from datasets import load_dataset from tokenizers import trainers, Tokenizer, normalizers, ByteLevelBPETokenizer import os # export DATASET="${HOME}/data/nedd_wiki_news/nedd_wiki_news.py" # Name of the dataset in the Huggingface Hub # export DATASET_CONFIG="nedd_nl" # Config of the dataset in the Huggingface Hub # export DATASET_SPLIT="train" # Split to use for training tokenizer and model # export VOCAB_SIZE="50257" # export MODEL_PATH="${HOME}/data/${HF_PROJECT}" # Path to the model, e.g. here inside the mount dataset_name = os.environ.get("DATASET") dataset_config = os.environ.get("DATASET_CONFIG") dataset_split = os.environ.get("DATASET_SPLIT") vocab_size = int(os.environ.get("VOCAB_SIZE")) model_path = os.environ.get("MODEL_PATH") # load dataset dataset = load_dataset(dataset_name, dataset_config, split=dataset_split) # Instantiate tokenizer tokenizer = ByteLevelBPETokenizer() def batch_iterator(batch_size=100): for i in range(0, len(dataset), batch_size): yield dataset[i: i + batch_size]["text"] # Customized training tokenizer.train_from_iterator(batch_iterator(), vocab_size=vocab_size, min_frequency=2, special_tokens=[ "", "", "", "", "", ]) # Save files to disk tokenizer.save("tokenizer.json") tokenizer.save_model(".")