--- language: - ko - ja base_model: ./reduced_model tags: - generated_from_trainer metrics: - bleu model-index: - name: tst-translation-output results: [] --- # tst-translation-output This model is a fine-tuned version of [mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on an custom dataset. It achieves the following results on the evaluation set: - Loss: 4.3552 - Bleu: 19.2576 - Gen Len: 17.7448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 16 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 2.7876 | 10.31 | 1000 | 4.2606 | 15.7275 | 15.5938 | | 0.1404 | 20.62 | 2000 | 4.2496 | 16.6706 | 17.4375 | | 0.0398 | 30.93 | 3000 | 4.3486 | 19.2786 | 17.8385 | | 0.0107 | 41.24 | 4000 | 4.3411 | 21.5085 | 17.2917 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3