File size: 2,228 Bytes
67be7b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
language:
- ja
- ko
base_model: facebook/mbart-large-50-many-to-many-mmt
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: jako_mbartLarge_13p_run1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# jako_mbartLarge_13p_run1

This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0819
- Bleu: 29.1055
- Gen Len: 18.2731

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Bleu    | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 1.3826        | 0.39  | 1500  | 1.2989          | 22.0729 | 18.9717 |
| 1.1964        | 0.78  | 3000  | 1.1630          | 25.4863 | 19.1908 |
| 0.9449        | 1.17  | 4500  | 1.1125          | 27.385  | 18.2955 |
| 0.8102        | 1.56  | 6000  | 1.0920          | 28.0041 | 18.6572 |
| 0.7692        | 1.95  | 7500  | 1.0819          | 29.1055 | 18.2731 |
| 0.5741        | 2.34  | 9000  | 1.1369          | 28.1574 | 18.3485 |
| 0.5198        | 2.73  | 10500 | 1.1538          | 28.657  | 18.4527 |
| 0.4532        | 3.12  | 12000 | 1.1582          | 28.6914 | 18.4562 |
| 0.3466        | 3.51  | 13500 | 1.2048          | 28.8955 | 18.427  |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.1.0+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1