yasirdemircan commited on
Commit
2bac5d0
·
verified ·
1 Parent(s): 26d4ecb

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-mpnet-base-v2
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: X9.31 PRNG is seeded with urandom.
14
+ - text: PRNG seed key Continually polled from various system resources to accrue entropy.
15
+ - text: This DRNG uses an 8-byte Seed and an 16-byte Seed Key as inputs to the DRNG.
16
+ The seed & seed-key values are generated by the hardware RNG and stored only in
17
+ RAM. These values are zeroized when the module is reset in contact mode or when
18
+ the module is deselected in contactless mode.
19
+ - text: The seed key is typically stored in RAM in plaintext while in use, and is
20
+ zeroized when the system is powered down, rebooted, or a new seed key is generated.
21
+ - text: X9.31 PRNG seed keys Triple-DES (112 bit) Generated by gathering entropy RAM
22
+ only
23
+ inference: true
24
+ ---
25
+
26
+ # SetFit with sentence-transformers/all-mpnet-base-v2
27
+
28
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
29
+
30
+ The model has been trained using an efficient few-shot learning technique that involves:
31
+
32
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
33
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
34
+
35
+ ## Model Details
36
+
37
+ ### Model Description
38
+ - **Model Type:** SetFit
39
+ - **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
40
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
41
+ - **Maximum Sequence Length:** 384 tokens
42
+ - **Number of Classes:** 2 classes
43
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
44
+ <!-- - **Language:** Unknown -->
45
+ <!-- - **License:** Unknown -->
46
+
47
+ ### Model Sources
48
+
49
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
50
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
51
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
52
+
53
+ ### Model Labels
54
+ | Label | Examples |
55
+ |:---------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
56
+ | negative | <ul><li>'The seed key is not stored at all, but is generated on demand and immediately zeroized after use.'</li><li>'128 bits Random Number Key Key value is used by the random number generator. RTC-RAM Zeroize CSPs service.'</li><li>'X Seed Key for RNG: Seed created by NDRNG and used as the Triple DES key in the ANSI X9.31 RNG.'</li></ul> |
57
+ | positive | <ul><li>'PRNG seed key is static during the lifetime of the module.'</li><li>'A FIPS-approved RNG utilizes an ANSI X9.31 PRNG key with an AES 128-bit key that is hard-coded into the module.'</li><li>'Approved PRNG initial seed and seed key used to initialize approved PRNG is stored in flash.'</li></ul> |
58
+
59
+ ## Uses
60
+
61
+ ### Direct Use for Inference
62
+
63
+ First install the SetFit library:
64
+
65
+ ```bash
66
+ pip install setfit
67
+ ```
68
+
69
+ Then you can load this model and run inference.
70
+
71
+ ```python
72
+ from setfit import SetFitModel
73
+
74
+ # Download from the 🤗 Hub
75
+ model = SetFitModel.from_pretrained("yasirdemircan/setfit_rng_v4")
76
+ # Run inference
77
+ preds = model("X9.31 PRNG is seeded with urandom.")
78
+ ```
79
+
80
+ <!--
81
+ ### Downstream Use
82
+
83
+ *List how someone could finetune this model on their own dataset.*
84
+ -->
85
+
86
+ <!--
87
+ ### Out-of-Scope Use
88
+
89
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
90
+ -->
91
+
92
+ <!--
93
+ ## Bias, Risks and Limitations
94
+
95
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
96
+ -->
97
+
98
+ <!--
99
+ ### Recommendations
100
+
101
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
102
+ -->
103
+
104
+ ## Training Details
105
+
106
+ ### Training Set Metrics
107
+ | Training set | Min | Median | Max |
108
+ |:-------------|:----|:--------|:----|
109
+ | Word count | 10 | 19.6667 | 59 |
110
+
111
+ | Label | Training Sample Count |
112
+ |:---------|:----------------------|
113
+ | negative | 21 |
114
+ | positive | 24 |
115
+
116
+ ### Training Hyperparameters
117
+ - batch_size: (16, 16)
118
+ - num_epochs: (4, 4)
119
+ - max_steps: -1
120
+ - sampling_strategy: oversampling
121
+ - body_learning_rate: (2e-05, 1e-05)
122
+ - head_learning_rate: 0.01
123
+ - loss: CosineSimilarityLoss
124
+ - distance_metric: cosine_distance
125
+ - margin: 0.25
126
+ - end_to_end: False
127
+ - use_amp: False
128
+ - warmup_proportion: 0.1
129
+ - l2_weight: 0.01
130
+ - seed: 42
131
+ - eval_max_steps: -1
132
+ - load_best_model_at_end: True
133
+
134
+ ### Training Results
135
+ | Epoch | Step | Training Loss | Validation Loss |
136
+ |:------:|:----:|:-------------:|:---------------:|
137
+ | 0.0149 | 1 | 0.2273 | - |
138
+ | 0.7463 | 50 | 0.1704 | - |
139
+ | 1.0 | 67 | - | 0.1468 |
140
+ | 1.4925 | 100 | 0.002 | - |
141
+ | 2.0 | 134 | - | 0.1621 |
142
+ | 2.2388 | 150 | 0.0004 | - |
143
+ | 2.9851 | 200 | 0.0003 | - |
144
+ | 3.0 | 201 | - | 0.1657 |
145
+ | 3.7313 | 250 | 0.0002 | - |
146
+ | 4.0 | 268 | - | 0.1665 |
147
+
148
+ ### Framework Versions
149
+ - Python: 3.10.15
150
+ - SetFit: 1.2.0.dev0
151
+ - Sentence Transformers: 3.3.1
152
+ - Transformers: 4.45.2
153
+ - PyTorch: 2.5.1+cu124
154
+ - Datasets: 2.19.1
155
+ - Tokenizers: 0.20.1
156
+
157
+ ## Citation
158
+
159
+ ### BibTeX
160
+ ```bibtex
161
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
162
+ doi = {10.48550/ARXIV.2209.11055},
163
+ url = {https://arxiv.org/abs/2209.11055},
164
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
165
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
166
+ title = {Efficient Few-Shot Learning Without Prompts},
167
+ publisher = {arXiv},
168
+ year = {2022},
169
+ copyright = {Creative Commons Attribution 4.0 International}
170
+ }
171
+ ```
172
+
173
+ <!--
174
+ ## Glossary
175
+
176
+ *Clearly define terms in order to be accessible across audiences.*
177
+ -->
178
+
179
+ <!--
180
+ ## Model Card Authors
181
+
182
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
183
+ -->
184
+
185
+ <!--
186
+ ## Model Card Contact
187
+
188
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
189
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.45.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "labels": [
3
+ "negative",
4
+ "positive"
5
+ ],
6
+ "normalize_embeddings": false
7
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:608a0ae48028b22db5c3443cee565501f74f790f13275f5c71068308bcef128f
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58b15aae7a9edb7f6804c88df6486f595393d96cfaaabf584bbeb839931b58bf
3
+ size 7055
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": false,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "max_length": 128,
59
+ "model_max_length": 384,
60
+ "pad_to_multiple_of": null,
61
+ "pad_token": "<pad>",
62
+ "pad_token_type_id": 0,
63
+ "padding_side": "right",
64
+ "sep_token": "</s>",
65
+ "stride": 0,
66
+ "strip_accents": null,
67
+ "tokenize_chinese_chars": true,
68
+ "tokenizer_class": "MPNetTokenizer",
69
+ "truncation_side": "right",
70
+ "truncation_strategy": "longest_first",
71
+ "unk_token": "[UNK]"
72
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff