yeftakun commited on
Commit
0bd2821
·
1 Parent(s): f767579
Files changed (5) hide show
  1. README.md +2 -0
  2. api.py +47 -0
  3. app.py +13 -4
  4. app2.py +0 -15
  5. config.json +1 -1
README.md CHANGED
@@ -25,6 +25,8 @@ tags:
25
  - nlp
26
  ---
27
 
 
 
28
  # vit-base-nsfw-detector
29
 
30
  This model is a fine-tuned version of [vit-base-patch16-384](https://huggingface.co/google/vit-base-patch16-384) on around 25_000 images (drawings, photos...).
 
25
  - nlp
26
  ---
27
 
28
+ Credit: clone repository from [AdamCodd/vit-base-nsfw-detector](https://https://huggingface.co/AdamCodd/vit-base-nsfw-detector/tree/main)
29
+
30
  # vit-base-nsfw-detector
31
 
32
  This model is a fine-tuned version of [vit-base-patch16-384](https://huggingface.co/google/vit-base-patch16-384) on around 25_000 images (drawings, photos...).
api.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from flask import Flask, request, jsonify
2
+ from transformers import ViTImageProcessor, AutoModelForImageClassification
3
+ from PIL import Image
4
+ import requests
5
+ import torch
6
+
7
+ # Inisialisasi Flask app
8
+ app = Flask(__name__)
9
+
10
+ # Inisialisasi model dan processor
11
+ processor = ViTImageProcessor.from_pretrained('AdamCodd/vit-base-nsfw-detector')
12
+ model = AutoModelForImageClassification.from_pretrained('AdamCodd/vit-base-nsfw-detector')
13
+
14
+ # Fungsi untuk memproses gambar dan membuat prediksi
15
+ def predict_image(url):
16
+ try:
17
+ # Mengambil gambar dari URL
18
+ image = Image.open(requests.get(url, stream=True).raw)
19
+
20
+ # Memproses gambar dan membuat prediksi
21
+ inputs = processor(images=image, return_tensors="pt")
22
+ outputs = model(**inputs)
23
+ logits = outputs.logits
24
+
25
+ # Mengambil prediksi kelas
26
+ predicted_class_idx = logits.argmax(-1).item()
27
+ predicted_label = model.config.id2label[predicted_class_idx]
28
+
29
+ return predicted_label
30
+ except Exception as e:
31
+ return str(e)
32
+
33
+ # Route untuk menerima permintaan POST dengan URL gambar
34
+ @app.route('/predict', methods=['POST'])
35
+ def predict():
36
+ if request.method == 'POST':
37
+ data = request.get_json()
38
+ if 'image_url' not in data:
39
+ return jsonify({'error': 'URL gambar tidak ditemukan dalam request'}), 400
40
+
41
+ image_url = data['image_url']
42
+ prediction = predict_image(image_url)
43
+ return jsonify({'predicted_class': prediction})
44
+
45
+ # Menjalankan Flask app
46
+ if __name__ == '__main__':
47
+ app.run(host='0.0.0.0', port=5000, debug=True)
app.py CHANGED
@@ -1,6 +1,15 @@
1
- from transformers import pipeline
2
  from PIL import Image
 
3
 
4
- img = Image.open("C:/Users/yefta/Pictures/Anime Girl/WhatsApp Image 2023-10-07 at 01.36.25_8935adbb.jpg")
5
- predict = pipeline("image-classification", model="AdamCodd/vit-base-nsfw-detector")
6
- predict(img)
 
 
 
 
 
 
 
 
 
1
+ from transformers import ViTImageProcessor, AutoModelForImageClassification
2
  from PIL import Image
3
+ import requests
4
 
5
+ url = 'https://images-ng.pixai.art/images/orig/2339688a-b1b0-4646-9091-aea5bc17d834'
6
+ image = Image.open(requests.get(url, stream=True).raw)
7
+ processor = ViTImageProcessor.from_pretrained('AdamCodd/vit-base-nsfw-detector')
8
+ model = AutoModelForImageClassification.from_pretrained('AdamCodd/vit-base-nsfw-detector')
9
+ inputs = processor(images=image, return_tensors="pt")
10
+ outputs = model(**inputs)
11
+ logits = outputs.logits
12
+
13
+ predicted_class_idx = logits.argmax(-1).item()
14
+ print("Predicted class:", model.config.id2label[predicted_class_idx])
15
+ # Predicted class: sfw
app2.py DELETED
@@ -1,15 +0,0 @@
1
- from transformers import ViTImageProcessor, AutoModelForImageClassification
2
- from PIL import Image
3
- import requests
4
-
5
- url = 'https://images-ng.pixai.art/images/orig/2339688a-b1b0-4646-9091-aea5bc17d834'
6
- image = Image.open(requests.get(url, stream=True).raw)
7
- processor = ViTImageProcessor.from_pretrained('AdamCodd/vit-base-nsfw-detector')
8
- model = AutoModelForImageClassification.from_pretrained('AdamCodd/vit-base-nsfw-detector')
9
- inputs = processor(images=image, return_tensors="pt")
10
- outputs = model(**inputs)
11
- logits = outputs.logits
12
-
13
- predicted_class_idx = logits.argmax(-1).item()
14
- print("Predicted class:", model.config.id2label[predicted_class_idx])
15
- # Predicted class: sfw
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "AdamCodd/vit-nsfw-detection",
3
  "architectures": [
4
  "ViTForImageClassification"
5
  ],
 
1
  {
2
+ "_name_or_path": "yeftakun/vit-nsfw-detection",
3
  "architectures": [
4
  "ViTForImageClassification"
5
  ],