File size: 2,694 Bytes
10408b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27fa4cb
10408b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: Wav2Vec2_EmoRecog_Model_v2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Wav2Vec2_EmoRecog_Model_v2

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the [IEMOCAP](https://sail.usc.edu/iemocap/) dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8440
- Accuracy: 0.4349

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.7698        | 1.0   | 377  | 1.6608          | 0.3513   |
| 1.6102        | 2.0   | 754  | 1.6074          | 0.3625   |
| 1.5556        | 3.0   | 1131 | 1.5894          | 0.3778   |
| 1.4899        | 4.0   | 1508 | 1.5643          | 0.3858   |
| 1.4322        | 5.0   | 1885 | 1.5250          | 0.4084   |
| 1.3737        | 6.0   | 2262 | 1.5445          | 0.4110   |
| 1.3217        | 7.0   | 2639 | 1.5287          | 0.4210   |
| 1.2686        | 8.0   | 3016 | 1.5635          | 0.4243   |
| 1.1999        | 9.0   | 3393 | 1.5674          | 0.4223   |
| 1.1511        | 10.0  | 3770 | 1.5881          | 0.4363   |
| 1.087         | 11.0  | 4147 | 1.6162          | 0.4177   |
| 1.0309        | 12.0  | 4524 | 1.6487          | 0.4296   |
| 0.9778        | 13.0  | 4901 | 1.7363          | 0.4210   |
| 0.9344        | 14.0  | 5278 | 1.7568          | 0.4210   |
| 0.9108        | 15.0  | 5655 | 1.7051          | 0.4416   |
| 0.8449        | 16.0  | 6032 | 1.7945          | 0.4329   |
| 0.8268        | 17.0  | 6409 | 1.7778          | 0.4402   |
| 0.7991        | 18.0  | 6786 | 1.7972          | 0.4382   |
| 0.7604        | 19.0  | 7163 | 1.8238          | 0.4276   |
| 0.7329        | 20.0  | 7540 | 1.8440          | 0.4349   |


### Framework versions

- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0