yanick commited on
Commit
c7f2b9a
·
1 Parent(s): 8df66ec

PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 250.45 +/- 21.18
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa0d375b790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa0d375b820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa0d375b8b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa0d375b940>", "_build": "<function ActorCriticPolicy._build at 0x7fa0d375b9d0>", "forward": "<function ActorCriticPolicy.forward at 0x7fa0d375ba60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa0d375baf0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa0d375bb80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa0d375bc10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa0d375bca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa0d375bd30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa0d374ecc0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670982447239310124, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrHJz1cSzy64Q+KOt4LCjW1K7C7enSiuQAAgD8AAAAA5iEaPVsNmT+TUvc9dT+Tvqx+17zMPzM8AAAAAAAAAACm0OG9hYvauQ0EcjuWWfE1gBF0O6sv6zQAAIA/AAAAAIAACD0U3KC6b66Rua49jrRMaII5yNynOAAAgD8AAIA/GhAuvqAnMz+Jtq0+saeqviFffD0rTmY9AAAAAAAAAABTnWK++iqbP/fkAr+B6yG+TOCKvpc7I74AAAAAAAAAAJqROjt7rIG6egTuOpNLxDU7DRk7ouoKugAAgD8AAIA/pnErPgdtID/DFJi8pfOLvjx+nj3+8XK9AAAAAAAAAADms4w9UriduVDAerxM2Om1Kfg0uyrxVDUAAIA/AAAAAI17nz2PplG64aJDuvGAJrZXzDy6tu1mOQAAgD8AAIA/2k6PPa6tgbp4dgg40awFMhfqlrq+PR23AACAPwAAgD9NLSS94ZSAujc1rjupqg44ygNfO+YeqLUAAIA/AACAP6DfXL7HJR4/EsMpPqCQi75vObE6he92vQAAAAAAAAAAmmWNPCkgNroOcMg5IiI+sdMqmDnlE+24AACAPwAAgD8A3kQ9UnYOP5Eww70RClW+ve2OPJSXvr0AAAAAAAAAAE1Whz2j8QI9huGYvVcZtr6pSgY93TEHvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwcWKGkzrMECUhpRSlIwBbJRNFAGMAXSUR0CRsyacZtN0dX2UKGgGaAloD0MI4Zo7+t8QYECUhpRSlGgVTegDaBZHQJG6tTXJ5mh1fZQoaAZoCWgPQwgUrkfhelFZQJSGlFKUaBVN6ANoFkdAkbwTRQaaTnV9lChoBmgJaA9DCN/98V61PWBAlIaUUpRoFU3oA2gWR0CRz7VrAP/adX2UKGgGaAloD0MIzsMJTKf1BUCUhpRSlGgVTTsBaBZHQJHP5Hc1wYN1fZQoaAZoCWgPQwg/OnXls6A6QJSGlFKUaBVNOwFoFkdAkdRfoRqXW3V9lChoBmgJaA9DCI/ecB+5tV1AlIaUUpRoFU3oA2gWR0CR1JaHKwIMdX2UKGgGaAloD0MIe7374z0wZUCUhpRSlGgVTegDaBZHQJHgtIpYs/Z1fZQoaAZoCWgPQwjMQdDRKu9jQJSGlFKUaBVN6ANoFkdAkeyiZa3ZwnV9lChoBmgJaA9DCLlRZK0hWGBAlIaUUpRoFU3oA2gWR0CR+OaqjrRjdX2UKGgGaAloD0MIjj17LlPNXkCUhpRSlGgVTegDaBZHQJH6Fh3JPqN1fZQoaAZoCWgPQwi14bA08IpgQJSGlFKUaBVN6ANoFkdAkfpRJ/XoT3V9lChoBmgJaA9DCNv3qL9e1WBAlIaUUpRoFU3oA2gWR0CR+3SfDk2hdX2UKGgGaAloD0MI+5KNB9u1Y0CUhpRSlGgVTegDaBZHQJH8RYbKifx1fZQoaAZoCWgPQwi5Nem2xAdiQJSGlFKUaBVN6ANoFkdAkf2XTNMXanV9lChoBmgJaA9DCKKcaFehPmNAlIaUUpRoFU3oA2gWR0CR/d371qWUdX2UKGgGaAloD0MIIy4AjVJqZkCUhpRSlGgVTegDaBZHQJIDQd+5OJt1fZQoaAZoCWgPQwh/944aE7ZgQJSGlFKUaBVN6ANoFkdAkgyOskpqh3V9lChoBmgJaA9DCGoX00z3SmNAlIaUUpRoFU3oA2gWR0CSDpx8lXzUdX2UKGgGaAloD0MIQwQcQpWqOUCUhpRSlGgVTRYBaBZHQJIO48V58jR1fZQoaAZoCWgPQwiwjXiym69gQJSGlFKUaBVN6ANoFkdAkhBROYYzi3V9lChoBmgJaA9DCJSI8C8CfWZAlIaUUpRoFU3oA2gWR0CSEJHfdhy9dX2UKGgGaAloD0MInpj1YqgtZECUhpRSlGgVTegDaBZHQJIr47jkuHx1fZQoaAZoCWgPQwgw9IjRcyNkQJSGlFKUaBVN6ANoFkdAkiwhQFcIJXV9lChoBmgJaA9DCLQ8D+7OfHFAlIaUUpRoFU3+AWgWR0CSL8UFB6a9dX2UKGgGaAloD0MIzeodbgdrZUCUhpRSlGgVTegDaBZHQJI31NL127p1fZQoaAZoCWgPQwh8C+vGO51lQJSGlFKUaBVN6ANoFkdAkkNSTdLxqnV9lChoBmgJaA9DCL69a9AXimRAlIaUUpRoFU3oA2gWR0CST93K0UoKdX2UKGgGaAloD0MIXrneNlNbXECUhpRSlGgVTegDaBZHQJJRIN0/4Zd1fZQoaAZoCWgPQwiMutbep1dcQJSGlFKUaBVN6ANoFkdAklKTnmq5snV9lChoBmgJaA9DCMmqCDcZKWRAlIaUUpRoFU3oA2gWR0CSU4SM98qndX2UKGgGaAloD0MIodefxGezY0CUhpRSlGgVTegDaBZHQJJVFVdX1ap1fZQoaAZoCWgPQwilLa7xGURiQJSGlFKUaBVN6ANoFkdAklutrbg0j3V9lChoBmgJaA9DCHFWRE30CWBAlIaUUpRoFU3oA2gWR0CSZeZezD4ydX2UKGgGaAloD0MIguMybmq1ZUCUhpRSlGgVTegDaBZHQJJninwXqJN1fZQoaAZoCWgPQwiy9ne2R9hgQJSGlFKUaBVN6ANoFkdAkme7a/RE4XV9lChoBmgJaA9DCPM+jubI0ilAlIaUUpRoFU1HAWgWR0CSaDBpHqeLdX2UKGgGaAloD0MI4biMmxpLYkCUhpRSlGgVTegDaBZHQJJo1kqc3ER1fZQoaAZoCWgPQwis/gjDAFRiQJSGlFKUaBVN6ANoFkdAkmkHNTtLMHV9lChoBmgJaA9DCGk7pu7Kb2BAlIaUUpRoFU3oA2gWR0CSgHT6SDAadX2UKGgGaAloD0MIm1YKgVwGY0CUhpRSlGgVTegDaBZHQJKAtw0fozN1fZQoaAZoCWgPQwjABG7dzVthQJSGlFKUaBVN6ANoFkdAkoSgggX/HnV9lChoBmgJaA9DCMB4Bg39Ol1AlIaUUpRoFU3oA2gWR0CSjPLuhK15dX2UKGgGaAloD0MIS+oENJGCYECUhpRSlGgVTegDaBZHQJKX1hrnDBN1fZQoaAZoCWgPQwhr8L4ql4lrQJSGlFKUaBVNywFoFkdAkqIstbs4UHV9lChoBmgJaA9DCA5KmGl7bWVAlIaUUpRoFU3oA2gWR0CSotnjQzDXdX2UKGgGaAloD0MIF7mnqzvrXUCUhpRSlGgVTegDaBZHQJKj0BBAv+R1fZQoaAZoCWgPQwil2qfjMcReQJSGlFKUaBVN6ANoFkdAkqW6m8/Uv3V9lChoBmgJaA9DCN2ZCYZzcWJAlIaUUpRoFU3oA2gWR0CSpvfigkC4dX2UKGgGaAloD0MIcOzZc5ksYECUhpRSlGgVTegDaBZHQJKsPHGS6lN1fZQoaAZoCWgPQwifOlYpPVhfQJSGlFKUaBVN6ANoFkdAkrQ4D5j6N3V9lChoBmgJaA9DCO9WlujszHBAlIaUUpRoFU3TA2gWR0CStI8XenAJdX2UKGgGaAloD0MImzi53yFXb0CUhpRSlGgVTZ8CaBZHQJK0uL9/BnB1fZQoaAZoCWgPQwgAWB05UlFlQJSGlFKUaBVN6ANoFkdAkrV8XvYvnXV9lChoBmgJaA9DCKaBH9WwkWJAlIaUUpRoFU3oA2gWR0CStfTRIBikdX2UKGgGaAloD0MIFqHYCpq9ZUCUhpRSlGgVTegDaBZHQJK2bFo+Ofd1fZQoaAZoCWgPQwhVEtkHWVpgQJSGlFKUaBVN6ANoFkdAkraQNsnAqXV9lChoBmgJaA9DCDTXaaQlz2NAlIaUUpRoFU3oA2gWR0CSzPmlqJuVdX2UKGgGaAloD0MIks1V8xwDY0CUhpRSlGgVTegDaBZHQJLNJl2/zrh1fZQoaAZoCWgPQwhjuDoAYoNvQJSGlFKUaBVNGwJoFkdAktGXwCr923V9lChoBmgJaA9DCAG/RpIgPDFAlIaUUpRoFU0EAWgWR0CS1LQQtjCpdX2UKGgGaAloD0MIYAX4bnPycUCUhpRSlGgVTU0BaBZHQJLYDCrLhaV1fZQoaAZoCWgPQwgEcokjD31jQJSGlFKUaBVN6ANoFkdAkuJom1IAfnV9lChoBmgJaA9DCGb2eYwyWnBAlIaUUpRoFU3xAWgWR0CS6ne3QUpNdX2UKGgGaAloD0MIYi6p2m5FZkCUhpRSlGgVTegDaBZHQJLsTgIhQnB1fZQoaAZoCWgPQwgsZoS3B9hiQJSGlFKUaBVN6ANoFkdAkuzwFLWZqnV9lChoBmgJaA9DCCQJwhVQjWdAlIaUUpRoFU3oA2gWR0CS75e5WilBdX2UKGgGaAloD0MI4GjHDb9EckCUhpRSlGgVTYwBaBZHQJLwecawUxp1fZQoaAZoCWgPQwjj32dcONNkQJSGlFKUaBVN6ANoFkdAkvDG6GxlhHV9lChoBmgJaA9DCP2FHjF6mmVAlIaUUpRoFU3oA2gWR0CS9YwZwXImdX2UKGgGaAloD0MIDvlnBnFdY0CUhpRSlGgVTegDaBZHQJL9DvAoG6h1fZQoaAZoCWgPQwgr+G2IcadkQJSGlFKUaBVN6ANoFkdAkv1w1FYuCnV9lChoBmgJaA9DCG6kbJE0W2VAlIaUUpRoFU3oA2gWR0CS/tDq4YrKdX2UKGgGaAloD0MIRrWIKKaHY0CUhpRSlGgVTegDaBZHQJL/UQ176YV1fZQoaAZoCWgPQwjj+nd95kBfQJSGlFKUaBVN6ANoFkdAkv912vB7/nV9lChoBmgJaA9DCItwk1Hl+WFAlIaUUpRoFU3oA2gWR0CTA02fTTfBdX2UKGgGaAloD0MIFD3wMdjDbkCUhpRSlGgVTbQCaBZHQJMY4aef7Jp1fZQoaAZoCWgPQwiny2Ji82dwQJSGlFKUaBVNHAJoFkdAkxkEbgjyF3V9lChoBmgJaA9DCMug2uBEHGdAlIaUUpRoFU3oA2gWR0CTGjcm0E5idX2UKGgGaAloD0MI1e3sK48Pb0CUhpRSlGgVTboDaBZHQJMaxgv114h1fZQoaAZoCWgPQwhg6udNReJwQJSGlFKUaBVNYwFoFkdAkyLepsGgSXV9lChoBmgJaA9DCHmxMEROK3FAlIaUUpRoFU1HAmgWR0CTJGUYbbUPdX2UKGgGaAloD0MIZcix9QyvTkCUhpRSlGgVS/JoFkdAkyT0n5SFXnV9lChoBmgJaA9DCK65o//lWnBAlIaUUpRoFU1OA2gWR0CTKOSZSeiBdX2UKGgGaAloD0MI/RGGAcv1bkCUhpRSlGgVTUQCaBZHQJMsR4yGi6B1fZQoaAZoCWgPQwjYuWkzzlVxQJSGlFKUaBVNvQNoFkdAkyyhX4j8k3V9lChoBmgJaA9DCOXyH9KvD3BAlIaUUpRoFU1xA2gWR0CTLi9FnZkDdX2UKGgGaAloD0MIMZbplwiTY0CUhpRSlGgVTegDaBZHQJMzd/ViF0x1fZQoaAZoCWgPQwiPqFDdXH1mQJSGlFKUaBVN6ANoFkdAkzTBZ+x4ZHV9lChoBmgJaA9DCDSCjevfyUJAlIaUUpRoFUvnaBZHQJM066FuejF1fZQoaAZoCWgPQwh55uWw+yNvQJSGlFKUaBVN+gJoFkdAkzYCbYsd1nV9lChoBmgJaA9DCP5GO254rGxAlIaUUpRoFU16AmgWR0CTOST5wfhddX2UKGgGaAloD0MIcyoZAOqjcECUhpRSlGgVTZgBaBZHQJM6HymQ8wJ1fZQoaAZoCWgPQwhxjjo6rgJxQJSGlFKUaBVNLwFoFkdAkz5KlDWsinV9lChoBmgJaA9DCLq8OVyrP0tAlIaUUpRoFUvqaBZHQJNBhqDbrTp1fZQoaAZoCWgPQwih8xq7RAE3QJSGlFKUaBVL9mgWR0CTQ2B5X2dvdX2UKGgGaAloD0MIhiFy+vqCY0CUhpRSlGgVTegDaBZHQJNEh4D9wWF1fZQoaAZoCWgPQwh48umxrdxlQJSGlFKUaBVN6ANoFkdAk0UR0uDjBHV9lChoBmgJaA9DCChiEcNOvHBAlIaUUpRoFU26AmgWR0CTSYBd2PkrdX2UKGgGaAloD0MIwCMqVLfGZkCUhpRSlGgVTegDaBZHQJNJj+NtIkJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1bc31cb132f84c349451fd6b7f2a9f58b9e20f45572998a133a6e9421aaa0e0f
3
+ size 147214
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa0d375b790>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa0d375b820>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa0d375b8b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa0d375b940>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fa0d375b9d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fa0d375ba60>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa0d375baf0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fa0d375bb80>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa0d375bc10>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa0d375bca0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa0d375bd30>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fa0d374ecc0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1670982447239310124,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrHJz1cSzy64Q+KOt4LCjW1K7C7enSiuQAAgD8AAAAA5iEaPVsNmT+TUvc9dT+Tvqx+17zMPzM8AAAAAAAAAACm0OG9hYvauQ0EcjuWWfE1gBF0O6sv6zQAAIA/AAAAAIAACD0U3KC6b66Rua49jrRMaII5yNynOAAAgD8AAIA/GhAuvqAnMz+Jtq0+saeqviFffD0rTmY9AAAAAAAAAABTnWK++iqbP/fkAr+B6yG+TOCKvpc7I74AAAAAAAAAAJqROjt7rIG6egTuOpNLxDU7DRk7ouoKugAAgD8AAIA/pnErPgdtID/DFJi8pfOLvjx+nj3+8XK9AAAAAAAAAADms4w9UriduVDAerxM2Om1Kfg0uyrxVDUAAIA/AAAAAI17nz2PplG64aJDuvGAJrZXzDy6tu1mOQAAgD8AAIA/2k6PPa6tgbp4dgg40awFMhfqlrq+PR23AACAPwAAgD9NLSS94ZSAujc1rjupqg44ygNfO+YeqLUAAIA/AACAP6DfXL7HJR4/EsMpPqCQi75vObE6he92vQAAAAAAAAAAmmWNPCkgNroOcMg5IiI+sdMqmDnlE+24AACAPwAAgD8A3kQ9UnYOP5Eww70RClW+ve2OPJSXvr0AAAAAAAAAAE1Whz2j8QI9huGYvVcZtr6pSgY93TEHvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwcWKGkzrMECUhpRSlIwBbJRNFAGMAXSUR0CRsyacZtN0dX2UKGgGaAloD0MI4Zo7+t8QYECUhpRSlGgVTegDaBZHQJG6tTXJ5mh1fZQoaAZoCWgPQwgUrkfhelFZQJSGlFKUaBVN6ANoFkdAkbwTRQaaTnV9lChoBmgJaA9DCN/98V61PWBAlIaUUpRoFU3oA2gWR0CRz7VrAP/adX2UKGgGaAloD0MIzsMJTKf1BUCUhpRSlGgVTTsBaBZHQJHP5Hc1wYN1fZQoaAZoCWgPQwg/OnXls6A6QJSGlFKUaBVNOwFoFkdAkdRfoRqXW3V9lChoBmgJaA9DCI/ecB+5tV1AlIaUUpRoFU3oA2gWR0CR1JaHKwIMdX2UKGgGaAloD0MIe7374z0wZUCUhpRSlGgVTegDaBZHQJHgtIpYs/Z1fZQoaAZoCWgPQwjMQdDRKu9jQJSGlFKUaBVN6ANoFkdAkeyiZa3ZwnV9lChoBmgJaA9DCLlRZK0hWGBAlIaUUpRoFU3oA2gWR0CR+OaqjrRjdX2UKGgGaAloD0MIjj17LlPNXkCUhpRSlGgVTegDaBZHQJH6Fh3JPqN1fZQoaAZoCWgPQwi14bA08IpgQJSGlFKUaBVN6ANoFkdAkfpRJ/XoT3V9lChoBmgJaA9DCNv3qL9e1WBAlIaUUpRoFU3oA2gWR0CR+3SfDk2hdX2UKGgGaAloD0MI+5KNB9u1Y0CUhpRSlGgVTegDaBZHQJH8RYbKifx1fZQoaAZoCWgPQwi5Nem2xAdiQJSGlFKUaBVN6ANoFkdAkf2XTNMXanV9lChoBmgJaA9DCKKcaFehPmNAlIaUUpRoFU3oA2gWR0CR/d371qWUdX2UKGgGaAloD0MIIy4AjVJqZkCUhpRSlGgVTegDaBZHQJIDQd+5OJt1fZQoaAZoCWgPQwh/944aE7ZgQJSGlFKUaBVN6ANoFkdAkgyOskpqh3V9lChoBmgJaA9DCGoX00z3SmNAlIaUUpRoFU3oA2gWR0CSDpx8lXzUdX2UKGgGaAloD0MIQwQcQpWqOUCUhpRSlGgVTRYBaBZHQJIO48V58jR1fZQoaAZoCWgPQwiwjXiym69gQJSGlFKUaBVN6ANoFkdAkhBROYYzi3V9lChoBmgJaA9DCJSI8C8CfWZAlIaUUpRoFU3oA2gWR0CSEJHfdhy9dX2UKGgGaAloD0MInpj1YqgtZECUhpRSlGgVTegDaBZHQJIr47jkuHx1fZQoaAZoCWgPQwgw9IjRcyNkQJSGlFKUaBVN6ANoFkdAkiwhQFcIJXV9lChoBmgJaA9DCLQ8D+7OfHFAlIaUUpRoFU3+AWgWR0CSL8UFB6a9dX2UKGgGaAloD0MIzeodbgdrZUCUhpRSlGgVTegDaBZHQJI31NL127p1fZQoaAZoCWgPQwh8C+vGO51lQJSGlFKUaBVN6ANoFkdAkkNSTdLxqnV9lChoBmgJaA9DCL69a9AXimRAlIaUUpRoFU3oA2gWR0CST93K0UoKdX2UKGgGaAloD0MIXrneNlNbXECUhpRSlGgVTegDaBZHQJJRIN0/4Zd1fZQoaAZoCWgPQwiMutbep1dcQJSGlFKUaBVN6ANoFkdAklKTnmq5snV9lChoBmgJaA9DCMmqCDcZKWRAlIaUUpRoFU3oA2gWR0CSU4SM98qndX2UKGgGaAloD0MIodefxGezY0CUhpRSlGgVTegDaBZHQJJVFVdX1ap1fZQoaAZoCWgPQwilLa7xGURiQJSGlFKUaBVN6ANoFkdAklutrbg0j3V9lChoBmgJaA9DCHFWRE30CWBAlIaUUpRoFU3oA2gWR0CSZeZezD4ydX2UKGgGaAloD0MIguMybmq1ZUCUhpRSlGgVTegDaBZHQJJninwXqJN1fZQoaAZoCWgPQwiy9ne2R9hgQJSGlFKUaBVN6ANoFkdAkme7a/RE4XV9lChoBmgJaA9DCPM+jubI0ilAlIaUUpRoFU1HAWgWR0CSaDBpHqeLdX2UKGgGaAloD0MI4biMmxpLYkCUhpRSlGgVTegDaBZHQJJo1kqc3ER1fZQoaAZoCWgPQwis/gjDAFRiQJSGlFKUaBVN6ANoFkdAkmkHNTtLMHV9lChoBmgJaA9DCGk7pu7Kb2BAlIaUUpRoFU3oA2gWR0CSgHT6SDAadX2UKGgGaAloD0MIm1YKgVwGY0CUhpRSlGgVTegDaBZHQJKAtw0fozN1fZQoaAZoCWgPQwjABG7dzVthQJSGlFKUaBVN6ANoFkdAkoSgggX/HnV9lChoBmgJaA9DCMB4Bg39Ol1AlIaUUpRoFU3oA2gWR0CSjPLuhK15dX2UKGgGaAloD0MIS+oENJGCYECUhpRSlGgVTegDaBZHQJKX1hrnDBN1fZQoaAZoCWgPQwhr8L4ql4lrQJSGlFKUaBVNywFoFkdAkqIstbs4UHV9lChoBmgJaA9DCA5KmGl7bWVAlIaUUpRoFU3oA2gWR0CSotnjQzDXdX2UKGgGaAloD0MIF7mnqzvrXUCUhpRSlGgVTegDaBZHQJKj0BBAv+R1fZQoaAZoCWgPQwil2qfjMcReQJSGlFKUaBVN6ANoFkdAkqW6m8/Uv3V9lChoBmgJaA9DCN2ZCYZzcWJAlIaUUpRoFU3oA2gWR0CSpvfigkC4dX2UKGgGaAloD0MIcOzZc5ksYECUhpRSlGgVTegDaBZHQJKsPHGS6lN1fZQoaAZoCWgPQwifOlYpPVhfQJSGlFKUaBVN6ANoFkdAkrQ4D5j6N3V9lChoBmgJaA9DCO9WlujszHBAlIaUUpRoFU3TA2gWR0CStI8XenAJdX2UKGgGaAloD0MImzi53yFXb0CUhpRSlGgVTZ8CaBZHQJK0uL9/BnB1fZQoaAZoCWgPQwgAWB05UlFlQJSGlFKUaBVN6ANoFkdAkrV8XvYvnXV9lChoBmgJaA9DCKaBH9WwkWJAlIaUUpRoFU3oA2gWR0CStfTRIBikdX2UKGgGaAloD0MIFqHYCpq9ZUCUhpRSlGgVTegDaBZHQJK2bFo+Ofd1fZQoaAZoCWgPQwhVEtkHWVpgQJSGlFKUaBVN6ANoFkdAkraQNsnAqXV9lChoBmgJaA9DCDTXaaQlz2NAlIaUUpRoFU3oA2gWR0CSzPmlqJuVdX2UKGgGaAloD0MIks1V8xwDY0CUhpRSlGgVTegDaBZHQJLNJl2/zrh1fZQoaAZoCWgPQwhjuDoAYoNvQJSGlFKUaBVNGwJoFkdAktGXwCr923V9lChoBmgJaA9DCAG/RpIgPDFAlIaUUpRoFU0EAWgWR0CS1LQQtjCpdX2UKGgGaAloD0MIYAX4bnPycUCUhpRSlGgVTU0BaBZHQJLYDCrLhaV1fZQoaAZoCWgPQwgEcokjD31jQJSGlFKUaBVN6ANoFkdAkuJom1IAfnV9lChoBmgJaA9DCGb2eYwyWnBAlIaUUpRoFU3xAWgWR0CS6ne3QUpNdX2UKGgGaAloD0MIYi6p2m5FZkCUhpRSlGgVTegDaBZHQJLsTgIhQnB1fZQoaAZoCWgPQwgsZoS3B9hiQJSGlFKUaBVN6ANoFkdAkuzwFLWZqnV9lChoBmgJaA9DCCQJwhVQjWdAlIaUUpRoFU3oA2gWR0CS75e5WilBdX2UKGgGaAloD0MI4GjHDb9EckCUhpRSlGgVTYwBaBZHQJLwecawUxp1fZQoaAZoCWgPQwjj32dcONNkQJSGlFKUaBVN6ANoFkdAkvDG6GxlhHV9lChoBmgJaA9DCP2FHjF6mmVAlIaUUpRoFU3oA2gWR0CS9YwZwXImdX2UKGgGaAloD0MIDvlnBnFdY0CUhpRSlGgVTegDaBZHQJL9DvAoG6h1fZQoaAZoCWgPQwgr+G2IcadkQJSGlFKUaBVN6ANoFkdAkv1w1FYuCnV9lChoBmgJaA9DCG6kbJE0W2VAlIaUUpRoFU3oA2gWR0CS/tDq4YrKdX2UKGgGaAloD0MIRrWIKKaHY0CUhpRSlGgVTegDaBZHQJL/UQ176YV1fZQoaAZoCWgPQwjj+nd95kBfQJSGlFKUaBVN6ANoFkdAkv912vB7/nV9lChoBmgJaA9DCItwk1Hl+WFAlIaUUpRoFU3oA2gWR0CTA02fTTfBdX2UKGgGaAloD0MIFD3wMdjDbkCUhpRSlGgVTbQCaBZHQJMY4aef7Jp1fZQoaAZoCWgPQwiny2Ji82dwQJSGlFKUaBVNHAJoFkdAkxkEbgjyF3V9lChoBmgJaA9DCMug2uBEHGdAlIaUUpRoFU3oA2gWR0CTGjcm0E5idX2UKGgGaAloD0MI1e3sK48Pb0CUhpRSlGgVTboDaBZHQJMaxgv114h1fZQoaAZoCWgPQwhg6udNReJwQJSGlFKUaBVNYwFoFkdAkyLepsGgSXV9lChoBmgJaA9DCHmxMEROK3FAlIaUUpRoFU1HAmgWR0CTJGUYbbUPdX2UKGgGaAloD0MIZcix9QyvTkCUhpRSlGgVS/JoFkdAkyT0n5SFXnV9lChoBmgJaA9DCK65o//lWnBAlIaUUpRoFU1OA2gWR0CTKOSZSeiBdX2UKGgGaAloD0MI/RGGAcv1bkCUhpRSlGgVTUQCaBZHQJMsR4yGi6B1fZQoaAZoCWgPQwjYuWkzzlVxQJSGlFKUaBVNvQNoFkdAkyyhX4j8k3V9lChoBmgJaA9DCOXyH9KvD3BAlIaUUpRoFU1xA2gWR0CTLi9FnZkDdX2UKGgGaAloD0MIMZbplwiTY0CUhpRSlGgVTegDaBZHQJMzd/ViF0x1fZQoaAZoCWgPQwiPqFDdXH1mQJSGlFKUaBVN6ANoFkdAkzTBZ+x4ZHV9lChoBmgJaA9DCDSCjevfyUJAlIaUUpRoFUvnaBZHQJM066FuejF1fZQoaAZoCWgPQwh55uWw+yNvQJSGlFKUaBVN+gJoFkdAkzYCbYsd1nV9lChoBmgJaA9DCP5GO254rGxAlIaUUpRoFU16AmgWR0CTOST5wfhddX2UKGgGaAloD0MIcyoZAOqjcECUhpRSlGgVTZgBaBZHQJM6HymQ8wJ1fZQoaAZoCWgPQwhxjjo6rgJxQJSGlFKUaBVNLwFoFkdAkz5KlDWsinV9lChoBmgJaA9DCLq8OVyrP0tAlIaUUpRoFUvqaBZHQJNBhqDbrTp1fZQoaAZoCWgPQwih8xq7RAE3QJSGlFKUaBVL9mgWR0CTQ2B5X2dvdX2UKGgGaAloD0MIhiFy+vqCY0CUhpRSlGgVTegDaBZHQJNEh4D9wWF1fZQoaAZoCWgPQwh48umxrdxlQJSGlFKUaBVN6ANoFkdAk0UR0uDjBHV9lChoBmgJaA9DCChiEcNOvHBAlIaUUpRoFU26AmgWR0CTSYBd2PkrdX2UKGgGaAloD0MIwCMqVLfGZkCUhpRSlGgVTegDaBZHQJNJj+NtIkJ1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1d19c3b133f827c456a26828e72b8bb0a8e41fc8166a14bc97cd60568681d8b
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1f17f49f45f9532a9c7907d790b65562b0db69a1c5a13a4844c6bd4d4fdffd9
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (256 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 250.44749793508396, "std_reward": 21.17671395261833, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-14T02:22:10.157160"}