"Update model card with complete documentation"
Browse files
README.md
CHANGED
@@ -1,16 +1,42 @@
|
|
1 |
---
|
|
|
2 |
tags:
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
library_name: transformers
|
8 |
-
model_type: vit
|
9 |
-
license: apache-2.0
|
10 |
-
datasets:
|
11 |
-
- custom-dataset
|
12 |
-
metrics:
|
13 |
-
- accuracy
|
14 |
-
- precision
|
15 |
-
- recall
|
16 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language: en
|
3 |
tags:
|
4 |
+
- image-classification
|
5 |
+
- ai-detection
|
6 |
+
- vit
|
7 |
+
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
---
|
9 |
+
|
10 |
+
# AI Image Detector
|
11 |
+
|
12 |
+
## Model Description
|
13 |
+
This model is designed to detect whether an image is real or AI-generated. It uses Vision Transformer (VIT) architecture to provide accurate classification.
|
14 |
+
|
15 |
+
## Model Usage
|
16 |
+
```python
|
17 |
+
from transformers import ViTImageProcessor, ViTForImageClassification
|
18 |
+
from PIL import Image
|
19 |
+
import torch
|
20 |
+
|
21 |
+
# Load model and processor
|
22 |
+
processor = ViTImageProcessor.from_pretrained("yaya36095/ai-image-detector")
|
23 |
+
model = ViTForImageClassification.from_pretrained("yaya36095/ai-image-detector")
|
24 |
+
|
25 |
+
def detect_image(image_path):
|
26 |
+
# Open image
|
27 |
+
image = Image.open(image_path)
|
28 |
+
|
29 |
+
# Process image
|
30 |
+
inputs = processor(images=image, return_tensors="pt")
|
31 |
+
|
32 |
+
# Get predictions
|
33 |
+
with torch.no_grad():
|
34 |
+
outputs = model(**inputs)
|
35 |
+
predictions = outputs.logits.softmax(dim=-1)
|
36 |
+
|
37 |
+
# Get result
|
38 |
+
prediction_id = torch.argmax(predictions).item()
|
39 |
+
confidence = predictions[0][prediction_id].item() * 100
|
40 |
+
|
41 |
+
result = "AI Generated" if prediction_id == 1 else "Real Image"
|
42 |
+
return result, confidence
|