File size: 795 Bytes
8467bc4
 
 
 
 
 
 
 
 
 
 
383787c
 
 
 
b98ba60
363f759
b98ba60
 
 
 
 
 
 
0ed8dfb
b98ba60
 
 
 
 
 
 
 
 
7c0b799
b98ba60
 
 
383787c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
---
datasets:
- FIdo-AI/ua-news
language:
- uk
metrics:
- rouge
library_name: transformers
pipeline_tag: summarization
tags:
- news
---

# Model Card for Model ID

## Model Summary
The mT5-multilingual-XLSum model was fine-tuned on the UA-News dataset to generate  concise and accurate news headlines in Ukrainian language.

## Training
- **Epochs**: 4
- **Batch Size**: 4
- **Learning Rate**: 4e-5

## Evaluation
- **Metrics**: The model's performance on the test set.
  - **ROUGE-1**: 0.2452
  - **ROUGE-2**: 0.1075
  - **ROUGE-L**: 0.2348
  - **BERTScore**: 0.7573

## Usage
  ```python
  from transformers import pipeline

  summarizer = pipeline("summarization", model="yelyah/mT5-XLSUM-ua-news")
  article = "Your news article text here."
  summary = summarizer(article)
  print(summary)