from datasets import load_dataset
from tokenizers import trainers, Tokenizer, normalizers, ByteLevelBPETokenizer
import os
# export DATASET="${HOME}/data/nedd_wiki_news/nedd_wiki_news.py" # Name of the dataset in the Huggingface Hub
# export DATASET_CONFIG="nedd_nl" # Config of the dataset in the Huggingface Hub
# export DATASET_SPLIT="train" # Split to use for training tokenizer and model
# export VOCAB_SIZE="50257"
# export MODEL_PATH="${HOME}/data/${HF_PROJECT}" # Path to the model, e.g. here inside the mount
dataset_name = os.environ.get("DATASET")
dataset_config = os.environ.get("DATASET_CONFIG")
dataset_split = os.environ.get("DATASET_SPLIT")
vocab_size = int(os.environ.get("VOCAB_SIZE"))
model_path = os.environ.get("MODEL_PATH")
# load dataset
dataset = load_dataset(dataset_name, dataset_config, split=dataset_split)
# Instantiate tokenizer
tokenizer = ByteLevelBPETokenizer()
def batch_iterator(batch_size=100):
for i in range(0, len(dataset), batch_size):
yield dataset[i: i + batch_size]["text"]
# Customized training
tokenizer.train_from_iterator(batch_iterator(), vocab_size=vocab_size, min_frequency=2, special_tokens=[
"",
"",
"",
"",
"",
])
# Save files to disk
tokenizer.save("tokenizer.json")
tokenizer.save_model(".")