File size: 2,941 Bytes
50d86e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
language:
- ko
- en
base_model: facebook/mbart-large-50-many-to-many-mmt
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: ko-en_mbartLarge_exp20p_linear_alpha
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ko-en_mbartLarge_exp20p_linear_alpha

This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1682
- Bleu: 29.1144
- Gen Len: 18.5459

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5.5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 40

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Bleu    | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 1.404         | 0.46  | 4000  | 1.3738          | 22.5375 | 18.6852 |
| 1.2629        | 0.93  | 8000  | 1.2458          | 25.3741 | 18.7797 |
| 1.1951        | 1.39  | 12000 | 1.2067          | 26.1281 | 18.6597 |
| 1.1317        | 1.86  | 16000 | 1.1768          | 26.5384 | 19.2055 |
| 0.9906        | 2.32  | 20000 | 1.1363          | 28.2459 | 18.7269 |
| 0.9894        | 2.78  | 24000 | 1.1239          | 28.5124 | 18.6882 |
| 0.8965        | 3.25  | 28000 | 1.1278          | 28.5335 | 18.4917 |
| 0.9138        | 3.71  | 32000 | 1.1216          | 28.8189 | 18.7873 |
| 0.8272        | 4.18  | 36000 | 1.1468          | 28.332  | 18.6516 |
| 0.8753        | 4.64  | 40000 | 1.1345          | 28.2695 | 18.4919 |
| 0.6855        | 5.11  | 44000 | 1.1542          | 28.7913 | 18.7596 |
| 0.7088        | 5.57  | 48000 | 1.1531          | 29.0865 | 18.6626 |
| 0.6738        | 6.03  | 52000 | 1.1906          | 28.0235 | 18.4243 |
| 0.6763        | 6.5   | 56000 | 1.1941          | 28.1501 | 18.6932 |
| 0.6594        | 6.96  | 60000 | 1.1682          | 29.1144 | 18.5459 |
| 0.5971        | 7.43  | 64000 | 1.2449          | 27.9464 | 18.4482 |
| 0.5935        | 7.89  | 68000 | 1.2156          | 28.6034 | 18.5967 |
| 0.5383        | 8.35  | 72000 | 1.2927          | 27.891  | 18.6539 |
| 0.6022        | 8.82  | 76000 | 1.2831          | 27.7624 | 18.5558 |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.14.5
- Tokenizers 0.14.1