|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch XLM-RoBERTa model.""" |
|
|
|
import math |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
|
|
from transformers.activations import ACT2FN, gelu |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
BaseModelOutputWithPoolingAndCrossAttentions, |
|
CausalLMOutputWithCrossAttentions, |
|
MaskedLMOutput, |
|
MultipleChoiceModelOutput, |
|
QuestionAnsweringModelOutput, |
|
SequenceClassifierOutput, |
|
TokenClassifierOutput, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer |
|
from transformers.utils import ( |
|
add_code_sample_docstrings, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
|
|
from transformers.models.xlm_roberta.modeling_xlm_roberta import ( |
|
XLMRobertaEncoder, |
|
XLMRobertaPooler, |
|
XLMRobertaPreTrainedModel, |
|
XLMRobertaClassificationHead |
|
) |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CHECKPOINT_FOR_DOC = "FacebookAI/xlm-roberta-base" |
|
_CONFIG_FOR_DOC = "XLMRobertaConfig" |
|
|
|
|
|
|
|
class XLMRobertaDecoupledEmbeddings(nn.Module): |
|
""" |
|
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. |
|
""" |
|
|
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) |
|
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) |
|
|
|
|
|
|
|
if config.use_lang_embedding is True: |
|
self.lang_type_embeddings = nn.Embedding(config.lang_size, config.hidden_size) |
|
|
|
|
|
if config.use_script_embedding is True: |
|
self.script_type_embeddings = nn.Embedding(config.script_size, config.hidden_size) |
|
|
|
|
|
|
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") |
|
self.register_buffer( |
|
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False |
|
) |
|
self.register_buffer( |
|
"token_lang_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False |
|
) |
|
self.register_buffer( |
|
"token_script_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False |
|
) |
|
|
|
|
|
self.padding_idx = config.pad_token_id |
|
self.position_embeddings = nn.Embedding( |
|
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx |
|
) |
|
self.config = config |
|
|
|
def forward( |
|
self, token_lang_ids=None, token_script_ids=None, |
|
input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 |
|
): |
|
if position_ids is None: |
|
if input_ids is not None: |
|
|
|
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length) |
|
else: |
|
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.word_embeddings(input_ids) |
|
|
|
if self.config.decouple_at_input_embeddings: |
|
if token_lang_ids is None and self.config.use_lang_embedding is True: |
|
raise ValueError("token_lang_ids cannot be None if use_lang_embed is True") |
|
else: |
|
if self.config.use_lang_embedding is True: |
|
token_lang_embeddings = self.lang_type_embeddings(token_lang_ids) |
|
inputs_embeds = inputs_embeds + token_lang_embeddings |
|
if token_script_ids is None and self.config.use_script_embedding is True: |
|
raise ValueError("token_script_ids cannot be None if use_script_embedding is True") |
|
else: |
|
if self.config.use_script_embedding: |
|
token_script_embeddings = self.script_type_embeddings(token_lang_ids) |
|
inputs_embeds = inputs_embeds + token_script_embeddings |
|
|
|
embeddings = inputs_embeds |
|
|
|
if self.position_embedding_type == "absolute": |
|
position_embeddings = self.position_embeddings(position_ids) |
|
embeddings += position_embeddings |
|
embeddings = self.LayerNorm(embeddings) |
|
embeddings = self.dropout(embeddings) |
|
return embeddings |
|
|
|
def create_position_ids_from_inputs_embeds(self, inputs_embeds): |
|
""" |
|
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. |
|
|
|
Args: |
|
inputs_embeds: torch.Tensor |
|
|
|
Returns: torch.Tensor |
|
""" |
|
input_shape = inputs_embeds.size()[:-1] |
|
sequence_length = input_shape[1] |
|
|
|
position_ids = torch.arange( |
|
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device |
|
) |
|
return position_ids.unsqueeze(0).expand(input_shape) |
|
|
|
|
|
XLM_ROBERTA_START_DOCSTRING = r""" |
|
|
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`XLMRobertaConfig`]): Model configuration class with all the parameters of the |
|
model. Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
XLM_ROBERTA_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `({0})`): |
|
Indices of input sequence tokens in the vocabulary. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): |
|
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, |
|
1]`: |
|
|
|
- 0 corresponds to a *sentence A* token, |
|
- 1 corresponds to a *sentence B* token. |
|
|
|
[What are token type IDs?](../glossary#token-type-ids) |
|
position_ids (`torch.LongTensor` of shape `({0})`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.max_position_embeddings - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): |
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare XLM-RoBERTa Model transformer outputting raw hidden-states without any specific head on top.", |
|
XLM_ROBERTA_START_DOCSTRING, |
|
) |
|
|
|
class XLMRobertaDecoupledModel(XLMRobertaPreTrainedModel): |
|
""" |
|
|
|
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of |
|
cross-attention is added between the self-attention layers, following the architecture described in *Attention is |
|
all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz |
|
Kaiser and Illia Polosukhin. |
|
|
|
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set |
|
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and |
|
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. |
|
|
|
.. _*Attention is all you need*: https://arxiv.org/abs/1706.03762 |
|
|
|
""" |
|
|
|
|
|
def __init__(self, config, add_pooling_layer=True): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.embeddings = XLMRobertaDecoupledEmbeddings(config) |
|
self.encoder = XLMRobertaEncoder(config) |
|
|
|
self.pooler = XLMRobertaPooler(config) if add_pooling_layer else None |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings.word_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.embeddings.word_embeddings = value |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.layer[layer].attention.prune_heads(heads) |
|
|
|
@add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=BaseModelOutputWithPoolingAndCrossAttentions, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_lang_ids: Optional[torch.Tensor] = None, |
|
token_script_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: |
|
r""" |
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if |
|
the model is configured as a decoder. |
|
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in |
|
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): |
|
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if self.config.is_decoder: |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
else: |
|
use_cache = False |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) |
|
input_shape = input_ids.size() |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
batch_size, seq_length = input_shape |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
|
|
|
|
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) |
|
|
|
if self.config.decouple_at_input_embeddings: |
|
if token_lang_ids is None and self.config.use_lang_embedding is True: |
|
raise ValueError("token_lang_ids cannot be None if use_lang_embed is True") |
|
if token_script_ids is None and self.config.use_script_embedding is True: |
|
raise ValueError("token_script_ids cannot be None if use_script_embedding is True") |
|
|
|
|
|
|
|
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) |
|
|
|
|
|
|
|
if self.config.is_decoder and encoder_hidden_states is not None: |
|
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() |
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) |
|
if encoder_attention_mask is None: |
|
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) |
|
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) |
|
else: |
|
encoder_extended_attention_mask = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) |
|
|
|
embedding_output = self.embeddings( |
|
input_ids=input_ids, |
|
position_ids=position_ids, |
|
token_lang_ids=token_lang_ids, |
|
token_script_ids=token_script_ids, |
|
inputs_embeds=inputs_embeds, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
encoder_outputs = self.encoder( |
|
embedding_output, |
|
attention_mask=extended_attention_mask, |
|
head_mask=head_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_extended_attention_mask, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = encoder_outputs[0] |
|
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None |
|
|
|
if not return_dict: |
|
return (sequence_output, pooled_output) + encoder_outputs[1:] |
|
|
|
return BaseModelOutputWithPoolingAndCrossAttentions( |
|
last_hidden_state=sequence_output, |
|
pooler_output=pooled_output, |
|
past_key_values=encoder_outputs.past_key_values, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
cross_attentions=encoder_outputs.cross_attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
"""XLM-RoBERTa Model with a `language modeling` head on top.""", |
|
XLM_ROBERTA_START_DOCSTRING, |
|
) |
|
|
|
class XLMRobertaDecoupledForMaskedLM(XLMRobertaPreTrainedModel): |
|
_tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
if config.is_decoder: |
|
logger.warning( |
|
"If you want to use `XLMRobertaForMaskedLM` make sure `config.is_decoder=False` for " |
|
"bi-directional self-attention." |
|
) |
|
|
|
self.roberta = XLMRobertaDecoupledModel(config, add_pooling_layer=False) |
|
self.lm_head = XLMRobertaDecoupledLMHead(config) |
|
self.config = config |
|
|
|
self.post_init() |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head.decoder |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head.decoder = new_embeddings |
|
|
|
@add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=MaskedLMOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
mask="<mask>", |
|
expected_output="' Paris'", |
|
expected_loss=0.1, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_lang_ids: Optional[torch.Tensor] = None, |
|
token_script_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., |
|
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the |
|
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` |
|
kwargs (`Dict[str, any]`, optional, defaults to *{}*): |
|
Used to hide legacy arguments that have been deprecated. |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.roberta( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_lang_ids=token_lang_ids, |
|
token_script_ids=token_script_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = outputs[0] |
|
|
|
if self.config.use_lang_embedding: |
|
if token_lang_ids is None: |
|
raise ValueError("token_lang_ids cannot be None if use_lang_embedding is True") |
|
token_lang_embeddings = self.roberta.embeddings.lang_type_embeddings(token_lang_ids) |
|
else: |
|
token_lang_embeddings = None |
|
|
|
if self.config.use_script_embedding: |
|
if token_script_ids is None: |
|
raise ValueError("token_script_ids cannot be None if use_script_embedding is True") |
|
token_script_embeddings = self.roberta.embeddings.script_type_embeddings(token_script_ids) |
|
else: |
|
token_script_embeddings = None |
|
|
|
|
|
if labels is not None: |
|
valid_tokens = labels != -100 |
|
valid_tokens = valid_tokens.unsqueeze(-1).expand_as(sequence_output) |
|
filtered_output = torch.masked_select(sequence_output, valid_tokens).view(-1, sequence_output.size(-1)) |
|
if token_lang_embeddings is not None: |
|
token_lang_embeddings = \ |
|
torch.masked_select(token_lang_embeddings, valid_tokens).view(-1, token_lang_embeddings.size(-1)) |
|
if token_script_embeddings is not None: |
|
token_script_embeddings = \ |
|
torch.masked_select(token_script_embeddings, valid_tokens).view(-1, token_script_embeddings.size(-1)) |
|
filtered_labels = torch.masked_select(labels, labels != -100) |
|
sequence_output = filtered_output |
|
labels = filtered_labels |
|
|
|
prediction_scores = self.lm_head(sequence_output, token_lang_embeddings, token_script_embeddings) |
|
masked_lm_loss = None |
|
if labels is not None: |
|
|
|
labels = labels.to(prediction_scores.device) |
|
loss_fct = CrossEntropyLoss() |
|
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (prediction_scores,) + outputs[2:] |
|
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output |
|
|
|
return MaskedLMOutput( |
|
loss=masked_lm_loss, |
|
logits=prediction_scores, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
|
|
class XLMRobertaDecoupledLMHead(nn.Module): |
|
"""Roberta Head for masked language modeling.""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
self.decoder = nn.Linear(config.hidden_size, config.vocab_size) |
|
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) |
|
self.decoder.bias = self.bias |
|
self.config = config |
|
|
|
def forward(self, features, language_embeddings, script_embeddings, **kwargs): |
|
if language_embeddings is not None: |
|
features = features + language_embeddings |
|
if script_embeddings is not None: |
|
features = features + script_embeddings |
|
x = self.dense(features) |
|
x = gelu(x) |
|
x = self.layer_norm(x) |
|
|
|
|
|
x = self.decoder(x) |
|
|
|
return x |
|
|
|
def _tie_weights(self): |
|
|
|
|
|
if self.decoder.bias.device.type == "meta": |
|
self.decoder.bias = self.bias |
|
else: |
|
self.bias = self.decoder.bias |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
XLM-RoBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the |
|
pooled output) e.g. for GLUE tasks. |
|
""", |
|
XLM_ROBERTA_START_DOCSTRING, |
|
) |
|
|
|
class XLMRobertaDecoupledForSequenceClassification(XLMRobertaPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.config = config |
|
|
|
self.roberta = XLMRobertaDecoupledModel(config, add_pooling_layer=False) |
|
self.classifier = XLMRobertaClassificationHead(config) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@add_code_sample_docstrings( |
|
checkpoint="cardiffnlp/twitter-roberta-base-emotion", |
|
output_type=SequenceClassifierOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
expected_output="'optimism'", |
|
expected_loss=0.08, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_lang_ids: Optional[torch.Tensor] = None, |
|
token_script_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.roberta( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_lang_ids=token_lang_ids, |
|
token_script_ids=token_script_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = outputs[0] |
|
logits = self.classifier(sequence_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
labels = labels.to(logits.device) |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(logits, labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
XLM-RoBERTa Model with a multiple choice classification head on top (a linear layer on top of the pooled output and |
|
a softmax) e.g. for RocStories/SWAG tasks. |
|
""", |
|
XLM_ROBERTA_START_DOCSTRING, |
|
) |
|
|
|
class XLMRobertaDecoupledForMultipleChoice(XLMRobertaPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.roberta = XLMRobertaDecoupledModel(config) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
self.classifier = nn.Linear(config.hidden_size, 1) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward( |
|
XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") |
|
) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=MultipleChoiceModelOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
token_lang_ids: Optional[torch.Tensor] = None, |
|
token_script_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., |
|
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See |
|
`input_ids` above) |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] |
|
|
|
flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None |
|
flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None |
|
flat_token_lang_ids = token_lang_ids.view(-1, token_lang_ids.size(-1)) if token_lang_ids is not None else None |
|
flat_token_script_ids = token_script_ids.view(-1, token_script_ids.size( |
|
-1)) if token_script_ids is not None else None |
|
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None |
|
flat_inputs_embeds = ( |
|
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) |
|
if inputs_embeds is not None |
|
else None |
|
) |
|
|
|
outputs = self.roberta( |
|
flat_input_ids, |
|
position_ids=flat_position_ids, |
|
token_lang_ids=flat_token_lang_ids, |
|
token_script_ids=flat_token_script_ids, |
|
attention_mask=flat_attention_mask, |
|
head_mask=head_mask, |
|
inputs_embeds=flat_inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
pooled_output = outputs[1] |
|
|
|
pooled_output = self.dropout(pooled_output) |
|
logits = self.classifier(pooled_output) |
|
reshaped_logits = logits.view(-1, num_choices) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
labels = labels.to(reshaped_logits.device) |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(reshaped_logits, labels) |
|
|
|
if not return_dict: |
|
output = (reshaped_logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return MultipleChoiceModelOutput( |
|
loss=loss, |
|
logits=reshaped_logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
XLM-RoBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. |
|
for Named-Entity-Recognition (NER) tasks. |
|
""", |
|
XLM_ROBERTA_START_DOCSTRING, |
|
) |
|
|
|
class XLMRobertaDecoupledForTokenClassification(XLMRobertaPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
|
|
self.roberta = XLMRobertaDecoupledModel(config, add_pooling_layer=False) |
|
classifier_dropout = ( |
|
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob |
|
) |
|
self.dropout = nn.Dropout(classifier_dropout) |
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@add_code_sample_docstrings( |
|
checkpoint="Jean-Baptiste/roberta-large-ner-english", |
|
output_type=TokenClassifierOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
expected_output="['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']", |
|
expected_loss=0.01, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_lang_ids: Optional[torch.Tensor] = None, |
|
token_script_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.roberta( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_lang_ids=token_lang_ids, |
|
token_script_ids=token_script_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
|
|
sequence_output = self.dropout(sequence_output) |
|
logits = self.classifier(sequence_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
labels = labels.to(logits.device) |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TokenClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
|
|
class XLMRobertaClassificationHead(nn.Module): |
|
"""Head for sentence-level classification tasks.""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
classifier_dropout = ( |
|
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob |
|
) |
|
self.dropout = nn.Dropout(classifier_dropout) |
|
self.out_proj = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
def forward(self, features, **kwargs): |
|
x = features[:, 0, :] |
|
x = self.dropout(x) |
|
x = self.dense(x) |
|
x = torch.tanh(x) |
|
x = self.dropout(x) |
|
x = self.out_proj(x) |
|
return x |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
XLM-RoBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a |
|
linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). |
|
""", |
|
XLM_ROBERTA_START_DOCSTRING, |
|
) |
|
|
|
class XLMRobertaForQuestionAnswering(XLMRobertaPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
|
|
self.roberta = XLMRobertaDecoupledModel(config, add_pooling_layer=False) |
|
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@add_code_sample_docstrings( |
|
checkpoint="deepset/roberta-base-squad2", |
|
output_type=QuestionAnsweringModelOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
expected_output="' puppet'", |
|
expected_loss=0.86, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_lang_ids: Optional[torch.Tensor] = None, |
|
token_script_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
start_positions: Optional[torch.LongTensor] = None, |
|
end_positions: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: |
|
r""" |
|
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for position (index) of the start of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence |
|
are not taken into account for computing the loss. |
|
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for position (index) of the end of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence |
|
are not taken into account for computing the loss. |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.roberta( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_lang_ids=token_lang_ids, |
|
token_script_ids=token_script_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
|
|
logits = self.qa_outputs(sequence_output) |
|
start_logits, end_logits = logits.split(1, dim=-1) |
|
start_logits = start_logits.squeeze(-1).contiguous() |
|
end_logits = end_logits.squeeze(-1).contiguous() |
|
|
|
total_loss = None |
|
if start_positions is not None and end_positions is not None: |
|
|
|
if len(start_positions.size()) > 1: |
|
start_positions = start_positions.squeeze(-1) |
|
if len(end_positions.size()) > 1: |
|
end_positions = end_positions.squeeze(-1) |
|
|
|
ignored_index = start_logits.size(1) |
|
start_positions = start_positions.clamp(0, ignored_index) |
|
end_positions = end_positions.clamp(0, ignored_index) |
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) |
|
start_loss = loss_fct(start_logits, start_positions) |
|
end_loss = loss_fct(end_logits, end_positions) |
|
total_loss = (start_loss + end_loss) / 2 |
|
|
|
if not return_dict: |
|
output = (start_logits, end_logits) + outputs[2:] |
|
return ((total_loss,) + output) if total_loss is not None else output |
|
|
|
return QuestionAnsweringModelOutput( |
|
loss=total_loss, |
|
start_logits=start_logits, |
|
end_logits=end_logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
|
|
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): |
|
""" |
|
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols |
|
are ignored. This is modified from fairseq's `utils.make_positions`. |
|
|
|
Args: |
|
x: torch.Tensor x: |
|
|
|
Returns: torch.Tensor |
|
""" |
|
|
|
mask = input_ids.ne(padding_idx).int() |
|
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask |
|
return incremental_indices.long() + padding_idx |
|
|
|
|