File size: 1,833 Bytes
f2b768e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
375e246
f2b768e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
language:
- ko
- zh
base_model: ./zh_reduced_model
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart_cycle0_ko-zh
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mbart_cycle0_ko-zh

This model is a fine-tuned version of [mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on an custom dataset.
It achieves the following results on the evaluation set:
- Loss: 6.3117
- Bleu: 19.1703
- Gen Len: 14.3881

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Bleu    | Gen Len  |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:--------:|
| No log        | 8.82  | 300  | 5.4963          | 0.2892  | 127.2388 |
| 8.4505        | 17.65 | 600  | 5.6784          | 18.0955 | 12.7761  |
| 8.4505        | 26.47 | 900  | 5.9406          | 19.7871 | 13.6119  |
| 0.4947        | 35.29 | 1200 | 6.2203          | 16.6303 | 13.209   |
| 0.0447        | 44.12 | 1500 | 6.2942          | 19.9934 | 14.0448  |


### Framework versions

- Transformers 4.33.1
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3