update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- common_voice
|
7 |
+
model-index:
|
8 |
+
- name: wav2vec2-large-xls-r-2b-armenian-colab
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# wav2vec2-large-xls-r-2b-armenian-colab
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-2b](https://huggingface.co/facebook/wav2vec2-xls-r-2b) on the common_voice dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.5166
|
20 |
+
- Wer: 0.7397
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.0001
|
40 |
+
- train_batch_size: 1
|
41 |
+
- eval_batch_size: 8
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 4
|
44 |
+
- total_train_batch_size: 4
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_steps: 500
|
48 |
+
- num_epochs: 120
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
54 |
+
|:-------------:|:------:|:-----:|:---------------:|:------:|
|
55 |
+
| 3.7057 | 2.38 | 200 | 0.7731 | 0.8091 |
|
56 |
+
| 0.5797 | 4.76 | 400 | 0.8279 | 0.7804 |
|
57 |
+
| 0.4341 | 7.14 | 600 | 1.0343 | 0.8285 |
|
58 |
+
| 0.3135 | 9.52 | 800 | 1.0551 | 0.8066 |
|
59 |
+
| 0.2409 | 11.9 | 1000 | 1.0686 | 0.7897 |
|
60 |
+
| 0.1998 | 14.29 | 1200 | 1.1329 | 0.7766 |
|
61 |
+
| 0.1729 | 16.67 | 1400 | 1.3234 | 0.8567 |
|
62 |
+
| 0.1533 | 19.05 | 1600 | 1.2432 | 0.8160 |
|
63 |
+
| 0.1354 | 21.43 | 1800 | 1.2780 | 0.7954 |
|
64 |
+
| 0.12 | 23.81 | 2000 | 1.2228 | 0.8054 |
|
65 |
+
| 0.1175 | 26.19 | 2200 | 1.3484 | 0.8129 |
|
66 |
+
| 0.1141 | 28.57 | 2400 | 1.2881 | 0.9130 |
|
67 |
+
| 0.1053 | 30.95 | 2600 | 1.1972 | 0.7910 |
|
68 |
+
| 0.0954 | 33.33 | 2800 | 1.3702 | 0.8048 |
|
69 |
+
| 0.0842 | 35.71 | 3000 | 1.3963 | 0.7960 |
|
70 |
+
| 0.0793 | 38.1 | 3200 | 1.4690 | 0.7991 |
|
71 |
+
| 0.0707 | 40.48 | 3400 | 1.5045 | 0.8085 |
|
72 |
+
| 0.0745 | 42.86 | 3600 | 1.4749 | 0.8004 |
|
73 |
+
| 0.0693 | 45.24 | 3800 | 1.5047 | 0.7960 |
|
74 |
+
| 0.0646 | 47.62 | 4000 | 1.4216 | 0.7997 |
|
75 |
+
| 0.0555 | 50.0 | 4200 | 1.4676 | 0.8029 |
|
76 |
+
| 0.056 | 52.38 | 4400 | 1.4273 | 0.8104 |
|
77 |
+
| 0.0465 | 54.76 | 4600 | 1.3999 | 0.7841 |
|
78 |
+
| 0.046 | 57.14 | 4800 | 1.6130 | 0.8473 |
|
79 |
+
| 0.0404 | 59.52 | 5000 | 1.5586 | 0.7841 |
|
80 |
+
| 0.0403 | 61.9 | 5200 | 1.3959 | 0.7653 |
|
81 |
+
| 0.0404 | 64.29 | 5400 | 1.5318 | 0.8041 |
|
82 |
+
| 0.0365 | 66.67 | 5600 | 1.5300 | 0.7854 |
|
83 |
+
| 0.0338 | 69.05 | 5800 | 1.5051 | 0.7885 |
|
84 |
+
| 0.0307 | 71.43 | 6000 | 1.5647 | 0.7935 |
|
85 |
+
| 0.0235 | 73.81 | 6200 | 1.4919 | 0.8154 |
|
86 |
+
| 0.0268 | 76.19 | 6400 | 1.5259 | 0.8060 |
|
87 |
+
| 0.0275 | 78.57 | 6600 | 1.3985 | 0.7897 |
|
88 |
+
| 0.022 | 80.95 | 6800 | 1.5515 | 0.8154 |
|
89 |
+
| 0.017 | 83.33 | 7000 | 1.5737 | 0.7647 |
|
90 |
+
| 0.0205 | 85.71 | 7200 | 1.4876 | 0.7572 |
|
91 |
+
| 0.0174 | 88.1 | 7400 | 1.6331 | 0.7829 |
|
92 |
+
| 0.0188 | 90.48 | 7600 | 1.5108 | 0.7685 |
|
93 |
+
| 0.0134 | 92.86 | 7800 | 1.7125 | 0.7866 |
|
94 |
+
| 0.0125 | 95.24 | 8000 | 1.6042 | 0.7635 |
|
95 |
+
| 0.0133 | 97.62 | 8200 | 1.4608 | 0.7478 |
|
96 |
+
| 0.0272 | 100.0 | 8400 | 1.4784 | 0.7309 |
|
97 |
+
| 0.0133 | 102.38 | 8600 | 1.4471 | 0.7459 |
|
98 |
+
| 0.0094 | 104.76 | 8800 | 1.4852 | 0.7272 |
|
99 |
+
| 0.0103 | 107.14 | 9000 | 1.5679 | 0.7409 |
|
100 |
+
| 0.0088 | 109.52 | 9200 | 1.5090 | 0.7309 |
|
101 |
+
| 0.0077 | 111.9 | 9400 | 1.4994 | 0.7290 |
|
102 |
+
| 0.0068 | 114.29 | 9600 | 1.5008 | 0.7340 |
|
103 |
+
| 0.0054 | 116.67 | 9800 | 1.5166 | 0.7390 |
|
104 |
+
| 0.0052 | 119.05 | 10000 | 1.5166 | 0.7397 |
|
105 |
+
|
106 |
+
|
107 |
+
### Framework versions
|
108 |
+
|
109 |
+
- Transformers 4.14.1
|
110 |
+
- Pytorch 1.10.0
|
111 |
+
- Datasets 1.16.1
|
112 |
+
- Tokenizers 0.10.3
|