--- license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: emotion_text_classification results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: test args: split metrics: - name: Accuracy type: accuracy value: 0.9345 --- # emotion_text_classification This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1806 - Accuracy: 0.9345 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2533 | 1.0 | 1000 | 0.2368 | 0.92 | | 0.1498 | 2.0 | 2000 | 0.1792 | 0.932 | | 0.1115 | 3.0 | 3000 | 0.1850 | 0.923 | | 0.0872 | 4.0 | 4000 | 0.2053 | 0.926 | | 0.0582 | 5.0 | 5000 | 0.2226 | 0.9225 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2