File size: 1,739 Bytes
c877586 17a3e2c c877586 17a3e2c c877586 17a3e2c c877586 17a3e2c c877586 17a3e2c c877586 17a3e2c c877586 17a3e2c c877586 17a3e2c c877586 17a3e2c c877586 17a3e2c c877586 17a3e2c c877586 17a3e2c c877586 17a3e2c c877586 17a3e2c c877586 17a3e2c c877586 17a3e2c c877586 17a3e2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: cc-by-nc-4.0
base_model: facebook/nllb-200-distilled-600M
tags:
- generated_from_trainer
metrics:
- bleu
- rouge
model-index:
- name: NLLB-600M-FFT
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# NLLB-600M-FFT
This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3513
- Bleu: 35.7724
- Rouge: 0.5734
- Gen Len: 16.8375
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|
| 1.9858 | 1.0 | 250 | 1.3645 | 35.126 | 0.5746 | 16.7 |
| 1.1589 | 2.0 | 500 | 1.3468 | 36.7577 | 0.5841 | 17.0312 |
| 0.9961 | 3.0 | 750 | 1.3513 | 35.7724 | 0.5734 | 16.8375 |
### Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
|