# create image resolution histogram from glob import glob from PIL import Image from tqdm.auto import tqdm tmfiles_f = glob("/truemedia-eval/images/fakes/*") tmfiles_r = glob("/truemedia-eval/images/reals/*") files_f = glob("/home/ubuntu/Datasets/diffusiondb/train/*") files_r = glob("/home/ubuntu/Datasets/ffhq/in-the-wild-images/train/*") files_f += glob("/home/ubuntu/Datasets/stylegan2-ffhq/train/*") files_r += glob("/home/ubuntu/Datasets/coco-2017-train/train2017/train/*") Ws_f = [] Hs_f = [] for f in tqdm(files_f): img = Image.open(f) w, h = img.size Ws_f.append(w) Hs_f.append(h) Ws_r = [] Hs_r = [] for f in tqdm(files_r): img = Image.open(f) w, h = img.size Ws_r.append(w) Hs_r.append(h) TMWs_r = [] TMHs_r = [] for f in tqdm(tmfiles_r): img = Image.open(f) w, h = img.size TMWs_r.append(w) TMHs_r.append(h) TMWs_f = [] TMHs_f = [] for f in tqdm(tmfiles_f): img = Image.open(f) w, h = img.size TMWs_f.append(w) TMHs_f.append(h) import matplotlib.pyplot as plt import numpy as np # plot 2d (w, h) plt.figure(figsize=(8, 10)) plt.scatter(Ws_r, Hs_r, s=3, alpha=0.5) plt.scatter(Ws_f, Hs_f, s=3, alpha=0.5, c='g') plt.scatter(TMWs_r, TMHs_r, s=3, alpha=0.5, c='r') plt.scatter(TMWs_f, TMHs_f, s=3, alpha=0.5, c='y') plt.xlabel('Width') plt.ylabel('Height') plt.legend(['Training-real', 'Training-fake', 'TrueMedia-real', 'TrueMedia-fake']) # save plt.savefig('resolution_hist.png')