File size: 1,739 Bytes
c877586
17a3e2c
 
 
 
 
 
 
 
 
 
c877586
 
17a3e2c
 
c877586
17a3e2c
c877586
17a3e2c
 
 
 
 
 
c877586
17a3e2c
c877586
17a3e2c
c877586
17a3e2c
c877586
17a3e2c
c877586
17a3e2c
c877586
17a3e2c
c877586
17a3e2c
c877586
17a3e2c
c877586
17a3e2c
 
 
 
 
 
 
 
 
 
 
c877586
17a3e2c
c877586
17a3e2c
 
 
 
 
c877586
 
17a3e2c
c877586
17a3e2c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: cc-by-nc-4.0
base_model: facebook/nllb-200-distilled-600M
tags:
- generated_from_trainer
metrics:
- bleu
- rouge
model-index:
- name: NLLB-600M-FFT
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# NLLB-600M-FFT

This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3513
- Bleu: 35.7724
- Rouge: 0.5734
- Gen Len: 16.8375

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Bleu    | Rouge  | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|
| 1.9858        | 1.0   | 250  | 1.3645          | 35.126  | 0.5746 | 16.7    |
| 1.1589        | 2.0   | 500  | 1.3468          | 36.7577 | 0.5841 | 17.0312 |
| 0.9961        | 3.0   | 750  | 1.3513          | 35.7724 | 0.5734 | 16.8375 |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1