 | 4.6013 | 16560 | 0.2297 |
| 0.1994 | 4.8013 | 17280 | 0.2142 |
| 0.1958 | 5.0014 | 18000 | 0.2057 |
| 0.1865 | 5.2014 | 18720 | 0.2046 |
| 0.1858 | 5.4015 | 19440 | 0.2081 |
| 0.1862 | 5.6016 | 20160 | 0.2052 |
| 0.1864 | 5.8016 | 20880 | 0.1912 |
| 0.1798 | 6.0017 | 21600 | 0.1945 |
| 0.173 | 6.2017 | 22320 | 0.1919 |
| 0.1732 | 6.4018 | 23040 | 0.1874 |
| 0.1704 | 6.6018 | 23760 | 0.1858 |
| 0.1704 | 6.8019 | 24480 | 0.1879 |
| 0.1669 | 7.0019 | 25200 | 0.1847 |
| 0.1602 | 7.2020 | 25920 | 0.1802 |
| 0.1575 | 7.4021 | 26640 | 0.1825 |
| 0.1568 | 7.6021 | 27360 | 0.1821 |
| 0.154 | 7.8022 | 28080 | 0.1738 |
| 0.1547 | 8.0022 | 28800 | 0.1749 |
| 0.144 | 8.2023 | 29520 | 0.1749 |
| 0.1413 | 8.4023 | 30240 | 0.1703 |
| 0.143 | 8.6024 | 30960 | 0.1714 |
| 0.1396 | 8.8024 | 31680 | 0.1650 |
| 0.1398 | 9.0025 | 32400 | 0.1690 |
| 0.1274 | 9.2026 | 33120 | 0.1676 |
| 0.1261 | 9.4026 | 33840 | 0.1638 |
| 0.1274 | 9.6027 | 34560 | 0.1662 |
| 0.1263 | 9.8027 | 35280 | 0.1579 |
| 0.1224 | 10.0028 | 36000 | 0.1585 |
| 0.1123 | 10.2028 | 36720 | 0.1597 |
| 0.1114 | 10.4029 | 37440 | 0.1561 |
| 0.1102 | 10.6029 | 38160 | 0.1574 |
| 0.1095 | 10.8030 | 38880 | 0.1542 |
| 0.1101 | 11.0031 | 39600 | 0.1520 |
| 0.0992 | 11.2031 | 40320 | 0.1565 |
| 0.0972 | 11.4032 | 41040 | 0.1554 |
| 0.0957 | 11.6032 | 41760 | 0.1548 |
| 0.0955 | 11.8033 | 42480 | 0.1541 |
### Framework versions
- PEFT 0.14.0
- Transformers 4.47.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0 |