File size: 2,050 Bytes
982c00e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
language:
- ko
- ja
base_model: facebook/mbart-large-50-many-to-many-mmt
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: koja_mbartLarge_55p_run2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# koja_mbartLarge_55p_run2
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9303
- Bleu: 57.3778
- Gen Len: 16.682
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 1.0633 | 0.48 | 8000 | 1.0419 | 52.4575 | 17.4003 |
| 0.9731 | 0.97 | 16000 | 0.9550 | 55.7136 | 16.9686 |
| 0.7608 | 1.45 | 24000 | 0.9372 | 56.8788 | 16.7537 |
| 0.7213 | 1.93 | 32000 | 0.9303 | 57.4421 | 16.6742 |
| 0.5702 | 2.42 | 40000 | 0.9622 | 56.774 | 16.4703 |
| 0.5416 | 2.9 | 48000 | 0.9697 | 57.4192 | 16.6763 |
| 0.4226 | 3.38 | 56000 | 1.0399 | 56.5425 | 16.4626 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
|