yifeihu commited on
Commit
57a150c
·
1 Parent(s): 1e326dd

update readme

Browse files
Files changed (2) hide show
  1. README.md +13 -6
  2. TFT-ID.png +0 -0
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  license: mit
3
- license_link: https://huggingface.co/microsoft/Florence-2-base-ft/resolve/main/LICENSE
4
  pipeline_tag: image-text-to-text
5
  tags:
6
  - vision
@@ -14,14 +14,14 @@ tags:
14
 
15
  TFT-ID (Table/Figure/Text IDentifier) is a family of object detection models finetuned to extract tables, figures, and text sections in academic papers created by [Yifei Hu](https://x.com/hu_yifei).
16
 
17
- TFT-ID is finetuned from [microsoft/Florence-2](https://huggingface.co/microsoft/Florence-2-large-ft) checkpoints.
 
 
18
 
19
  - The models were finetuned with papers from Hugging Face Daily Papers. All bounding boxes are manually annotated and checked by humans.
20
  - TFT-ID models take an image of a single paper page as the input, and return bounding boxes for all tables, figures, and text sections in the given page.
21
  - The text sections contain clean text content perfect for downstream OCR workflows. However, TFT-ID is not an OCR model.
22
 
23
- ![image/png](https://huggingface.co/yifeihu/TF-ID-base/resolve/main/td-id-caption.png)
24
-
25
  Object Detection results format:
26
  {'\<OD>': {'bboxes': [[x1, y1, x2, y2], ...],
27
  'labels': ['label1', 'label2', ...]} }
@@ -36,10 +36,17 @@ We tested the models on paper pages outside the training dataset. The papers are
36
 
37
  Correct output - the model draws correct bounding boxes for every table/figure/text section in the given page and not missing any content.
38
 
 
39
  | Model | Total Images | Correct Output | Success Rate |
40
  |---------------------------------------------------------------|--------------|----------------|--------------|
41
  | TFT-ID-1.0[[HF]](https://huggingface.co/yifeihu/TFT-ID-1.0) | 373 | 361 | 96.78% |
42
 
 
 
 
 
 
 
43
  Depending on the use cases, some "incorrect" output could be totally usable. For example, the model draw two bounding boxes for one figure with two child components.
44
 
45
  ## How to Get Started with the Model
@@ -51,8 +58,8 @@ import requests
51
  from PIL import Image
52
  from transformers import AutoProcessor, AutoModelForCausalLM
53
 
54
- model = AutoModelForCausalLM.from_pretrained("yifeihu/TF-ID-base", trust_remote_code=True)
55
- processor = AutoProcessor.from_pretrained("yifeihu/TF-ID-base", trust_remote_code=True)
56
 
57
  prompt = "<OD>"
58
 
 
1
  ---
2
  license: mit
3
+ license_link: https://huggingface.co/microsoft/Florence-2-large/resolve/main/LICENSE
4
  pipeline_tag: image-text-to-text
5
  tags:
6
  - vision
 
14
 
15
  TFT-ID (Table/Figure/Text IDentifier) is a family of object detection models finetuned to extract tables, figures, and text sections in academic papers created by [Yifei Hu](https://x.com/hu_yifei).
16
 
17
+ ![image/png](https://huggingface.co/yifeihu/TF-ID-base/resolve/main/TFT-ID.png)
18
+
19
+ TFT-ID is finetuned from [microsoft/Florence-2](https://huggingface.co/microsoft/Florence-2-large) checkpoints.
20
 
21
  - The models were finetuned with papers from Hugging Face Daily Papers. All bounding boxes are manually annotated and checked by humans.
22
  - TFT-ID models take an image of a single paper page as the input, and return bounding boxes for all tables, figures, and text sections in the given page.
23
  - The text sections contain clean text content perfect for downstream OCR workflows. However, TFT-ID is not an OCR model.
24
 
 
 
25
  Object Detection results format:
26
  {'\<OD>': {'bboxes': [[x1, y1, x2, y2], ...],
27
  'labels': ['label1', 'label2', ...]} }
 
36
 
37
  Correct output - the model draws correct bounding boxes for every table/figure/text section in the given page and not missing any content.
38
 
39
+ Task 1: Table, Figure, and Text Section Identification
40
  | Model | Total Images | Correct Output | Success Rate |
41
  |---------------------------------------------------------------|--------------|----------------|--------------|
42
  | TFT-ID-1.0[[HF]](https://huggingface.co/yifeihu/TFT-ID-1.0) | 373 | 361 | 96.78% |
43
 
44
+ Task 2: Table and Figure Identification
45
+ | Model | Total Images | Correct Output | Success Rate |
46
+ |---------------------------------------------------------------|--------------|----------------|--------------|
47
+ | **TFT-ID-1.0**[[HF]](https://huggingface.co/yifeihu/TFT-ID-1.0) | 258 | 255 | **98.84%** |
48
+ | TF-ID-large[[HF]](https://huggingface.co/yifeihu/TF-ID-large) | 258 | 253 | 98.06% |
49
+
50
  Depending on the use cases, some "incorrect" output could be totally usable. For example, the model draw two bounding boxes for one figure with two child components.
51
 
52
  ## How to Get Started with the Model
 
58
  from PIL import Image
59
  from transformers import AutoProcessor, AutoModelForCausalLM
60
 
61
+ model = AutoModelForCausalLM.from_pretrained("yifeihu/TFT-ID-1.0", trust_remote_code=True)
62
+ processor = AutoProcessor.from_pretrained("yifeihu/TFT-ID-1.0", trust_remote_code=True)
63
 
64
  prompt = "<OD>"
65
 
TFT-ID.png ADDED